메뉴 건너뛰기




Volumn 39, Issue 2, 2016, Pages 98-108

Modeling the Drying Kinetics of Green Bell Pepper in a Heat Pump Assisted Fluidized Bed Dryer

Author keywords

[No Author keywords available]

Indexed keywords

BACKPROPAGATION; BACKPROPAGATION ALGORITHMS; BELLS; DRYERS (EQUIPMENT); DRYING; FUZZY LOGIC; FUZZY NEURAL NETWORKS; HEAT PUMP SYSTEMS; HYPERBOLIC FUNCTIONS; KINETICS; MEAN SQUARE ERROR; NEURAL NETWORKS; PILOT PLANTS; TOPOLOGY;

EID: 84948844792     PISSN: 01469428     EISSN: 17454557     Source Type: Journal    
DOI: 10.1111/jfq.12180     Document Type: Article
Times cited : (40)

References (37)
  • 1
    • 79956090984 scopus 로고    scopus 로고
    • Optimization of an Artificial Neural Network topology for predicting drying kinetics of carrot cubes using combined Response Surface and Genetic Algorithm
    • Aghbashlo, M., Kianmehr, M.H., Nazghelichi, T. and Rafiee, S. 2011. Optimization of an Artificial Neural Network topology for predicting drying kinetics of carrot cubes using combined Response Surface and Genetic Algorithm. Dry Technol. 29, 770-779.
    • (2011) Dry Technol. , vol.29 , pp. 770-779
    • Aghbashlo, M.1    Kianmehr, M.H.2    Nazghelichi, T.3    Rafiee, S.4
  • 2
    • 26444459777 scopus 로고    scopus 로고
    • Determination of suitable thin layer drying curve model for some vegetables and fruits
    • Akpinar, E.K. 2006. Determination of suitable thin layer drying curve model for some vegetables and fruits. J. Food Eng. 73, 75-84.
    • (2006) J. Food Eng. , vol.73 , pp. 75-84
    • Akpinar, E.K.1
  • 3
    • 15244339915 scopus 로고    scopus 로고
    • A first principles - Neural Networks approach to model a vibrated fluidized bed dryer: Simulations and experimental results
    • Alvarez, P.I., Blasco, R., Gomez, J. and Cubillos, F.A. 2005. A first principles - Neural Networks approach to model a vibrated fluidized bed dryer: Simulations and experimental results. Dry Technol. 23, 187-203.
    • (2005) Dry Technol. , vol.23 , pp. 187-203
    • Alvarez, P.I.1    Blasco, R.2    Gomez, J.3    Cubillos, F.A.4
  • 5
    • 77955590616 scopus 로고    scopus 로고
    • Association of Official Analytical Chemists, Arlington, VA.
    • Association of Official Analytical Chemists. 1999. Official Methods of Analysis, Association of Official Analytical Chemists, Arlington, VA.
    • (1999) Official Methods of Analysis
  • 6
    • 31944434546 scopus 로고    scopus 로고
    • Fluidized bed paddy drying in optimal conditions via adaptive Fuzzy Logic control
    • Atthajariyakul, S. and Leephakpreeda, T. 2006. Fluidized bed paddy drying in optimal conditions via adaptive Fuzzy Logic control. J. Food Eng. 75, 104-114.
    • (2006) J. Food Eng. , vol.75 , pp. 104-114
    • Atthajariyakul, S.1    Leephakpreeda, T.2
  • 7
    • 84923033196 scopus 로고    scopus 로고
    • Mass transfer kinetics of eggplant during osmotic dehydration by neural networks
    • Bahmani, A., Jafari, S.M., Shahidi, S.A. and Dehnad, D. 2015. Mass transfer kinetics of eggplant during osmotic dehydration by neural networks. J. Food Process. Pres. doi: 10.1111/jfpp.12435.
    • (2015) J. Food Process. Pres.
    • Bahmani, A.1    Jafari, S.M.2    Shahidi, S.A.3    Dehnad, D.4
  • 8
    • 84860389241 scopus 로고    scopus 로고
    • An investigation of drying process of shelled pistachios in a newly designed fixed bed dryer system by using Artificial Neural Network
    • Balbay, A., Şahin, Ö. and Karbatak, M. 2011. An investigation of drying process of shelled pistachios in a newly designed fixed bed dryer system by using Artificial Neural Network. Dry Technol. 29, 1685-1696.
    • (2011) Dry Technol. , vol.29 , pp. 1685-1696
    • Balbay, A.1    Şahin, O.2    Karbatak, M.3
  • 9
    • 0034908130 scopus 로고    scopus 로고
    • Prediction of quality changes during osmo-convective drying of blueberries using Neural Network models for process optimization
    • Chen, C.R., Ramaswamy, H.S. and Alli, I. 2001. Prediction of quality changes during osmo-convective drying of blueberries using Neural Network models for process optimization. Dry Technol. 19, 507-523.
    • (2001) Dry Technol. , vol.19 , pp. 507-523
    • Chen, C.R.1    Ramaswamy, H.S.2    Alli, I.3
  • 13
    • 38849201825 scopus 로고    scopus 로고
    • Drying kinetics and quality changes during drying of red pepper
    • Di Scala, K. and Crapiste, G. 2008. Drying kinetics and quality changes during drying of red pepper. Lebensm. Wiss. Technol. 41, 789-795.
    • (2008) Lebensm. Wiss. Technol. , vol.41 , pp. 789-795
    • Di Scala, K.1    Crapiste, G.2
  • 14
    • 0141956017 scopus 로고    scopus 로고
    • Convective air drying characteristics of thin layer carrots
    • Doymaz, I˙. 2004. Convective air drying characteristics of thin layer carrots. J. Food Eng. 61, 359-364.
    • (2004) J. Food Eng. , vol.61 , pp. 359-364
    • Doymaz, I.1
  • 15
    • 34547525049 scopus 로고    scopus 로고
    • Comparison of genetic algorithm and neural network approaches for the drying process of carrot
    • Erenturk, S. and Erenturk, K. 2007. Comparison of genetic algorithm and neural network approaches for the drying process of carrot. J. Food Eng. 78, 905-912.
    • (2007) J. Food Eng. , vol.78 , pp. 905-912
    • Erenturk, S.1    Erenturk, K.2
  • 16
    • 80052976341 scopus 로고    scopus 로고
    • Evaluation of drying parameters and sorption isotherms of mint leaves (M. pulegium)
    • Ethman Kan, C.S., Sid Ahmed, M.A.O. and Kouhila, M. 2009. Evaluation of drying parameters and sorption isotherms of mint leaves (M. pulegium). Revue des Energies Renouvelables 12, 449-470.
    • (2009) Revue des Energies Renouvelables , vol.12 , pp. 449-470
    • Ethman Kan, C.S.1    Sid Ahmed, M.A.O.2    Kouhila, M.3
  • 17
    • 84877256127 scopus 로고    scopus 로고
    • Use of artificial intelligence for the modeling of drying processes
    • Farkas, I. 2013. Use of artificial intelligence for the modeling of drying processes. Dry Technol. 31, 848-855.
    • (2013) Dry Technol. , vol.31 , pp. 848-855
    • Farkas, I.1
  • 18
    • 84861029763 scopus 로고    scopus 로고
    • Application of fractal theory for prediction of shrinkage of dried kiwifruit using Artificial Neural Network and Genetic Algorithm
    • Fathi, M., Mohebbi, M. and Razavi, S.M.A. 2011. Application of fractal theory for prediction of shrinkage of dried kiwifruit using Artificial Neural Network and Genetic Algorithm. Dry Technol. 29, 918-925.
    • (2011) Dry Technol. , vol.29 , pp. 918-925
    • Fathi, M.1    Mohebbi, M.2    Razavi, S.M.A.3
  • 19
    • 84962972806 scopus 로고    scopus 로고
    • Modeling the drying kinetics of onion in a fluidized bed drier equipped with a moisture controller using regression, Fuzzy Logic and Artificial Neural Networks methods
    • Ganjeh, M., Jafari, S.M., Ghanbari, V., Dezyani, M., Ezzati, R. and Soleimani, M. 2013. Modeling the drying kinetics of onion in a fluidized bed drier equipped with a moisture controller using regression, Fuzzy Logic and Artificial Neural Networks methods. Iran. J. Nutr. Sci. Food Technol. 7, 399-407.
    • (2013) Iran. J. Nutr. Sci. Food Technol. , vol.7 , pp. 399-407
    • Ganjeh, M.1    Jafari, S.M.2    Ghanbari, V.3    Dezyani, M.4    Ezzati, R.5    Soleimani, M.6
  • 20
    • 84896776205 scopus 로고    scopus 로고
    • Optimization of closed-cycle fluidized bed drying of sesame seeds using response surface methodology and genetic algorithms
    • Hashemi Shahraki, M., Jafari, S.M., Mashkour, M. and Esmaeilzadeh, E. 2014. Optimization of closed-cycle fluidized bed drying of sesame seeds using response surface methodology and genetic algorithms. Int. J. Food Eng. 10, 167-182.
    • (2014) Int. J. Food Eng. , vol.10 , pp. 167-182
    • Hashemi Shahraki, M.1    Jafari, S.M.2    Mashkour, M.3    Esmaeilzadeh, E.4
  • 21
    • 0345393182 scopus 로고    scopus 로고
    • An Artificial Neural Network model for prediction of drying rates
    • Islam, M.D.R., Sablani, S.S. and Mujumdar, A.S. 2003. An Artificial Neural Network model for prediction of drying rates. Dry Technol. 21, 1867-1884.
    • (2003) Dry Technol. , vol.21 , pp. 1867-1884
    • Islam, M.D.R.1    Sablani, S.S.2    Mujumdar, A.S.3
  • 22
    • 20844456579 scopus 로고    scopus 로고
    • Modeling intermittent drying using an adaptive neuro-fuzzy inference system
    • Jumah, R. and Mujumdar, A.S. 2005. Modeling intermittent drying using an adaptive neuro-fuzzy inference system. Dry Technol. 23, 1075-1092.
    • (2005) Dry Technol. , vol.23 , pp. 1075-1092
    • Jumah, R.1    Mujumdar, A.S.2
  • 23
    • 84890467835 scopus 로고    scopus 로고
    • Evaluation of thin-layer drying models and artificial neural networks for describing drying kinetics of canola seed in a heat pump assisted fluidized bed dryer
    • Malekjani, N., Jafari, S.M., Rahmati, M.H., Esmaeilzadeh, E. and Mirzaee, H.A. 2013. Evaluation of thin-layer drying models and artificial neural networks for describing drying kinetics of canola seed in a heat pump assisted fluidized bed dryer. Int. J. Food Eng. 9, 375-384.
    • (2013) Int. J. Food Eng. , vol.9 , pp. 375-384
    • Malekjani, N.1    Jafari, S.M.2    Rahmati, M.H.3    Esmaeilzadeh, E.4    Mirzaee, H.A.5
  • 25
    • 79952142898 scopus 로고    scopus 로고
    • Determination of suitable thin layer drying curve model for apple slices (variety-Golab)
    • Meisamiasl, E., Rafiee, S., Keyhani, A. and Tabatabaeefar, A. 2010. Determination of suitable thin layer drying curve model for apple slices (variety-Golab). Plant Omics J. 3, 103-108.
    • (2010) Plant Omics J. , vol.3 , pp. 103-108
    • Meisamiasl, E.1    Rafiee, S.2    Keyhani, A.3    Tabatabaeefar, A.4
  • 27
    • 34848923325 scopus 로고    scopus 로고
    • Modeling of tomato drying using Artificial Neural Network
    • Movagharnejad, K. and Nikzad, M. 2007. Modeling of tomato drying using Artificial Neural Network. Comput. Electron. Agric. 59, 78-85.
    • (2007) Comput. Electron. Agric. , vol.59 , pp. 78-85
    • Movagharnejad, K.1    Nikzad, M.2
  • 28
    • 84975801910 scopus 로고    scopus 로고
    • Prediction of energy and exergy of carrot cubes in a fluidized bed dryer by Artificial Neural Networks
    • Nzaghelichi, T., Aghbashlo, M., Kianmehr, M.H. and Omid, M. 2011. Prediction of energy and exergy of carrot cubes in a fluidized bed dryer by Artificial Neural Networks. Dry Technol. 29, 295-307.
    • (2011) Dry Technol. , vol.29 , pp. 295-307
    • Nzaghelichi, T.1    Aghbashlo, M.2    Kianmehr, M.H.3    Omid, M.4
  • 29
    • 84975789816 scopus 로고    scopus 로고
    • Modeling drying kinetics of pistachio nuts with multilayer feed-forward Neural Network
    • Omid, M., Bahralooei, A. and Ahmadi, H. 2009. Modeling drying kinetics of pistachio nuts with multilayer feed-forward Neural Network. Dry Technol. 27, 1069-1077.
    • (2009) Dry Technol. , vol.27 , pp. 1069-1077
    • Omid, M.1    Bahralooei, A.2    Ahmadi, H.3
  • 30
    • 0034843289 scopus 로고    scopus 로고
    • Neural Network model for fluidized bed dryers
    • Palancar, M.C., Aragon, J.M. and Castellanos, J.A. 2001. Neural Network model for fluidized bed dryers. Dry Technol. 19, 1023-1044.
    • (2001) Dry Technol. , vol.19 , pp. 1023-1044
    • Palancar, M.C.1    Aragon, J.M.2    Castellanos, J.A.3
  • 33
    • 84962958774 scopus 로고    scopus 로고
    • Simulation of kinetics model for thin layer drying of orange (Thompson variety) by using Artificial Neural Network
    • Sharifi, M., Rafiee, S., Keyhani, A. and Omid, M. 2010. Simulation of kinetics model for thin layer drying of orange (Thompson variety) by using Artificial Neural Network. Iran. Food Sci. Technol. J. 7, 39-49.
    • (2010) Iran. Food Sci. Technol. J. , vol.7 , pp. 39-49
    • Sharifi, M.1    Rafiee, S.2    Keyhani, A.3    Omid, M.4
  • 35
    • 84962958187 scopus 로고    scopus 로고
    • th World Congress: The International Federation of Automatic Control, Seoul.
    • th World Congress: The International Federation of Automatic Control, Seoul.
    • (2008)
    • Vaquiro, H.A.1    Bon, J.2    Dies, J.L.3
  • 36
    • 59349103273 scopus 로고    scopus 로고
    • Fluidized bed dryers - recent advances
    • Wan Daud, W.D. 2008. Fluidized bed dryers - recent advances. Adv. Powder Technol. 19, 403-418.
    • (2008) Adv. Powder Technol. , vol.19 , pp. 403-418
    • Wan Daud, W.D.1
  • 37
    • 70349865009 scopus 로고    scopus 로고
    • Comparison of Artificial Neural Network (ANN) and Response Surface Methodology (RSM) in the prediction of quality parameters of spray-dried pomegranate juice
    • Youssefi, S., Emam-Djomeh, Z. and Mousavi, S.M. 2009. Comparison of Artificial Neural Network (ANN) and Response Surface Methodology (RSM) in the prediction of quality parameters of spray-dried pomegranate juice. Dry Technol. 27, 910-917.
    • (2009) Dry Technol. , vol.27 , pp. 910-917
    • Youssefi, S.1    Emam-Djomeh, Z.2    Mousavi, S.M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.