메뉴 건너뛰기




Volumn 53, Issue 12, 2015, Pages 1333-1343

Comparative assessment of glucose prediction models for patients with type 1 diabetes mellitus applying sensors for glucose and physical activity monitoring

Author keywords

Diabetes; Glucose; Neural networks; Neuro fuzzy; Physical activity; Prediction; Self organizing map; Sensors

Indexed keywords

CONFORMAL MAPPING; FEEDFORWARD NEURAL NETWORKS; FORECASTING; FUZZY INFERENCE; FUZZY NEURAL NETWORKS; LINEAR REGRESSION; MEDICAL PROBLEMS; MONITORING; NEURAL NETWORKS; REGRESSION ANALYSIS; SELF ORGANIZING MAPS; SENSORS;

EID: 84948711108     PISSN: 01400118     EISSN: 17410444     Source Type: Journal    
DOI: 10.1007/s11517-015-1320-9     Document Type: Article
Times cited : (93)

References (31)
  • 1
    • 49249108286 scopus 로고    scopus 로고
    • Fuzzy wavelet neural networks for identification and control of dynamic plants—a novel structure and comparative study
    • Abiyev R, Kaynak O (2008) Fuzzy wavelet neural networks for identification and control of dynamic plants—a novel structure and comparative study. IEEE Trans Ind Electron 55(8):1–4
    • (2008) IEEE Trans Ind Electron , vol.55 , Issue.8 , pp. 1-4
    • Abiyev, R.1    Kaynak, O.2
  • 2
    • 57649200203 scopus 로고    scopus 로고
    • Controlling blood glucose levels in diabetics by neural network predictor. In: Proceedings of the 29th annual international conference of the IEEE engineering in medicine and biology society, pp 3216–3219
    • Baghdadi G, Nasrabadi AM (2007) Controlling blood glucose levels in diabetics by neural network predictor. In: Proceedings of the 29th annual international conference of the IEEE engineering in medicine and biology society, pp 3216–3219, Aug 22–26
    • (2007) Aug 22–26
    • Baghdadi, G.1    Nasrabadi, A.M.2
  • 3
    • 34548119512 scopus 로고    scopus 로고
    • Time series prediction with the self-organizing map: a review
    • Springer, Berlin
    • Barreto G (2007) Time series prediction with the self-organizing map: a review. In: Hammer B, Hitzler p (eds) Perspectives of neural-symbolic integration, vol 77. Springer, Berlin, pp 135–158
    • (2007) Perspectives of neural-symbolic integration , vol.77 , pp. 135-158
    • Barreto, G.1    Hammer, B.2
  • 4
    • 4644234339 scopus 로고    scopus 로고
    • Identification and control of dynamical systems using the self-organizing map
    • COI: 1:STN:280:DC%2BD1c%2FotFWiug%3D%3D, PID: 18238091
    • Barreto G, Araujo A (2004) Identification and control of dynamical systems using the self-organizing map. IEEE Trans Neural Netw 15(5):1244–1259
    • (2004) IEEE Trans Neural Netw , vol.15 , Issue.5 , pp. 1244-1259
    • Barreto, G.1    Araujo, A.2
  • 5
    • 84975465323 scopus 로고    scopus 로고
    • Identification of linear dynamic models for type 1 diabetes: a simulation study. In: Proceedings of 14th IFAC ADCHEM symposium, pp 503–508
    • Finan DA, et al (2006) Identification of linear dynamic models for type 1 diabetes: a simulation study. In: Proceedings of 14th IFAC ADCHEM symposium, pp 503–508, Apr 2–5
    • (2006) Apr 2–5
    • Finan, D.A.1
  • 6
    • 33748086307 scopus 로고    scopus 로고
    • Empirical modeling for glucose control in diabetes and critical care
    • Florian JA, Parker RS (2005) Empirical modeling for glucose control in diabetes and critical care. Eur J Control 11:344–350
    • (2005) Eur J Control , vol.11 , pp. 344-350
    • Florian, J.A.1    Parker, R.S.2
  • 7
    • 77950983838 scopus 로고    scopus 로고
    • Data mining for blood glucose prediction and knowledge discovery in diabetic patients: the METABO diabetes modeling and management system. In: Proceedings of the 31st annual international conference IEEE engineering in medicine and biology society, Minneapolis
    • Georga E, et al (2009) Data mining for blood glucose prediction and knowledge discovery in diabetic patients: the METABO diabetes modeling and management system. In: Proceedings of the 31st annual international conference IEEE engineering in medicine and biology society, Minneapolis, 2009
    • (2009) 2009
    • Georga, E.1
  • 8
    • 84882272395 scopus 로고    scopus 로고
    • Multivariate prediction of subcutaneous glucose concentration in type 1 diabetes patients based on support vector regression
    • COI: 1:STN:280:DC%2BC38bpvVCqtA%3D%3D
    • Georga E et al (2013) Multivariate prediction of subcutaneous glucose concentration in type 1 diabetes patients based on support vector regression. IEEE Biomed Health Inform 17:71–81
    • (2013) IEEE Biomed Health Inform , vol.17 , pp. 71-81
    • Georga, E.1
  • 9
    • 62249107463 scopus 로고    scopus 로고
    • Glucose estimation and prediction through meal responses using ambulatory subject data for advisory mode model predictive control
    • PID: 19885154
    • Gillis R, Palerm CC, Doyle FJ (2007) Glucose estimation and prediction through meal responses using ambulatory subject data for advisory mode model predictive control. J Diabetes Sci Technol 1:825–833
    • (2007) J Diabetes Sci Technol , vol.1 , pp. 825-833
    • Gillis, R.1    Palerm, C.C.2    Doyle, F.J.3
  • 10
    • 4344640337 scopus 로고    scopus 로고
    • Nonlinear model predictive control of glucose concentration in subjects with type 1 diabetes
    • PID: 15382830
    • Hovorka R et al (2004) Nonlinear model predictive control of glucose concentration in subjects with type 1 diabetes. Physiol Meas 25:905–920
    • (2004) Physiol Meas , vol.25 , pp. 905-920
    • Hovorka, R.1
  • 11
    • 18144421498 scopus 로고    scopus 로고
    • Continuous glucose monitoring: roadmap for 21st century diabetes therapy
    • PID: 15855600
    • Klonoff DC (2005) Continuous glucose monitoring: roadmap for 21st century diabetes therapy. Diabetes Care 28(5):1231–1239
    • (2005) Diabetes Care , vol.28 , Issue.5 , pp. 1231-1239
    • Klonoff, D.C.1
  • 12
    • 3342981187 scopus 로고    scopus 로고
    • Evaluating the accuracy of continuous glucose-monitoring sensors
    • COI: 1:CAS:528:DC%2BD2cXntVygt7s%3D, PID: 15277418
    • Kovatchev B et al (2004) Evaluating the accuracy of continuous glucose-monitoring sensors. Diabetes Care 27(8):1922–1928
    • (2004) Diabetes Care , vol.27 , Issue.8 , pp. 1922-1928
    • Kovatchev, B.1
  • 13
    • 70349769396 scopus 로고    scopus 로고
    • Model predictive control of glucose concentration in type 1 diabetic patient: an in silico trial
    • Magni L et al (2009) Model predictive control of glucose concentration in type 1 diabetic patient: an in silico trial. Biomed Signal Process Control 4:338–346
    • (2009) Biomed Signal Process Control , vol.4 , pp. 338-346
    • Magni, L.1
  • 14
    • 74049153277 scopus 로고    scopus 로고
    • Nonlinear modeling of the dynamic effects of infused insulin on glucose: comparison of compartmental with Volterra models
    • PID: 19497805
    • Mitsis GD, Markakis MG, Marmarelis VZ (2009) Nonlinear modeling of the dynamic effects of infused insulin on glucose: comparison of compartmental with Volterra models. IEEE Trans Biomed Eng 56:2347–2358
    • (2009) IEEE Trans Biomed Eng , vol.56 , pp. 2347-2358
    • Mitsis, G.D.1    Markakis, M.G.2    Marmarelis, V.Z.3
  • 15
    • 80052048762 scopus 로고    scopus 로고
    • Prediction of glucose profile in children with type 1 diabetes mellitus using continuous glucose monitors and insulin pumps
    • Mougiakakou SG et al (2008) Prediction of glucose profile in children with type 1 diabetes mellitus using continuous glucose monitors and insulin pumps. Horm Res 70:22–23
    • (2008) Horm Res , vol.70 , pp. 22-23
    • Mougiakakou, S.G.1
  • 16
    • 77953161232 scopus 로고    scopus 로고
    • SMARTDIAB: a communication and information technology approach for the intelligent monitoring, management and follow-up of type 1 diabetes patients
    • PID: 20123578
    • Mougiakakou SG et al (2010) SMARTDIAB: a communication and information technology approach for the intelligent monitoring, management and follow-up of type 1 diabetes patients. IEEE Trans Inf Technol Biomed 14(3):622–633
    • (2010) IEEE Trans Inf Technol Biomed , vol.14 , Issue.3 , pp. 622-633
    • Mougiakakou, S.G.1
  • 17
    • 75749125065 scopus 로고    scopus 로고
    • Development of a neural network for prediction of glucose concentration in type 1 diabetes patients
    • PID: 19885262
    • Pappada SM, Cameron BD, Rosman PM (2008) Development of a neural network for prediction of glucose concentration in type 1 diabetes patients. J Diabetes Sci Technol 2:792–801
    • (2008) J Diabetes Sci Technol , vol.2 , pp. 792-801
    • Pappada, S.M.1    Cameron, B.D.2    Rosman, P.M.3
  • 18
    • 75749130634 scopus 로고    scopus 로고
    • Artificial neural network algorithm for online glucose prediction from continuous glucose monitoring
    • COI: 1:CAS:528:DC%2BC3cXntVWrtw%3D%3D, PID: 20082589
    • Perez-Gandia C et al (2010) Artificial neural network algorithm for online glucose prediction from continuous glucose monitoring. Diabetes Technol Ther 12(1):81–88
    • (2010) Diabetes Technol Ther , vol.12 , Issue.1 , pp. 81-88
    • Perez-Gandia, C.1
  • 19
    • 0032203424 scopus 로고    scopus 로고
    • Local dynamic modeling with self-organizing maps and applications to nonlinear system identification and control
    • Principe J, Wang L, Motter M (1998) Local dynamic modeling with self-organizing maps and applications to nonlinear system identification and control. Proc IEEE 86(11):2240–2258
    • (1998) Proc IEEE , vol.86 , Issue.11 , pp. 2240-2258
    • Principe, J.1    Wang, L.2    Motter, M.3
  • 20
    • 72649084659 scopus 로고    scopus 로고
    • Free-living inferential modelling of blood glucose level using only noninvasive inputs
    • COI: 1:CAS:528:DC%2BD1MXhs1Smu7rL
    • Rollins D et al (2010) Free-living inferential modelling of blood glucose level using only noninvasive inputs. J Process Control 20:95–107
    • (2010) J Process Control , vol.20 , pp. 95-107
    • Rollins, D.1
  • 21
    • 34247372642 scopus 로고    scopus 로고
    • Glucose concentration can be predicted ahead in time from continuous glucose monitoring sensor time-series
    • PID: 17518291
    • Sparacino G et al (2007) Glucose concentration can be predicted ahead in time from continuous glucose monitoring sensor time-series. IEEE Trans Biomed Eng 54(5):931–937
    • (2007) IEEE Trans Biomed Eng , vol.54 , Issue.5 , pp. 931-937
    • Sparacino, G.1
  • 22
    • 0027370108 scopus 로고
    • The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin dependent diabetes mellitus
    • The DCCT Research Group (1993) The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin dependent diabetes mellitus. N Engl J Med 329(14):977–986
    • (1993) N Engl J Med , vol.329 , Issue.14 , pp. 977-986
  • 23
    • 77950986701 scopus 로고    scopus 로고
    • Gaussian process modelling of blood glucose response to free-living physical activity data in people with type 1 diabetes. In: Proceedings of the 1st annual international conference of the IEEE engineering in medicine and biology society, pp 4913–4916
    • Valleta J, Chipperfield A, Byrne C (2009) Gaussian process modelling of blood glucose response to free-living physical activity data in people with type 1 diabetes. In: Proceedings of the 1st annual international conference of the IEEE engineering in medicine and biology society, pp 4913–4916, Sept 3–6
    • (2009) Sept 3–6
    • Valleta, J.1    Chipperfield, A.2    Byrne, C.3
  • 24
    • 77950986701 scopus 로고    scopus 로고
    • Gaussian process modelling of blood glucose response to free-living physical activity data in people with type 1 diabetes. In: Proceedings of the 1st annual international conference of the ieee engineering in medicine and biology society
    • Valleta J, Chipperfield A, Byrne C (2009) Gaussian process modelling of blood glucose response to free-living physical activity data in people with type 1 diabetes. In: Proceedings of the 1st annual international conference of the ieee engineering in medicine and biology society, pp 4913–4916
    • (2009) pp 4913–4916
    • Valleta, J.1    Chipperfield, A.2    Byrne, C.3
  • 25
    • 0025550401 scopus 로고
    • Non-linear prediction with self-organizing maps. In: Proceedings of the IEEE international joint conference on neural networks (IJCNN’90), vol 1, pp 589–594
    • Walter J, Ritter H, Schulten K (1990) Non-linear prediction with self-organizing maps. In: Proceedings of the IEEE international joint conference on neural networks (IJCNN’90), vol 1, pp 589–594, June 17–21
    • (1990) June 17–21
    • Walter, J.1    Ritter, H.2    Schulten, K.3
  • 26
    • 77950350206 scopus 로고    scopus 로고
    • Closed-loop control of artificial pancreatic β-cell in type 1 diabetes mellitus using model predictive iterative learning control
    • PID: 19527957
    • Wang Y, Dassau E, Doyle FJ (2010) Closed-loop control of artificial pancreatic β-cell in type 1 diabetes mellitus using model predictive iterative learning control. IEEE Trans Biomed Eng 57(2):211–219
    • (2010) IEEE Trans Biomed Eng , vol.57 , Issue.2 , pp. 211-219
    • Wang, Y.1    Dassau, E.2    Doyle, F.J.3
  • 27
    • 0242662161 scopus 로고    scopus 로고
    • The general inefficiency of batch training for gradient descent learning
    • PID: 14622875
    • Wilson D, Martinez T (2003) The general inefficiency of batch training for gradient descent learning. Neural Netw 16:1429–1451
    • (2003) Neural Netw , vol.16 , pp. 1429-1451
    • Wilson, D.1    Martinez, T.2
  • 28
    • 77958605644 scopus 로고    scopus 로고
    • A neural network approach in predicting the blood glucose level for diabetic patients
    • Zainuddin Z, Pauline O, Ardil C (2009) A neural network approach in predicting the blood glucose level for diabetic patients. Int J Comput Intell 5(1):72–79
    • (2009) Int J Comput Intell , vol.5 , Issue.1 , pp. 72-79
    • Zainuddin, Z.1    Pauline, O.2    Ardil, C.3
  • 29
    • 84894129865 scopus 로고    scopus 로고
    • Personalized glucose–insulin metabolism model based on self-organizing maps for patients with type 1 diabetes mellitus. In 13th IEEE international conference on bioinformatics and bioengineering (BIBE 2013), pp 1–4
    • Zarkogianni K, et al (2013) Personalized glucose–insulin metabolism model based on self-organizing maps for patients with type 1 diabetes mellitus. In 13th IEEE international conference on bioinformatics and bioengineering (BIBE 2013), pp 1–4, Nov 10–13
    • (2013) Nov , pp. 10-13
    • Zarkogianni, K.1
  • 31
    • 80052072237 scopus 로고    scopus 로고
    • An insulin infusion advisory system based on autotuning nonlinear model-predictive control
    • PID: 21622071
    • Zarkogianni K et al (2011) An insulin infusion advisory system based on autotuning nonlinear model-predictive control. IEEE Trans Biomed Eng 58(9):2467–2477
    • (2011) IEEE Trans Biomed Eng , vol.58 , Issue.9 , pp. 2467-2477
    • Zarkogianni, K.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.