메뉴 건너뛰기




Volumn , Issue , 2014, Pages 252-255

Neuro-fuzzy based glucose prediction model for patients with Type 1 diabetes mellitus

Author keywords

[No Author keywords available]

Indexed keywords

MATHEMATICAL MODELS; METABOLISM;

EID: 84906877379     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/BHI.2014.6864351     Document Type: Conference Paper
Times cited : (20)

References (21)
  • 1
    • 0027370108 scopus 로고
    • The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin dependent diabetes mellitus
    • The DCCT Research Group, Sep.
    • The DCCT Research Group, "The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin dependent diabetes mellitus," New England J. Med., vol. 329, no. 14, pp. 977-986, Sep. 1993.
    • (1993) New England J. Med. , vol.329 , Issue.14 , pp. 977-986
  • 2
    • 18144421498 scopus 로고    scopus 로고
    • Continuous glucose monitoring: Roadmap for 21st century diabetes therapy
    • May
    • D. C. Klonoff, "Continuous glucose monitoring: Roadmap for 21st century diabetes therapy," Diabetes Care, vol. 28, no. 5, pp. 1231-1239, May 2005.
    • (2005) Diabetes Care , vol.28 , Issue.5 , pp. 1231-1239
    • Klonoff, D.C.1
  • 3
    • 4344640337 scopus 로고    scopus 로고
    • Nonlinear model predictive control of glucose concentration in subjects with type 1 diabetes
    • Aug.
    • R. Hovorka et al., "Nonlinear model predictive control of glucose concentration in subjects with type 1 diabetes," Physiol. Meas., vol. 25, pp. 905-920, Aug. 2004.
    • (2004) Physiol. Meas. , vol.25 , pp. 905-920
    • Hovorka, R.1
  • 4
    • 70349769396 scopus 로고    scopus 로고
    • Model predictive control of glucose concentration in type 1 diabetic patient: An in silico trial
    • Nov.
    • L. Magni et al., "Model predictive control of glucose concentration in type 1 diabetic patient: An in silico trial," Biomed. Signal Process. Control, vol. 4, pp. 338-346, Nov. 2009.
    • (2009) Biomed. Signal Process. Control , vol.4 , pp. 338-346
    • Magni, L.1
  • 5
    • 33748086307 scopus 로고    scopus 로고
    • Empirical modeling for glucose control in diabetes and critical care
    • Jan.
    • J. A. Florian, and R. S. Parker, "Empirical modeling for glucose control in diabetes and critical care," Eur. J. Control, vol. 11, pp. 344-350, Jan. 2005.
    • (2005) Eur. J. Control , vol.11 , pp. 344-350
    • Florian, J.A.1    Parker, R.S.2
  • 6
    • 74049153277 scopus 로고    scopus 로고
    • Nonlinear modeling of the dynamic effects of infused insulin on glucose: Comparison of compartmental with volterra models
    • June
    • G. D. Mitsis et al.,"Nonlinear modeling of the dynamic effects of infused insulin on glucose: comparison of compartmental with volterra models," IEEE Trans. Biomed. Eng., vol. 56, pp. 2347-2358, June 2009.
    • (2009) IEEE Trans. Biomed. Eng. , vol.56 , pp. 2347-2358
    • Mitsis, G.D.1
  • 7
    • 39749161026 scopus 로고    scopus 로고
    • Identification of linear dynamic models for type 1 diabetes: A simulation study
    • April 2-5
    • D.A. Finan et al., "Identification of linear dynamic models for type 1 diabetes: A simulation study," in Proc. 14th IFAC ADCHEM Symp., pp. 503-508, April 2-5, 2006.
    • (2006) Proc. 14th IFAC ADCHEM Symp. , pp. 503-508
    • Finan, D.A.1
  • 8
    • 75749125065 scopus 로고    scopus 로고
    • Development of a neural network for prediction of glucose concentration in Type 1 diabetes patients
    • Sep.
    • S. M. Pappada et al., "Development of a neural network for prediction of glucose concentration in Type 1 diabetes patients," J. Diabetes Sci. Technol., vol. 2, pp. 792-801, Sep.2008.
    • (2008) J. Diabetes Sci. Technol. , vol.2 , pp. 792-801
    • Pappada, S.M.1
  • 10
    • 77958605644 scopus 로고    scopus 로고
    • A neural network approach in predicting the blood glucose level for diabetic patients
    • Z. Zainuddin et al., "A neural network approach in predicting the blood glucose level for diabetic patients," Inter. J. Comput. Intel., vol. 5, no. 1, pp. 72-79, Winter 2009.
    • (2009) Inter. J. Comput. Intel. , vol.5 , Issue.1 WINTER , pp. 72-79
    • Zainuddin, Z.1
  • 11
    • 80052072237 scopus 로고    scopus 로고
    • An insulin infusion advisory system based on autotuning nonlinear model-predictive control
    • May
    • K. Zarkogianni et al., "An insulin infusion advisory system based on autotuning nonlinear model-predictive control," IEEE Trans. Biomed. Eng., vol. 58, no. 9, pp. 2467-2477, May 2011.
    • (2011) IEEE Trans. Biomed. Eng. , vol.58 , Issue.9 , pp. 2467-2477
    • Zarkogianni, K.1
  • 13
    • 80052048762 scopus 로고    scopus 로고
    • Prediction of glucose profile in children with type 1 diabetes mellitus using continuous glucose monitors and insulin pumps
    • Sep.
    • S. G. Mougiakakou et al., "Prediction of glucose profile in children with type 1 diabetes mellitus using continuous glucose monitors and insulin pumps," Hormone Res., vol. 70, pp. 22-23, Sep. 2008.
    • (2008) Hormone Res. , vol.70 , pp. 22-23
    • Mougiakakou, S.G.1
  • 14
    • 77950986701 scopus 로고    scopus 로고
    • Gaussian process modelling of blood glucose response to free-living physical activity data in people with type 1 diabetes
    • Sep. 3-6
    • J. J. Valleta et al., "Gaussian process modelling of blood glucose response to free-living physical activity data in people with type 1 diabetes," in Proc. 1st Annu. Inter Conf. IEEE Engineering in Medicine and Biology Society, pp. 4913-4916, Sep. 3-6, 2009.
    • (2009) Proc. 1st Annu. Inter Conf. IEEE Engineering in Medicine and Biology Society , pp. 4913-4916
    • Valleta, J.J.1
  • 15
    • 84894129865 scopus 로고    scopus 로고
    • Personalized glucose-insulin metabolism model based on self-organizing maps for patients with type 1 diabetes mellitus
    • Nov. 10-13, Chania, Greece
    • K. Zarkogianni et al., "Personalized glucose-insulin metabolism model based on self-organizing maps for patients with type 1 diabetes mellitus," 13th IEEE Inter. Conf. BioInformatics and BioEngineering, Nov. 10-13, 2013, Chania, Greece
    • (2013) 13th IEEE Inter. Conf. BioInformatics and BioEngineering
    • Zarkogianni, K.1
  • 16
    • 84882272395 scopus 로고    scopus 로고
    • Multivariate prediction of subcutaneous glucose concentration in Type 1 diabetes patients based on support vector regression
    • Jan.
    • E. Georga et al., "Multivariate prediction of subcutaneous glucose concentration in Type 1 diabetes patients based on support vector regression," IEEE J. Biomed. Health Inform, vol. 17, pp. 71-81, Jan. 2013.
    • (2013) IEEE J. Biomed. Health Inform , vol.17 , pp. 71-81
    • Georga, E.1
  • 17
    • 77950983838 scopus 로고    scopus 로고
    • Data mining for blood glucose prediction and knowledge discovery in diabetic patients: The METABO diabetes modeling and management system
    • Minneapolis
    • E. Georga et.al, "Data mining for blood glucose prediction and knowledge discovery in diabetic patients: the METABO diabetes modeling and management system." In Proc. 31st Annu. Int. Conf. IEEE Engineering in Medicin and Biology Society, Minneapolis, 2009
    • (2009) Proc. 31st Annu. Int. Conf. IEEE Engineering in Medicin and Biology Society
    • Georga, E.1
  • 18
    • 49249108286 scopus 로고    scopus 로고
    • Fuzzy wavelet neural networks for identification and control of dynamic plants-a novel structure and comparative study
    • Aug.
    • R.H. Abiyev, O. Kaynak, "Fuzzy wavelet neural networks for identification and control of dynamic plants-a novel structure and comparative study," IEEE Trans. Ind. Electron, vol.55, no.8, pp. 1-4, Aug. 2008
    • (2008) IEEE Trans. Ind. Electron , vol.55 , Issue.8 , pp. 1-4
    • Abiyev, R.H.1    Kaynak, O.2
  • 19
    • 0242662161 scopus 로고    scopus 로고
    • The general inefficiency of batch training for gradient descent learning
    • 1-4
    • D.R. Wilson, T.R. Martinez, "The general inefficiency of batch training for gradient descent learning", Neural Netw., vol. 16, pp. 1429-1451, pp. 1-4, 2003
    • (2003) Neural Netw. , vol.16 , pp. 1429-1451
    • Wilson, D.R.1    Martinez, T.R.2
  • 20
    • 0023205574 scopus 로고
    • Evaluating clinical accuracy of systems for selfmonitoring of blood glucose
    • W.L. Clarke et.al., "Evaluating clinical accuracy of systems for selfmonitoring of blood glucose," Diabetes Care, vol. 10, pp. 622-628,1987
    • (1987) Diabetes Care , vol.10 , pp. 622-628
    • Clarke, W.L.1
  • 21
    • 80755142316 scopus 로고    scopus 로고
    • Accuracy requirements for a hypoglycemia detector: An analytical model to evaluate the effects of bias, precision, and rate of glucose change
    • S. E. Noujaim et.al., " Accuracy Requirements for a Hypoglycemia Detector: An Analytical Model to Evaluate the Effects of Bias, Precision, and Rate of Glucose Change, " J Diabetes Sci. Technol., vol. 1, pp. 652-668, 2007
    • (2007) J Diabetes Sci. Technol. , vol.1 , pp. 652-668
    • Noujaim, S.E.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.