메뉴 건너뛰기




Volumn , Issue , 2013, Pages

Personalized glucose-insulin metabolism model based on self-organizing maps for patients with type 1 diabetes mellitus

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84894129865     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/BIBE.2013.6701604     Document Type: Conference Paper
Times cited : (23)

References (21)
  • 1
    • 0027370108 scopus 로고
    • The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin dependent diabetes mellitus
    • The DCCT Research Group, Sep.
    • The DCCT Research Group, "The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin dependent diabetes mellitus," New England J. Med., vol. 329, no. 14, pp. 977-986, Sep. 1993.
    • (1993) New England J. Med. , vol.329 , Issue.14 , pp. 977-986
  • 2
    • 18144421498 scopus 로고    scopus 로고
    • Continuous glucose monitoring: Roadmap for 21st century diabetes therapy
    • May
    • D. C. Klonoff, "Continuous glucose monitoring: Roadmap for 21st century diabetes therapy," Diabetes Care, vol. 28, no. 5, pp. 1231-1239, May 2005.
    • (2005) Diabetes Care , vol.28 , Issue.5 , pp. 1231-1239
    • Klonoff, D.C.1
  • 3
    • 4344640337 scopus 로고    scopus 로고
    • Nonlinear model predictive control of glucose concentration in subjects with type 1 diabetes
    • Aug.
    • R. Hovorka et al., "Nonlinear model predictive control of glucose concentration in subjects with type 1 diabetes," Physiol. Meas., vol. 25, pp. 905-920, Aug. 2004.
    • (2004) Physiol. Meas. , vol.25 , pp. 905-920
    • Hovorka, R.1
  • 4
    • 70349769396 scopus 로고    scopus 로고
    • Model predictive control of glucose concentration in type 1 diabetic patient: An in silico trial
    • L. Magni et al., "Model predictive control of glucose concentration in type 1 diabetic patient: An in silico trial," Biomed. Signal Process. Control, vol. 4, pp. 338-346, Nov. 2009.
    • (2009) Biomed. Signal Process. Control , vol.4
    • Magni, L.1
  • 5
    • 33748086307 scopus 로고    scopus 로고
    • Empirical modeling for glucosecontrol in diabetes and critical care
    • Jan.
    • J. A. Florian, and R. S. Parker, "Empirical modeling for glucosecontrol in diabetes and critical care," Eur. J. Control, vol. 11, pp. 344-350, Jan. 2005.
    • (2005) Eur. J. Control , vol.11 , pp. 344-350
    • Florian, J.A.1    Parker, R.S.2
  • 6
    • 74049153277 scopus 로고    scopus 로고
    • Nonlinear modeling of the dynamic effects of infused insulin on glucose: Comparison of compartmental with volterra models
    • June
    • G. D. Mitsis, M. G. Markakis, and V. Z. Marmarelis, "Nonlinear modeling of the dynamic effects of infused insulin on glucose: comparison of compartmental with volterra models," IEEE Trans. Biomed. Eng., vol. 56, pp. 2347-2358, June 2009.
    • (2009) IEEE Trans. Biomed. Eng. , vol.56 , pp. 2347-2358
    • Mitsis, G.D.1    Markakis, M.G.2    Marmarelis, V.Z.3
  • 8
    • 75749125065 scopus 로고    scopus 로고
    • Development of a neural network for prediction of glucose concentration in Type 1 diabetes patients
    • Sep.
    • S. M. Pappada, B. D. Cameron, and P. M. Rosman, "Development of a neural network for prediction of glucose concentration in Type 1 diabetes patients," J. Diabetes Sci. Technol., vol. 2, pp. 792-801, Sep.2008.
    • (2008) J. Diabetes Sci. Technol. , vol.2 , pp. 792-801
    • Pappada, S.M.1    Cameron, B.D.2    Rosman, P.M.3
  • 10
    • 77958605644 scopus 로고    scopus 로고
    • A neural network approach in predicting the blood glucose level for diabetic patients
    • Winter
    • Z. Zainuddin, O. Pauline, and C. Ardil, "A neural network approach in predicting the blood glucose level for diabetic patients," International Journal of Computational Intelligence, vol. 5, no. 1, pp. 72-79, Winter 2009.
    • (2009) International Journal of Computational Intelligence , vol.5 , Issue.1 , pp. 72-79
    • Zainuddin, Z.1    Pauline, O.2    Ardil, C.3
  • 11
    • 80052072237 scopus 로고    scopus 로고
    • An insulin infusion advisory system based on autotuning nonlinear model-predictive control
    • May
    • K. Zarkogianni, A. G. Vazeou, S. G. Mougiakakou, A. Prountzou, and K. S. Nikita, "An insulin infusion advisory system based on autotuning nonlinear model-predictive control," IEEE Trans. Biomed. Eng., vol. 58, no. 9, pp. 2467-2477, May 2011.
    • (2011) IEEE Trans. Biomed. Eng. , vol.58 , Issue.9 , pp. 2467-2477
    • Zarkogianni, K.1    Vazeou, A.G.2    Mougiakakou, S.G.3    Prountzou, A.4    Nikita, K.S.5
  • 13
    • 80052048762 scopus 로고    scopus 로고
    • Prediction of glucose profile in children with type 1 diabetes mellitus using continuous glucose monitors and insulin pumps
    • S. G. Mougiakakou et al., "Prediction of glucose profile in children with type 1 diabetes mellitus using continuous glucose monitors and insulin pumps," Hormone Research, vol. 70, pp. 22-23, Sep. 2008.
    • (2008) Hormone Research , vol.70
    • Mougiakakou, S.G.1
  • 15
    • 84882272395 scopus 로고    scopus 로고
    • Multivariate prediction of subcutaneous glucose concentration in Type 1 diabetes patients based on support vector regression
    • Jan.
    • E. Georga et al., "Multivariate prediction of subcutaneous glucose concentration in Type 1 diabetes patients based on support vector regression," IEEE Biomedical and Health Informatics, vol. 17, pp. 71-81, Jan. 2013.
    • (2013) IEEE Biomedical and Health Informatics , vol.17 , pp. 71-81
    • Georga, E.1
  • 17
    • 34548829642 scopus 로고    scopus 로고
    • Meal simulation model of the glucose-insulin system
    • Oct.
    • C. D. Man, R. A. Rizza, and C. Cobelli, "Meal simulation model of the glucose-insulin system," IEEE Trans. Biomed. Eng., vol. 54, no. 10, pp. 1740-1749, Oct. 2007.
    • (2007) IEEE Trans. Biomed. Eng. , vol.54 , Issue.10 , pp. 1740-1749
    • Man, C.D.1    Rizza, R.A.2    Cobelli, C.3
  • 18
    • 4644234339 scopus 로고    scopus 로고
    • Identification and control of dynamical systems using the self-organizing map
    • Sep.
    • G. Barreto, and A. Araujo, "Identification and control of dynamical systems using the self-organizing map," IEEE Transactions on Neural Networks, vol. 15, no. 5, pp. 1244-1259, Sep. 2004.
    • (2004) IEEE Transactions on Neural Networks , vol.15 , Issue.5 , pp. 1244-1259
    • Barreto, G.1    Araujo, A.2
  • 19
    • 0032203424 scopus 로고    scopus 로고
    • Local dynamic modeling with self-organizing maps and applications to nonlinear system identification and control
    • Nov.
    • J. Principe, L. Wang, and M. Motter, "Local dynamic modeling with self-organizing maps and applications to nonlinear system identification and control," Proceedings of the IEEE, vol. 86, no. 11, pp. 2240-2258, Nov. 1998.
    • (1998) Proceedings of the IEEE , vol.86 , Issue.11 , pp. 2240-2258
    • Principe, J.1    Wang, L.2    Motter, M.3
  • 20
    • 34548119512 scopus 로고    scopus 로고
    • Time series prediction with the self-organizing map: A review
    • Ed. Berlin: Springer-Verlag
    • G. Barreto, "Time series prediction with the self-organizing map: A review," in Perspectives of Neural-Symbolic Integration, vol. 77, Ed. Berlin: Springer-Verlag, 2007, pp 135-158.
    • (2007) Perspectives of Neural-Symbolic Integration , vol.77 , pp. 135-158
    • Barreto, G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.