-
1
-
-
17644387736
-
Nanostructured Materials for Advanced Energy Conversion and Storage Devices
-
Arico, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J. M.; van Schalwijk, W. Nanostructured Materials for Advanced Energy Conversion and Storage Devices Nat. Mater. 2005, 4, 366-377 10.1038/nmat1368
-
(2005)
Nat. Mater.
, vol.4
, pp. 366-377
-
-
Arico, A.S.1
Bruce, P.2
Scrosati, B.3
Tarascon, J.M.4
Van Schalwijk, W.5
-
2
-
-
84884592772
-
Uncovering the Intrinsic Size Dependence of Hydriding Phase Transformations in Nanocrystals
-
Bardhan, R.; Hedges, L. O.; Pint, C. L.; Javey, A.; Whitelam, S.; Urban, J. J. Uncovering the Intrinsic Size Dependence of Hydriding Phase Transformations in Nanocrystals Nat. Mater. 2013, 12, 905-912 10.1038/nmat3716
-
(2013)
Nat. Mater.
, vol.12
, pp. 905-912
-
-
Bardhan, R.1
Hedges, L.O.2
Pint, C.L.3
Javey, A.4
Whitelam, S.5
Urban, J.J.6
-
3
-
-
56249109824
-
Nanostructured Materials for Electrochemical Energy Conversion and Storage Devices
-
Guo, Y. G.; Hu, J. S.; Wan, L. J. Nanostructured Materials for Electrochemical Energy Conversion and Storage Devices Adv. Mater. 2008, 20, 2878-2887 10.1002/adma.200800627
-
(2008)
Adv. Mater.
, vol.20
, pp. 2878-2887
-
-
Guo, Y.G.1
Hu, J.S.2
Wan, L.J.3
-
4
-
-
49649105634
-
Nanomaterials for Rechargeable Lithium Batteries
-
Bruce, P. G.; Scrosati, B.; Tarascon, J. M. Nanomaterials for Rechargeable Lithium Batteries Angew. Chem., Int. Ed. 2008, 47, 2930-46 10.1002/anie.200702505
-
(2008)
Angew. Chem., Int. Ed.
, vol.47
, pp. 2930-2946
-
-
Bruce, P.G.1
Scrosati, B.2
Tarascon, J.M.3
-
5
-
-
84907972703
-
Solvothermal Synthesis of Pyrite FeS2 Nanocubes and Their Superior High Rate Lithium Storage Properties
-
Liu, W. L.; Rui, X. H.; Tan, H. T.; Xu, C.; Yan, Q. Y.; Hng, H. H. Solvothermal Synthesis of Pyrite FeS2 Nanocubes and Their Superior High Rate Lithium Storage Properties RSC Adv. 2014, 4, 48770-48776 10.1039/C4RA08527B
-
(2014)
RSC Adv.
, vol.4
, pp. 48770-48776
-
-
Liu, W.L.1
Rui, X.H.2
Tan, H.T.3
Xu, C.4
Yan, Q.Y.5
Hng, H.H.6
-
6
-
-
84893315176
-
High-Purity Iron Pyrite (FeS2) Nanowires as High-Capacity Nanostructured Cathodes for Lithium-Ion Batteries
-
Li, L.; Caban-Acevedo, M.; Girard, S. N.; Jin, S. High-Purity Iron Pyrite (FeS2) Nanowires as High-Capacity Nanostructured Cathodes for Lithium-Ion Batteries Nanoscale 2014, 6, 2112-2118 10.1039/c3nr05851d
-
(2014)
Nanoscale
, vol.6
, pp. 2112-2118
-
-
Li, L.1
Caban-Acevedo, M.2
Girard, S.N.3
Jin, S.4
-
7
-
-
0242302669
-
Long-Term Cyclability of Nanostructured LiFePO4
-
Prosini, P. P.; Carewska, M.; Scaccia, S.; Wisniewski, P.; Pasquali, M. Long-Term Cyclability of Nanostructured LiFePO4 Electrochim. Acta 2003, 48, 4205-4211 10.1016/S0013-4686(03)00606-6
-
(2003)
Electrochim. Acta
, vol.48
, pp. 4205-4211
-
-
Prosini, P.P.1
Carewska, M.2
Scaccia, S.3
Wisniewski, P.4
Pasquali, M.5
-
8
-
-
0035396018
-
Nanomaterial-Based Li-Ion Battery Electrodes
-
Li, N.; Martin, C. R.; Scrosati, B. Nanomaterial-Based Li-Ion Battery Electrodes J. Power Sources 2001, 97, 240-243 10.1016/S0378-7753(01)00760-1
-
(2001)
J. Power Sources
, vol.97
, pp. 240-243
-
-
Li, N.1
Martin, C.R.2
Scrosati, B.3
-
9
-
-
79961005781
-
Recent Developments in Nanostructured Anode Materials for Rechargeable Lithium-Ion Batteries
-
Ji, L.; Lin, Z.; Alcoutlabi, M.; Zhang, X. Recent Developments in Nanostructured Anode Materials for Rechargeable Lithium-Ion Batteries Energy Environ. Sci. 2011, 4, 2682-2699 10.1039/c0ee00699h
-
(2011)
Energy Environ. Sci.
, vol.4
, pp. 2682-2699
-
-
Ji, L.1
Lin, Z.2
Alcoutlabi, M.3
Zhang, X.4
-
10
-
-
37849002504
-
High-Performance Lithium Battery Anodes Using Silicon Nanowires
-
Chan, C. K.; Peng, H.; Liu, G.; McIlwrath, K.; Zhang, X. F.; Huggins, R. A.; Cui, Y. High-Performance Lithium Battery Anodes Using Silicon Nanowires Nat. Nanotechnol. 2008, 3, 31-35 10.1038/nnano.2007.411
-
(2008)
Nat. Nanotechnol.
, vol.3
, pp. 31-35
-
-
Chan, C.K.1
Peng, H.2
Liu, G.3
McIlwrath, K.4
Zhang, X.F.5
Huggins, R.A.6
Cui, Y.7
-
11
-
-
84920025658
-
On-Chip High Power Porous Silicon Lithium Ion Batteries with Stable Capacity over 10,000 Cycles
-
Westover, A. S.; Freudiger, D.; Gani, Z. S.; Share, K.; Oakes, L.; Carter, R.; Pint, C. L. On-Chip High Power Porous Silicon Lithium Ion Batteries with Stable Capacity over 10,000 Cycles Nanoscale 2014, 7, 98-103 10.1039/C4NR04720F
-
(2014)
Nanoscale
, vol.7
, pp. 98-103
-
-
Westover, A.S.1
Freudiger, D.2
Gani, Z.S.3
Share, K.4
Oakes, L.5
Carter, R.6
Pint, C.L.7
-
12
-
-
0033323528
-
High Capacity Nano-Si Composite Anode Material for Lithium Rechargeable Batteries
-
Li, H.; Huang, X. J.; Chen, L. Q.; Wu, Z. G.; Liang, Y. A. High Capacity Nano-Si Composite Anode Material for Lithium Rechargeable Batteries Electrochem. Solid-State Lett. 1999, 2, 547-549 10.1149/1.1390899
-
(1999)
Electrochem. Solid-State Lett.
, vol.2
, pp. 547-549
-
-
Li, H.1
Huang, X.J.2
Chen, L.Q.3
Wu, Z.G.4
Liang, Y.A.5
-
13
-
-
33845622840
-
Nano- and Bulk-Silicon-Based Insertion Anodes for Lithium-Ion Secondary Cells
-
Kasavajjula, U.; Wang, C.; Appleby, A. J. Nano- and Bulk-Silicon-Based Insertion Anodes for Lithium-Ion Secondary Cells J. Power Sources 2007, 163, 1003-1039 10.1016/j.jpowsour.2006.09.084
-
(2007)
J. Power Sources
, vol.163
, pp. 1003-1039
-
-
Kasavajjula, U.1
Wang, C.2
Appleby, A.J.3
-
14
-
-
77949356288
-
A Critical Size of Silicon Nano-Anodes for Lithium Rechargeable Batteries
-
Kim, H.; Seo, M.; Park, M. H.; Cho, J. A Critical Size of Silicon Nano-Anodes for Lithium Rechargeable Batteries Angew. Chem., Int. Ed. 2010, 49, 2146-2149 10.1002/anie.200906287
-
(2010)
Angew. Chem., Int. Ed.
, vol.49
, pp. 2146-2149
-
-
Kim, H.1
Seo, M.2
Park, M.H.3
Cho, J.4
-
15
-
-
20744443182
-
Critical Size of a Nano SnO2 Electrode for Li-Secondary Battery
-
Kim, C.; Noh, M.; Choi, M.; Cho, J.; Park, B. Critical Size of a Nano SnO2 Electrode for Li-Secondary Battery Chem. Mater. 2005, 17, 3297-3301 10.1021/cm048003o
-
(2005)
Chem. Mater.
, vol.17
, pp. 3297-3301
-
-
Kim, C.1
Noh, M.2
Choi, M.3
Cho, J.4
Park, B.5
-
16
-
-
84896385034
-
Monodisperse Antimony Nanocrystals for High-Rate Li-Ion and Na-Ion Battery Anodes: Nano versus Bulk
-
He, M.; Kravchyk, K.; Walter, M.; Kovalenko, M. V. Monodisperse Antimony Nanocrystals for High-Rate Li-Ion and Na-Ion Battery Anodes: Nano versus Bulk Nano Lett. 2014, 14, 1255-1262 10.1021/nl404165c
-
(2014)
Nano Lett.
, vol.14
, pp. 1255-1262
-
-
He, M.1
Kravchyk, K.2
Walter, M.3
Kovalenko, M.V.4
-
17
-
-
84875455387
-
Monodisperse and Inorganically Capped Sn and Sn/SnO2 Nanocrystals for High-Performance Li-Ion Battery Anodes
-
Kravchyk, K.; Protesescu, L.; Bodnarchuk, M. I.; Krumeich, F.; Yarema, M.; Walter, M.; Guntlin, C.; Kovalenko, M. K. Monodisperse and Inorganically Capped Sn and Sn/SnO2 Nanocrystals for High-Performance Li-Ion Battery Anodes J. Am. Chem. Soc. 2013, 135, 4199-4202 10.1021/ja312604r
-
(2013)
J. Am. Chem. Soc.
, vol.135
, pp. 4199-4202
-
-
Kravchyk, K.1
Protesescu, L.2
Bodnarchuk, M.I.3
Krumeich, F.4
Yarema, M.5
Walter, M.6
Guntlin, C.7
Kovalenko, M.K.8
-
18
-
-
66849138532
-
Conversion Reactions: A New Pathway to Realise Energy in Lithium-Ion Battery Review
-
Malini, R.; Uma, U.; Sheela, T.; Ganesan, M.; Renganathan, N. G. Conversion Reactions: A New Pathway to Realise Energy in Lithium-Ion Battery Review Ionics 2009, 15, 301-307 10.1007/s11581-008-0236-x
-
(2009)
Ionics
, vol.15
, pp. 301-307
-
-
Malini, R.1
Uma, U.2
Sheela, T.3
Ganesan, M.4
Renganathan, N.G.5
-
19
-
-
84922698124
-
In Situ Observation of Divergent Phase Transformations in Individual Sulfide Nanocrystals
-
McDowell, M. T.; Lu, Z.; Koski, K. J.; Yu, J. H.; Zheng, G.; Cui, Y. In Situ Observation of Divergent Phase Transformations in Individual Sulfide Nanocrystals Nano Lett. 2015, 15, 1264-1271 10.1021/nl504436m
-
(2015)
Nano Lett.
, vol.15
, pp. 1264-1271
-
-
McDowell, M.T.1
Lu, Z.2
Koski, K.J.3
Yu, J.H.4
Zheng, G.5
Cui, Y.6
-
20
-
-
84899449241
-
Synthesis of ZnO Quantum Dot/Graphene Nanocomposites by Atomic Layer Deposition with High Lithium Storage Capacity
-
Sun, X.; Zhou, C.; Xie, M.; Sun, H.; Hu, T.; Lu, F.; Scott, S. M.; George, S. M.; Lian, J. Synthesis of ZnO Quantum Dot/Graphene Nanocomposites by Atomic Layer Deposition with High Lithium Storage Capacity J. Mater. Chem. A 2014, 2, 7319-7326 10.1039/C4TA00589A
-
(2014)
J. Mater. Chem. A
, vol.2
, pp. 7319-7326
-
-
Sun, X.1
Zhou, C.2
Xie, M.3
Sun, H.4
Hu, T.5
Lu, F.6
Scott, S.M.7
George, S.M.8
Lian, J.9
-
21
-
-
84880062948
-
Enhanced Capability and Cyclability of SnO2-Graphene Oxide Hybrid Anode by Firmly Anchored SnO2 Quantum Dots
-
Song, H.; Li, N.; Cui, H.; Wang, C. Enhanced Capability and Cyclability of SnO2-Graphene Oxide Hybrid Anode by Firmly Anchored SnO2 Quantum Dots J. Mater. Chem. A 2013, 1, 7558-7562 10.1039/c3ta11442b
-
(2013)
J. Mater. Chem. A
, vol.1
, pp. 7558-7562
-
-
Song, H.1
Li, N.2
Cui, H.3
Wang, C.4
-
22
-
-
84857700599
-
Facile Ultrasonic Synthesis of CoO Quantum Dot/Graphene Nanosheet Composites with High Lithium Storage Capacity
-
Peng, C.; Chen, B.; Qin, Y.; Yang, S.; Li, C.; Zuo, Y.; Liu, S.; Yang, J. Facile Ultrasonic Synthesis of CoO Quantum Dot/Graphene Nanosheet Composites with High Lithium Storage Capacity ACS Nano 2012, 6, 1074-1081 10.1021/nn202888d
-
(2012)
ACS Nano
, vol.6
, pp. 1074-1081
-
-
Peng, C.1
Chen, B.2
Qin, Y.3
Yang, S.4
Li, C.5
Zuo, Y.6
Liu, S.7
Yang, J.8
-
23
-
-
84907353421
-
Microwave Irradiation Synthesis of Co3O4 Quantum Dots/Graphene Composite as Anode Materials for Li-Ion Battery
-
Zhou, X.; Shi, J.; Liu, Y.; Su, Q.; Zhang, J.; Du, G. Microwave Irradiation Synthesis of Co3O4 Quantum Dots/Graphene Composite as Anode Materials for Li-Ion Battery Electrochim. Acta 2014, 143, 175-179 10.1016/j.electacta.2014.08.023
-
(2014)
Electrochim. Acta
, vol.143
, pp. 175-179
-
-
Zhou, X.1
Shi, J.2
Liu, Y.3
Su, Q.4
Zhang, J.5
Du, G.6
-
24
-
-
0016512023
-
Cation Self-Diffusion in Chalcopyrite and Pyrite
-
Chen, J. H.; Harvey, W. W. Cation Self-Diffusion in Chalcopyrite and Pyrite Metall. Trans. B 1975, 6B, 331-339 10.1007/BF02913577
-
(1975)
Metall. Trans. B
, vol.6
, pp. 331-339
-
-
Chen, J.H.1
Harvey, W.W.2
-
25
-
-
0033908417
-
Study of Phase Changes during 500 Full Cycles of Li/Composite Polymer Electrolyte/FeS2 Battery
-
Strauss, E.; Golodnitsky, D.; Peled, E. Study of Phase Changes During 500 Full Cycles of Li/Composite Polymer Electrolyte/FeS2 Battery Electrochim. Acta 2000, 45, 1519-1525 10.1016/S0013-4686(99)00368-0
-
(2000)
Electrochim. Acta
, vol.45
, pp. 1519-1525
-
-
Strauss, E.1
Golodnitsky, D.2
Peled, E.3
-
26
-
-
84862767470
-
FeS2/C Composite as an Anode for Lithium Ion Batteries with Enhanced Reversible Capacity
-
Zhang, D.; Mai, Y. J.; Xiang, J. Y.; Xia, X. H.; Qiao, Y. Q.; Tu, J. P. FeS2/C Composite as an Anode for Lithium Ion Batteries with Enhanced Reversible Capacity J. Power Sources 2012, 217, 229-235 10.1016/j.jpowsour.2012.05.112
-
(2012)
J. Power Sources
, vol.217
, pp. 229-235
-
-
Zhang, D.1
Mai, Y.J.2
Xiang, J.Y.3
Xia, X.H.4
Qiao, Y.Q.5
Tu, J.P.6
-
27
-
-
61349196272
-
Pyrite Film Synthesized for Lithium-Ion Batteries
-
Siyu, H.; Xinyu, L.; QingYu, L.; Jun, C. Pyrite Film Synthesized for Lithium-Ion Batteries J. Alloys Compd. 2009, 472, 9-12 10.1016/j.jallcom.2008.04.058
-
(2009)
J. Alloys Compd.
, vol.472
, pp. 9-12
-
-
Siyu, H.1
Xinyu, L.2
QingYu, L.3
Jun, C.4
-
28
-
-
84875073004
-
Effects of Current Collectors on Electrochemical Performance of FeS2 for Li-Ion Battery
-
Wang, Y.; Liao, H.; Wang, J.; Qian, X.; Zhu, Y.; Cheng, S. Effects of Current Collectors on Electrochemical Performance of FeS2 for Li-Ion Battery Int. J. Electrochem. Sci. 2013, 8, 4002-4009
-
(2013)
Int. J. Electrochem. Sci.
, vol.8
, pp. 4002-4009
-
-
Wang, Y.1
Liao, H.2
Wang, J.3
Qian, X.4
Zhu, Y.5
Cheng, S.6
-
29
-
-
0024768331
-
Electrochemistry of Pyrite Based Cathodes for Ambient Temperature Lithium Batteries
-
Fong, R.; Dahn, J. R. Electrochemistry of Pyrite Based Cathodes for Ambient Temperature Lithium Batteries J. Electrochem. Soc. 1989, 136, 3206-3210 10.1149/1.2096426
-
(1989)
J. Electrochem. Soc.
, vol.136
, pp. 3206-3210
-
-
Fong, R.1
Dahn, J.R.2
-
30
-
-
77956958084
-
Beyond Intercalation-Based Li-Ion Batteries: The State of the Art and Challenges of Electrode Materials Reacting Through Conversion Reactions
-
Cabana, J.; Monconduit, L.; Larcher, D.; Palacin, M. R. Beyond Intercalation-Based Li-Ion Batteries: the State of the Art and Challenges of Electrode Materials Reacting Through Conversion Reactions Adv. Mater. 2010, 22, 170-192 10.1002/adma.201000717
-
(2010)
Adv. Mater.
, vol.22
, pp. 170-192
-
-
Cabana, J.1
Monconduit, L.2
Larcher, D.3
Palacin, M.R.4
-
31
-
-
84926500607
-
Pyrite FeS2 for High-Rate and Long-Life Rechargeable Sodium Batteries
-
Hu, Z.; Zhu, Z.; Cheng, F.; Zhang, K.; Wang, J.; Chen, C.; Chen, J. Pyrite FeS2 for High-Rate and Long-Life Rechargeable Sodium Batteries Energy Environ. Sci. 2015, 8, 1309-1316 10.1039/C4EE03759F
-
(2015)
Energy Environ. Sci.
, vol.8
, pp. 1309-1316
-
-
Hu, Z.1
Zhu, Z.2
Cheng, F.3
Zhang, K.4
Wang, J.5
Chen, C.6
Chen, J.7
-
32
-
-
36148953860
-
Electrochemical Properties of Sodium/Pyrite Battery at Room Temperature
-
Kim, T. B.; Choi, J. W.; Ryu, H. S.; Cho, G. B.; Kim, K. W.; Ahn, J. H.; Cho, K. K.; Ahn, H. J. Electrochemical Properties of Sodium/Pyrite Battery at Room Temperature J. Power Sources 2007, 174, 1275-1278 10.1016/j.jpowsour.2007.06.093
-
(2007)
J. Power Sources
, vol.174
, pp. 1275-1278
-
-
Kim, T.B.1
Choi, J.W.2
Ryu, H.S.3
Cho, G.B.4
Kim, K.W.5
Ahn, J.H.6
Cho, K.K.7
Ahn, H.J.8
-
33
-
-
84897053099
-
The New Electrochemical Reaction Mechanism of Na/FeS2 Cell at Ambient Temperature
-
Shadike, Z.; Zhou, Y. N.; Ding, F.; Sang, L.; Nam, K. W.; Yang, X. Q.; Fu, Z. W. The New Electrochemical Reaction Mechanism of Na/FeS2 Cell at Ambient Temperature J. Power Sources 2014, 260, 72-76 10.1016/j.jpowsour.2014.03.011
-
(2014)
J. Power Sources
, vol.260
, pp. 72-76
-
-
Shadike, Z.1
Zhou, Y.N.2
Ding, F.3
Sang, L.4
Nam, K.W.5
Yang, X.Q.6
Fu, Z.W.7
-
34
-
-
84929427984
-
Pyrite (FeS2) Nanocrystals as Inexpensive High- Performance Lithium-Ion Cathode and Sodium-Ion Anode Materials
-
Walter, M.; Zünd, T.; Kovalenko, M. V. Pyrite (FeS2) Nanocrystals as Inexpensive High- Performance Lithium-Ion Cathode and Sodium-Ion Anode Materials Nanoscale 2015, 7, 9158-9163 10.1039/C5NR00398A
-
(2015)
Nanoscale
, vol.7
, pp. 9158-9163
-
-
Walter, M.1
Zünd, T.2
Kovalenko, M.V.3
-
35
-
-
0033323997
-
Pyrite as Cathode Insertion Material in Rechargeable Lithium/Composite Polymer Electrolyte Batteries
-
Golodnitsky, D.; Peled, E. Pyrite as Cathode Insertion Material in Rechargeable Lithium/Composite Polymer Electrolyte Batteries Electrochim. Acta 1999, 45, 335-350 10.1016/S0013-4686(99)00215-7
-
(1999)
Electrochim. Acta
, vol.45
, pp. 335-350
-
-
Golodnitsky, D.1
Peled, E.2
-
36
-
-
84874636869
-
Solid State Enabled Reversible Four Electron Storage
-
Yersak, T. A.; Macpherson, H. A.; Kim, S. C.; Le, V. D.; Kang, C. S.; Son, S. B.; Kim, Y. H.; Trevey, J. E.; Oh, K. H.; Stoldt, C. et al. Solid State Enabled Reversible Four Electron Storage Adv. Energy Mater. 2013, 3, 120-127 10.1002/aenm.201200267
-
(2013)
Adv. Energy Mater.
, vol.3
, pp. 120-127
-
-
Yersak, T.A.1
MacPherson, H.A.2
Kim, S.C.3
Le, V.D.4
Kang, C.S.5
Son, S.B.6
Kim, Y.H.7
Trevey, J.E.8
Oh, K.H.9
Stoldt, C.10
-
37
-
-
0030150760
-
Strong Quantum Confinement Effects in FeS2 Nanoclusters
-
Wilcoxon, J. P.; Newcomer, P. P.; Samara, G. A. Strong Quantum Confinement Effects in FeS2 Nanoclusters Solid State Commun. 1996, 98, 581-585 10.1016/0038-1098(95)00822-5
-
(1996)
Solid State Commun.
, vol.98
, pp. 581-585
-
-
Wilcoxon, J.P.1
Newcomer, P.P.2
Samara, G.A.3
-
38
-
-
84875824902
-
High Temperature Sodium Batteries: Status, Challenges and Future Trends
-
Hueso, K. B.; Armand, M.; Rojo, T. High Temperature Sodium Batteries: Status, Challenges and Future Trends Energy Environ. Sci. 2013, 6, 734-749 10.1039/c3ee24086j
-
(2013)
Energy Environ. Sci.
, vol.6
, pp. 734-749
-
-
Hueso, K.B.1
Armand, M.2
Rojo, T.3
-
39
-
-
84873969427
-
Universal Synthesis of Single-Phase Pyrite FeS2 Nanoparticles, Nanowires, and Nanosheets
-
Bai, Y.; Yeom, J.; Yang, M.; Cha, S. H.; Sun, K.; Kotov, N. A. Universal Synthesis of Single-Phase Pyrite FeS2 Nanoparticles, Nanowires, and Nanosheets J. Phys. Chem. C 2013, 117, 2567-2573 10.1021/jp3111106
-
(2013)
J. Phys. Chem. C
, vol.117
, pp. 2567-2573
-
-
Bai, Y.1
Yeom, J.2
Yang, M.3
Cha, S.H.4
Sun, K.5
Kotov, N.A.6
-
40
-
-
36048945922
-
ImageJ for Microscopy
-
Collins, T. J. ImageJ for Microscopy BioTechniques 2007, 43, 25-30 10.2144/000112517
-
(2007)
BioTechniques
, vol.43
, pp. 25-30
-
-
Collins, T.J.1
-
41
-
-
0035873140
-
Chemical, Structural and Electrochemical Comparison of Natural and Synthetic FeS2 Pyrite in Lithium Cells
-
Shao-Horn, Y. Chemical, Structural and Electrochemical Comparison of Natural and Synthetic FeS2 Pyrite in Lithium Cells Electrochim. Acta 2001, 46, 2613-2621 10.1016/S0013-4686(01)00465-0
-
(2001)
Electrochim. Acta
, vol.46
, pp. 2613-2621
-
-
Shao-Horn, Y.1
-
42
-
-
0036864389
-
Nano-FeS2 for Commercial Li/FeS2 Primary Batteries
-
Shao-Horn, Y.; Osmialowski, S.; Horn, Q. C. Nano-FeS2 for Commercial Li/FeS2 Primary Batteries J. Electrochem. Soc. 2002, 149, 1499 10.1149/1.1513558
-
(2002)
J. Electrochem. Soc.
, vol.149
, pp. 1499
-
-
Shao-Horn, Y.1
Osmialowski, S.2
Horn, Q.C.3
-
43
-
-
72149125826
-
Electrochemical Properties of Nickel-Precipitated Pyrite as Cathode Active Material for Lithium/Pyrite Cell
-
Choi, Y. J.; Kim, N. W.; Kim, K. W.; Cho, K. K.; Cho, G. B.; Ahn, H. J.; Ahn, J. H.; Ryu, K. S.; Gu, H. B. Electrochemical Properties of Nickel-Precipitated Pyrite as Cathode Active Material for Lithium/Pyrite Cell J. Alloys Compd. 2009, 485, 462-466 10.1016/j.jallcom.2009.05.140
-
(2009)
J. Alloys Compd.
, vol.485
, pp. 462-466
-
-
Choi, Y.J.1
Kim, N.W.2
Kim, K.W.3
Cho, K.K.4
Cho, G.B.5
Ahn, H.J.6
Ahn, J.H.7
Ryu, K.S.8
Gu, H.B.9
-
44
-
-
33845619150
-
Electrochemical Characteristics of Room Temperature Li/FeS2 Batteries with Natural Pyrite Cathode
-
Choi, J. W.; Cheruvally, G.; Ahn, H. J.; Kim, K. W.; Ahn, J. H. Electrochemical Characteristics of Room Temperature Li/FeS2 Batteries with Natural Pyrite Cathode J. Power Sources 2006, 163, 158-165 10.1016/j.jpowsour.2006.04.075
-
(2006)
J. Power Sources
, vol.163
, pp. 158-165
-
-
Choi, J.W.1
Cheruvally, G.2
Ahn, H.J.3
Kim, K.W.4
Ahn, J.H.5
-
45
-
-
84862789715
-
Enhanced Electrochemical Performance of FeS2 Synthesized by Hydrothermal Method for Lithium Ion Batteries
-
Zhang, D.; Wang, X. L.; Mai, Y. J.; Xia, X. H.; Gu, C. D.; Tu, J. P. Enhanced Electrochemical Performance of FeS2 Synthesized by Hydrothermal Method for Lithium Ion Batteries J. Appl. Electrochem. 2012, 42, 263-269 10.1007/s10800-012-0393-5
-
(2012)
J. Appl. Electrochem.
, vol.42
, pp. 263-269
-
-
Zhang, D.1
Wang, X.L.2
Mai, Y.J.3
Xia, X.H.4
Gu, C.D.5
Tu, J.P.6
-
46
-
-
84874524272
-
Raman-Scattering Measurements and First-Principles Calculations of Strain-Induced Phonon Shifts in Monolayer MoS2
-
Rice, C.; Young, J.; Zan, R.; Bangert, U.; Wolverson, D.; Georgiou, T.; Jalil, R.; Novoselov, K. S. Raman-Scattering Measurements and First-Principles Calculations of Strain-Induced Phonon Shifts in Monolayer MoS2 Phys. Rev. B: Condens. Matter Mater. Phys. 2013, 87, 081307 10.1103/PhysRevB.87.081307
-
(2013)
Phys. Rev. B: Condens. Matter Mater. Phys.
, vol.87
, pp. 081307
-
-
Rice, C.1
Young, J.2
Zan, R.3
Bangert, U.4
Wolverson, D.5
Georgiou, T.6
Jalil, R.7
Novoselov, K.S.8
-
48
-
-
8344286336
-
Cation Exchange Reactions in Ionic Nanocrystals
-
Son, D. H.; Hughes, S. M.; Yin, Y.; Alivisatos, A. P. Cation Exchange Reactions in Ionic Nanocrystals Science 2004, 306, 1009-1012 10.1126/science.1103755
-
(2004)
Science
, vol.306
, pp. 1009-1012
-
-
Son, D.H.1
Hughes, S.M.2
Yin, Y.3
Alivisatos, A.P.4
|