메뉴 건너뛰기




Volumn 15, Issue 10, 2015, Pages 26783-26800

Can smartwatches replace smartphones for posture tracking?

Author keywords

Activity recognition; Embedded medical systems; Machine learning; Posture tracking; Smartwatch; Wireless health

Indexed keywords

EMBEDDED SYSTEMS; LEARNING SYSTEMS; MHEALTH; SMARTPHONES;

EID: 84948182343     PISSN: 14248220     EISSN: None     Source Type: Journal    
DOI: 10.3390/s151026783     Document Type: Article
Times cited : (51)

References (41)
  • 7
    • 84920157943 scopus 로고    scopus 로고
    • Wearables: Has the age of smartwatches finally arrived?
    • Rawassizadeh, R.; Price, B.A.; Petre, M. Wearables: Has the age of smartwatches finally arrived? Commun. ACM 2015, 58, 45–47.
    • (2015) Commun. ACM , vol.58 , pp. 45-47
    • Rawassizadeh, R.1    Price, B.A.2    Petre, M.3
  • 15
    • 84872287186 scopus 로고    scopus 로고
    • Wireless Medical-Embedded Systems: A Review of Signal-Processing Techniques for Classification
    • Ghasemzadeh, H.; Ostadabbas, S.; Guenterberg, E.; Pantelopoulos, A. Wireless Medical-Embedded Systems: A Review of Signal-Processing Techniques for Classification. IEEE Sens. J. 2013, 13, 423–437.
    • (2013) IEEE Sens. J , vol.13 , pp. 423-437
    • Ghasemzadeh, H.1    Ostadabbas, S.2    Guenterberg, E.3    Pantelopoulos, A.4
  • 16
    • 35048842427 scopus 로고    scopus 로고
    • Activity recognition from user-annotated acceleration data
    • Springer: Berlin, Germany
    • Bao, L.; Intille, S.S. Activity recognition from user-annotated acceleration data. In Pervasive Computing; Springer: Berlin, Germany, 2004; pp. 1–17.
    • (2004) Pervasive Computing , pp. 1-17
    • Bao, L.1    Intille, S.S.2
  • 21
    • 84884610323 scopus 로고    scopus 로고
    • Roberts, C.K. Robust human intensity-varying activity recognition using Stochastic Approximation in wearable sensors. In Proceedings of the
    • Cambridge, MA, USA, 6–9 May 2013
    • Alshurafa, N.; Xu, W.; Liu, J.J.; Huang, M.C.; Mortazavi, B.; Sarrafzadeh, M.; Roberts, C.K. Robust human intensity-varying activity recognition using Stochastic Approximation in wearable sensors. In Proceedings of the 2013 IEEE International Conference on Body Sensor Networks (BSN), Cambridge, MA, USA, 6–9 May 2013; pp. 1–6.
    • (2013) IEEE International Conference on Body Sensor Networks (BSN) , pp. 1-6
    • Alshurafa, N.1    Xu, W.2    Liu, J.J.3    Huang, M.C.4    Mortazavi, B.5    Sarrafzadeh, M.6
  • 22
    • 84924320703 scopus 로고    scopus 로고
    • Indoor Localization, Tracking and Fall Detection for Assistive Healthcare Based on Spatial Sparsity and Wireless Sensor Network
    • Pourhomayoun, M.; Jin, Z.; Fowler, M.L. Indoor Localization, Tracking and Fall Detection for Assistive Healthcare Based on Spatial Sparsity and Wireless Sensor Network. Int. J. Monit. Surveill. Technol. Res. 2013, 1, 72–83.
    • (2013) Int. J. Monit. Surveill. Technol. Res , vol.1 , pp. 72-83
    • Pourhomayoun, M.1    Jin, Z.2    Fowler, M.L.3
  • 31
    • 84883344884 scopus 로고    scopus 로고
    • Smart watch and monitoring system for dementia patients
    • Springer: Berlin, Germany
    • Shin, D.M.; Shin, D.; Shin, D. Smart watch and monitoring system for dementia patients. In Grid and Pervasive Computing; Springer: Berlin, Germany, 2013; pp. 577–584.
    • (2013) In Grid and Pervasive Computing , pp. 577-584
    • Shin, D.M.1    Shin, D.2    Shin, D.3
  • 33
    • 84941236530 scopus 로고    scopus 로고
    • Energy-Efficient Integration of Continuous Context Sensing and Prediction into Smartwatches
    • Rawassizadeh, R.; Tomitsch, M.; Nourizadeh, M.; Momeni, E.; Peery, A.; Ulanova, L.; Pazzani, M. Energy-Efficient Integration of Continuous Context Sensing and Prediction into Smartwatches. Sensors 2015, 15, 22616–22645.
    • (2015) Sensors , vol.15 , pp. 22616-22645
    • Rawassizadeh, R.1    Tomitsch, M.2    Nourizadeh, M.3    Momeni, E.4    Peery, A.5    Ulanova, L.6    Pazzani, M.7
  • 34
    • 84923739550 scopus 로고    scopus 로고
    • A feature selection-based framework for human activity recognition using wearable multimodal sensors
    • Beijng, China, 7–10
    • Zhang, M.; Sawchuk, A.A. A feature selection-based framework for human activity recognition using wearable multimodal sensors. In Proceedings of the 6th International Conference on Body Area Networks, Beijng, China, 7–10 November 2011; pp. 92–98.
    • (2011) Proceedings of the 6Th International Conference on Body Area Networks , pp. 92-98
    • Zhang, M.1    Sawchuk, A.A.2
  • 35
    • 53949117607 scopus 로고    scopus 로고
    • Using acceleration measurements for activity recognition: An effective learning algorithm for constructing neural classifiers
    • Yang, J.Y.; Wang, J.S.; Chen, Y.P. Using acceleration measurements for activity recognition: An effective learning algorithm for constructing neural classifiers. Pattern Recognit. Lett. 2008, 29, 2213–2220.
    • (2008) Pattern Recognit. Lett , vol.29 , pp. 2213-2220
    • Yang, J.Y.1    Wang, J.S.2    Chen, Y.P.3
  • 36
    • 84999983444 scopus 로고    scopus 로고
    • A universal, accurate intensity-based classification of different physical activities using raw data of accelerometer
    • Vaha-Ypya, H.; Vasankari, T.; Husu, P.; Suni, J.; Sievanen, H. A universal, accurate intensity-based classification of different physical activities using raw data of accelerometer. Clin. Physiol. Funct. Imaging 2015, 35, 64–70.
    • (2015) Clin. Physiol. Funct. Imaging , vol.35 , pp. 64-70
    • Vaha-Ypya, H.1    Vasankari, T.2    Husu, P.3    Suni, J.4    Sievanen, H.5
  • 39
    • 33644845063 scopus 로고    scopus 로고
    • Facilitating the application of Support Vector Regression by using a universal Pearson VII function based kernel
    • Üstün, B.; Melssen, W.J.; Buydens, L.M. Facilitating the application of Support Vector Regression by using a universal Pearson VII function based kernel. Chemom. Intell. Lab. Syst. 2006, 81, 29–40.
    • (2006) Chemom. Intell. Lab. Syst , vol.81 , pp. 29-40
    • Üstün, B.1    Melssen, W.J.2    Buydens, L.M.3
  • 41
    • 65649138430 scopus 로고    scopus 로고
    • A systematic analysis of performance measures forclassification tasks
    • Sokolova, M.; Lapalme, G. A systematic analysis of performance measures for classification tasks. Inf. Process. Manag. 2009, 45, 427–437.
    • (2009) Inf. Process. Manag , vol.45 , pp. 427-437
    • Sokolova, M.1    Lapalme, G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.