메뉴 건너뛰기




Volumn 31, Issue 22, 2015, Pages 3600-3607

High-order neural networks and kernel methods for peptide-MHC binding prediction

Author keywords

[No Author keywords available]

Indexed keywords

EPITOPE; PEPTIDE; PROTEIN BINDING;

EID: 84947751854     PISSN: 13674803     EISSN: 14602059     Source Type: Journal    
DOI: 10.1093/bioinformatics/btv371     Document Type: Article
Times cited : (33)

References (25)
  • 1
    • 69349090197 scopus 로고    scopus 로고
    • Learning deep architectures for ai
    • Bengio,Y. (2009) Learning deep architectures for ai. Found. Trends Mach. Learn., 2, 1-127.
    • (2009) Found. Trends Mach. Learn. , vol.2 , pp. 1-127
    • Bengio, Y.1
  • 2
    • 0035989339 scopus 로고    scopus 로고
    • Prediction of promiscuous peptides that bind HLA class I molecules
    • Brusic,V. et al. (2002) Prediction of promiscuous peptides that bind HLA class I molecules. Immunol. Cell Biol., 80, 280-285.
    • (2002) Immunol. Cell Biol. , vol.80 , pp. 280-285
    • Brusic, V.1
  • 3
    • 10744222046 scopus 로고    scopus 로고
    • Sensitive quantitative predictions of peptide-MHC binding by a 'Query by Committee' artificial neural network approach
    • Buus,S. et al. (2003) Sensitive quantitative predictions of peptide-MHC binding by a 'Query by Committee' artificial neural network approach. Tissue Antigens, 62, 378-384.
    • (2003) Tissue Antigens , vol.62 , pp. 378-384
    • Buus, S.1
  • 4
    • 30944463834 scopus 로고    scopus 로고
    • Crystal structure of HLA-A∗2402 complexed with a telomerase peptide
    • Cole,D.K. et al. (2006) Crystal structure of HLA-A∗2402 complexed with a telomerase peptide. Eur. J. Immunol., 36, 170-179.
    • (2006) Eur. J. Immunol. , vol.36 , pp. 170-179
    • Cole, D.K.1
  • 5
    • 84877639844 scopus 로고    scopus 로고
    • Learning a peptide-protein binding affinity predictor with kernel ridge regression
    • Giguere,S. et al. (2013) Learning a peptide-protein binding affinity predictor with kernel ridge regression. BMC Bioinformatics, 14, 82.
    • (2013) BMC Bioinformatics , vol.14 , pp. 82
    • Giguere, S.1
  • 6
    • 84888431681 scopus 로고    scopus 로고
    • MHC-NP: Predicting peptides naturally processed by the MHC
    • 400401
    • Gigure,S. et al. (2013) MHC-NP: Predicting peptides naturally processed by the MHC. J. Immunol. Methods, 400401, 30-36.
    • (2013) J. Immunol. Methods , pp. 30-36
    • Gigure, S.1
  • 7
    • 0013344078 scopus 로고    scopus 로고
    • Training products of experts by minimizing contrastive divergence
    • Hinton,G. (2002) Training products of experts by minimizing contrastive divergence. Neural Comput., 14, 1771-800.
    • (2002) Neural Comput. , vol.14 , pp. 1771-1800
    • Hinton, G.1
  • 8
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • Hinton,G. (2006) A fast learning algorithm for deep belief nets. Neural Comput., 18, 1527-1554.
    • (2006) Neural Comput. , vol.18 , pp. 1527-1554
    • Hinton, G.1
  • 10
    • 59449094834 scopus 로고    scopus 로고
    • NetMHCpan, a method for MHC class I binding prediction beyond humans
    • Hoof,I. et al. (2009) NetMHCpan, a method for MHC class I binding prediction beyond humans. Immunogenetics, 61, 1-13.
    • (2009) Immunogenetics , vol.61 , pp. 1-13
    • Hoof, I.1
  • 11
    • 84904076057 scopus 로고    scopus 로고
    • Dataset size and composition impact the reliability of performance benchmarks for peptide-MHC binding predictions
    • Kim,Y. et al. (2014) Dataset size and composition impact the reliability of performance benchmarks for peptide-MHC binding predictions. BMC Bioinformatics, 15, 241.
    • (2014) BMC Bioinformatics , vol.15 , pp. 241
    • Kim, Y.1
  • 12
    • 44649155161 scopus 로고    scopus 로고
    • In silico prediction of peptide-MHC binding affinity using SVRMHC
    • Flower,D.R. (ed.) Immunoinformatics, Humana Press, Totowa, NJ, USA
    • Liu,W. et al. (2007) In silico prediction of peptide-MHC binding affinity using SVRMHC. In:Flower,D.R. (ed.) Immunoinformatics, Volume 409 of Methods in Molecular Biology, Humana Press, Totowa, NJ, USA, pp.283-291.
    • (2007) Methods in Molecular Biology , vol.409 , pp. 283-291
    • Liu, W.1
  • 13
    • 81255198783 scopus 로고    scopus 로고
    • Prediction of epitopes using neural network based methods
    • Lundegaard,C. et al. (2011) Prediction of epitopes using neural network based methods. J. Immunol. Methods, 374, 26-34.
    • (2011) J. Immunol. Methods , vol.374 , pp. 26-34
    • Lundegaard, C.1
  • 15
    • 0037407113 scopus 로고    scopus 로고
    • Reliable prediction of T-cell epitopes using neural networks with novel sequence representations
    • Nielsen,M. et al. (2003) Reliable prediction of T-cell epitopes using neural networks with novel sequence representations. Protein Sci., 12, 1007-1017.
    • (2003) Protein Sci. , vol.12 , pp. 1007-1017
    • Nielsen, M.1
  • 16
    • 2442499729 scopus 로고    scopus 로고
    • Improved prediction of MHC class I and class II epitopes using a novel Gibbs sampling approach
    • Nielsen,M. et al. (2004) Improved prediction of MHC class I and class II epitopes using a novel Gibbs sampling approach. Bioinformatics, 20, 1388-1397.
    • (2004) Bioinformatics , vol.20 , pp. 1388-1397
    • Nielsen, M.1
  • 17
    • 25444476693 scopus 로고    scopus 로고
    • Generating quantitative models describing the sequence specificity of biological processes with the stabilized matrix method
    • Peters,B. and Sette,A. (2005) Generating quantitative models describing the sequence specificity of biological processes with the stabilized matrix method. BMC Bioinformatics, 6, 132.
    • (2005) BMC Bioinformatics , vol.6 , pp. 132
    • Peters, B.1    Sette, A.2
  • 18
    • 84880859933 scopus 로고    scopus 로고
    • Modeling natural images using gated MRFs
    • Ranzato,M. et al. (2013) Modeling natural images using gated MRFs. IEEE Trans. Pattern Anal. Mach. Intell., 35, 2206-2222.
    • (2013) IEEE Trans. Pattern Anal. Mach. Intell. , vol.35 , pp. 2206-2222
    • Ranzato, M.1
  • 19
    • 44649189266 scopus 로고    scopus 로고
    • Prediction of peptide-MHC binding using profiles
    • Flower,D.R. (ed.), Immunoinformatics, Humana Press, Totowa, NJ, USA
    • Reche,P.A. and Reinherz,E.L. (2007) Prediction of peptide-MHC binding using profiles. In:Flower,D.R. (ed.), Immunoinformatics, Volume 409 of Methods in Molecular Biology, Humana Press, Totowa, NJ, USA, pp. 185-200.
    • (2007) Methods in Molecular Biology , vol.409 , pp. 185-200
    • Reche, P.A.1    Reinherz, E.L.2
  • 20
    • 0036727207 scopus 로고    scopus 로고
    • Prediction of MHC class I binding peptides using profile motifs
    • Reche,P.A. et al. (2002) Prediction of MHC class I binding peptides using profile motifs. Hum. Immunol., 63, 701-709.
    • (2002) Hum. Immunol. , vol.63 , pp. 701-709
    • Reche, P.A.1
  • 21
    • 33845240573 scopus 로고    scopus 로고
    • Predicting class II MHC-peptide binding: A kernel based approach using similarity scores
    • Salomon,J. and Flower,D. (2006) Predicting class II MHC-peptide binding: a kernel based approach using similarity scores. BMC Bioinformatics, 7, 501.
    • (2006) BMC Bioinformatics , vol.7 , pp. 501
    • Salomon, J.1    Flower, D.2
  • 22
    • 81055124275 scopus 로고    scopus 로고
    • POPISK: T-cell reactivity prediction using support vector machines and string kernels
    • Tung,C.-W. et al. (2011) POPISK: T-cell reactivity prediction using support vector machines and string kernels. BMC Bioinformatics, 12, 446.
    • (2011) BMC Bioinformatics , vol.12 , pp. 446
    • Tung, C.-W.1
  • 23
    • 75549084463 scopus 로고    scopus 로고
    • The immune epitope database 2.0
    • Vita,R. et al. (2010) The immune epitope database 2.0. Nucleic Acids Res., 38, D854-D862.
    • (2010) Nucleic Acids Res. , vol.38 , pp. D854-D862
    • Vita, R.1
  • 24
    • 23144455463 scopus 로고    scopus 로고
    • MULTIPRED: A computational system for prediction of promiscuous HLA binding peptides
    • Zhang,G. et al. (2005) MULTIPRED: a computational system for prediction of promiscuous HLA binding peptides. Nucleic Acids Res., 33(Web Server Issue), 172-179.
    • (2005) Nucleic Acids Res. , vol.33 , Issue.WEB SERVER ISSUE , pp. 172-179
    • Zhang, G.1
  • 25
    • 58049217445 scopus 로고    scopus 로고
    • Pan-specific MHC class I predictors: A benchmark of HLA class I pan-specific prediction methods
    • Zhang,H. et al. (2009) Pan-specific MHC class I predictors: a benchmark of HLA class I pan-specific prediction methods. Bioinformatics, 25, 83-89.
    • (2009) Bioinformatics , vol.25 , pp. 83-89
    • Zhang, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.