-
1
-
-
69349090197
-
Learning deep architectures for ai
-
Bengio,Y. (2009) Learning deep architectures for ai. Found. Trends Mach. Learn., 2, 1-127.
-
(2009)
Found. Trends Mach. Learn.
, vol.2
, pp. 1-127
-
-
Bengio, Y.1
-
2
-
-
0035989339
-
Prediction of promiscuous peptides that bind HLA class I molecules
-
Brusic,V. et al. (2002) Prediction of promiscuous peptides that bind HLA class I molecules. Immunol. Cell Biol., 80, 280-285.
-
(2002)
Immunol. Cell Biol.
, vol.80
, pp. 280-285
-
-
Brusic, V.1
-
3
-
-
10744222046
-
Sensitive quantitative predictions of peptide-MHC binding by a 'Query by Committee' artificial neural network approach
-
Buus,S. et al. (2003) Sensitive quantitative predictions of peptide-MHC binding by a 'Query by Committee' artificial neural network approach. Tissue Antigens, 62, 378-384.
-
(2003)
Tissue Antigens
, vol.62
, pp. 378-384
-
-
Buus, S.1
-
4
-
-
30944463834
-
Crystal structure of HLA-A∗2402 complexed with a telomerase peptide
-
Cole,D.K. et al. (2006) Crystal structure of HLA-A∗2402 complexed with a telomerase peptide. Eur. J. Immunol., 36, 170-179.
-
(2006)
Eur. J. Immunol.
, vol.36
, pp. 170-179
-
-
Cole, D.K.1
-
5
-
-
84877639844
-
Learning a peptide-protein binding affinity predictor with kernel ridge regression
-
Giguere,S. et al. (2013) Learning a peptide-protein binding affinity predictor with kernel ridge regression. BMC Bioinformatics, 14, 82.
-
(2013)
BMC Bioinformatics
, vol.14
, pp. 82
-
-
Giguere, S.1
-
6
-
-
84888431681
-
MHC-NP: Predicting peptides naturally processed by the MHC
-
400401
-
Gigure,S. et al. (2013) MHC-NP: Predicting peptides naturally processed by the MHC. J. Immunol. Methods, 400401, 30-36.
-
(2013)
J. Immunol. Methods
, pp. 30-36
-
-
Gigure, S.1
-
7
-
-
0013344078
-
Training products of experts by minimizing contrastive divergence
-
Hinton,G. (2002) Training products of experts by minimizing contrastive divergence. Neural Comput., 14, 1771-800.
-
(2002)
Neural Comput.
, vol.14
, pp. 1771-1800
-
-
Hinton, G.1
-
8
-
-
33745805403
-
A fast learning algorithm for deep belief nets
-
Hinton,G. (2006) A fast learning algorithm for deep belief nets. Neural Comput., 18, 1527-1554.
-
(2006)
Neural Comput.
, vol.18
, pp. 1527-1554
-
-
Hinton, G.1
-
10
-
-
59449094834
-
NetMHCpan, a method for MHC class I binding prediction beyond humans
-
Hoof,I. et al. (2009) NetMHCpan, a method for MHC class I binding prediction beyond humans. Immunogenetics, 61, 1-13.
-
(2009)
Immunogenetics
, vol.61
, pp. 1-13
-
-
Hoof, I.1
-
11
-
-
84904076057
-
Dataset size and composition impact the reliability of performance benchmarks for peptide-MHC binding predictions
-
Kim,Y. et al. (2014) Dataset size and composition impact the reliability of performance benchmarks for peptide-MHC binding predictions. BMC Bioinformatics, 15, 241.
-
(2014)
BMC Bioinformatics
, vol.15
, pp. 241
-
-
Kim, Y.1
-
12
-
-
44649155161
-
In silico prediction of peptide-MHC binding affinity using SVRMHC
-
Flower,D.R. (ed.) Immunoinformatics, Humana Press, Totowa, NJ, USA
-
Liu,W. et al. (2007) In silico prediction of peptide-MHC binding affinity using SVRMHC. In:Flower,D.R. (ed.) Immunoinformatics, Volume 409 of Methods in Molecular Biology, Humana Press, Totowa, NJ, USA, pp.283-291.
-
(2007)
Methods in Molecular Biology
, vol.409
, pp. 283-291
-
-
Liu, W.1
-
13
-
-
81255198783
-
Prediction of epitopes using neural network based methods
-
Lundegaard,C. et al. (2011) Prediction of epitopes using neural network based methods. J. Immunol. Methods, 374, 26-34.
-
(2011)
J. Immunol. Methods
, vol.374
, pp. 26-34
-
-
Lundegaard, C.1
-
14
-
-
77956498044
-
Deep supervised t-distributed embedding
-
Omnipress, Norristown, PA, USA
-
Min,M.R. et al. (2010) Deep supervised t-distributed embedding. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), Haifa, Israel, June 21-24, 2010, Omnipress, Norristown, PA, USA, pp. 791-798.
-
(2010)
Proceedings of the 27th International Conference on Machine Learning (ICML-10), Haifa, Israel, June 21-24, 2010
, pp. 791-798
-
-
Min, M.R.1
-
15
-
-
0037407113
-
Reliable prediction of T-cell epitopes using neural networks with novel sequence representations
-
Nielsen,M. et al. (2003) Reliable prediction of T-cell epitopes using neural networks with novel sequence representations. Protein Sci., 12, 1007-1017.
-
(2003)
Protein Sci.
, vol.12
, pp. 1007-1017
-
-
Nielsen, M.1
-
16
-
-
2442499729
-
Improved prediction of MHC class I and class II epitopes using a novel Gibbs sampling approach
-
Nielsen,M. et al. (2004) Improved prediction of MHC class I and class II epitopes using a novel Gibbs sampling approach. Bioinformatics, 20, 1388-1397.
-
(2004)
Bioinformatics
, vol.20
, pp. 1388-1397
-
-
Nielsen, M.1
-
17
-
-
25444476693
-
Generating quantitative models describing the sequence specificity of biological processes with the stabilized matrix method
-
Peters,B. and Sette,A. (2005) Generating quantitative models describing the sequence specificity of biological processes with the stabilized matrix method. BMC Bioinformatics, 6, 132.
-
(2005)
BMC Bioinformatics
, vol.6
, pp. 132
-
-
Peters, B.1
Sette, A.2
-
18
-
-
84880859933
-
Modeling natural images using gated MRFs
-
Ranzato,M. et al. (2013) Modeling natural images using gated MRFs. IEEE Trans. Pattern Anal. Mach. Intell., 35, 2206-2222.
-
(2013)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.35
, pp. 2206-2222
-
-
Ranzato, M.1
-
19
-
-
44649189266
-
Prediction of peptide-MHC binding using profiles
-
Flower,D.R. (ed.), Immunoinformatics, Humana Press, Totowa, NJ, USA
-
Reche,P.A. and Reinherz,E.L. (2007) Prediction of peptide-MHC binding using profiles. In:Flower,D.R. (ed.), Immunoinformatics, Volume 409 of Methods in Molecular Biology, Humana Press, Totowa, NJ, USA, pp. 185-200.
-
(2007)
Methods in Molecular Biology
, vol.409
, pp. 185-200
-
-
Reche, P.A.1
Reinherz, E.L.2
-
20
-
-
0036727207
-
Prediction of MHC class I binding peptides using profile motifs
-
Reche,P.A. et al. (2002) Prediction of MHC class I binding peptides using profile motifs. Hum. Immunol., 63, 701-709.
-
(2002)
Hum. Immunol.
, vol.63
, pp. 701-709
-
-
Reche, P.A.1
-
21
-
-
33845240573
-
Predicting class II MHC-peptide binding: A kernel based approach using similarity scores
-
Salomon,J. and Flower,D. (2006) Predicting class II MHC-peptide binding: a kernel based approach using similarity scores. BMC Bioinformatics, 7, 501.
-
(2006)
BMC Bioinformatics
, vol.7
, pp. 501
-
-
Salomon, J.1
Flower, D.2
-
22
-
-
81055124275
-
POPISK: T-cell reactivity prediction using support vector machines and string kernels
-
Tung,C.-W. et al. (2011) POPISK: T-cell reactivity prediction using support vector machines and string kernels. BMC Bioinformatics, 12, 446.
-
(2011)
BMC Bioinformatics
, vol.12
, pp. 446
-
-
Tung, C.-W.1
-
23
-
-
75549084463
-
The immune epitope database 2.0
-
Vita,R. et al. (2010) The immune epitope database 2.0. Nucleic Acids Res., 38, D854-D862.
-
(2010)
Nucleic Acids Res.
, vol.38
, pp. D854-D862
-
-
Vita, R.1
-
24
-
-
23144455463
-
MULTIPRED: A computational system for prediction of promiscuous HLA binding peptides
-
Zhang,G. et al. (2005) MULTIPRED: a computational system for prediction of promiscuous HLA binding peptides. Nucleic Acids Res., 33(Web Server Issue), 172-179.
-
(2005)
Nucleic Acids Res.
, vol.33
, Issue.WEB SERVER ISSUE
, pp. 172-179
-
-
Zhang, G.1
-
25
-
-
58049217445
-
Pan-specific MHC class I predictors: A benchmark of HLA class I pan-specific prediction methods
-
Zhang,H. et al. (2009) Pan-specific MHC class I predictors: a benchmark of HLA class I pan-specific prediction methods. Bioinformatics, 25, 83-89.
-
(2009)
Bioinformatics
, vol.25
, pp. 83-89
-
-
Zhang, H.1
|