메뉴 건너뛰기




Volumn 26, Issue 6, 2015, Pages 1161-1180

Autoregressive coefficient-invariant control chart pattern recognition in autocorrelated manufacturing processes using neural network ensemble

Author keywords

Autocorrelated manufacturing processes; Control charts; Neural network ensemble; Pattern recognition; Statistical process control

Indexed keywords

ARTIFICIAL INTELLIGENCE; BACKPROPAGATION; CLASSIFICATION (OF INFORMATION); CONTROL CHARTS; FLOWCHARTING; LEARNING SYSTEMS; MANUFACTURE; NEURAL NETWORKS; PATTERN RECOGNITION; QUALITY CONTROL; STATISTICAL PROCESS CONTROL; SUPPORT VECTOR MACHINES;

EID: 84947030000     PISSN: 09565515     EISSN: 15728145     Source Type: Journal    
DOI: 10.1007/s10845-013-0847-6     Document Type: Article
Times cited : (30)

References (50)
  • 1
    • 33744770587 scopus 로고    scopus 로고
    • Aparisi, F., Avendaño, G., & Sanz, J. (2006). Techniques to interpret T2 control chart signals. IIE Transactions, 38(8), 647–657
    • Aparisi, F., Avendaño, G., & Sanz, J. (2006). Techniques to interpret T2 control chart signals. IIE Transactions, 38(8), 647–657
  • 2
    • 4344709594 scopus 로고    scopus 로고
    • Pattern recognition of control charts using artificial neural networks—analyzing the effect of the training parameters
    • Barghash, M. A., & Santarisi, N. S. (2004). Pattern recognition of control charts using artificial neural networks—analyzing the effect of the training parameters. Journal of Intelligent Manufacturing, 15(5), 635–644.
    • (2004) Journal of Intelligent Manufacturing , vol.15 , Issue.5 , pp. 635-644
    • Barghash, M.A.1    Santarisi, N.S.2
  • 4
    • 0031100898 scopus 로고    scopus 로고
    • A neural network approach for the analysis of control chart patterns
    • Cheng, C.-S. (1997). A neural network approach for the analysis of control chart patterns. International Journal of Production Research, 35(3), 667–697.
    • (1997) International Journal of Production Research , vol.35 , Issue.3 , pp. 667-697
    • Cheng, C.-S.1
  • 5
    • 45149101726 scopus 로고    scopus 로고
    • Identifying the source of variance shifts in the multivariate process using neural networks and support vector machines
    • Cheng, C.-S., & Cheng, H.-P. (2008). Identifying the source of variance shifts in the multivariate process using neural networks and support vector machines. Expert Systems with Applications, 35(1–2), 198–206.
    • (2008) Expert Systems with Applications , vol.35 , Issue.1-2 , pp. 198-206
    • Cheng, C.-S.1    Cheng, H.-P.2
  • 6
    • 0037146388 scopus 로고    scopus 로고
    • Support vector machines for recognizing shifts in correlated and other manufacturing processes
    • Chinnam, R. B. (2002). Support vector machines for recognizing shifts in correlated and other manufacturing processes. International Journal of Production Research, 40(17), 4449–4466.
    • (2002) International Journal of Production Research , vol.40 , Issue.17 , pp. 4449-4466
    • Chinnam, R.B.1
  • 7
    • 21344465385 scopus 로고
    • Bootstrap inference for a first-order autoregression with positive innovations
    • Datta, S., & McCormick, W. P. (1995). Bootstrap inference for a first-order autoregression with positive innovations. Journal of the American Statistical Association, 90(432), 1289–1300.
    • (1995) Journal of the American Statistical Association , vol.90 , Issue.432 , pp. 1289-1300
    • Datta, S.1    McCormick, W.P.2
  • 8
    • 0023803016 scopus 로고
    • Performance of the control chart trend rule under linear shift
    • Davis, R. B., & Woodall, W. H. (1988). Performance of the control chart trend rule under linear shift. Journal of Quality Technology, 20(4), 260–262.
    • (1988) Journal of Quality Technology , vol.20 , Issue.4 , pp. 260-262
    • Davis, R.B.1    Woodall, W.H.2
  • 9
    • 0024123145 scopus 로고    scopus 로고
    • DeSieno, D. (1988). Adding a conscience to competitive learning. In Proceedings of international joint conference on neural networks (pp. 117–124). San Diego, CA: IEEE Press
    • DeSieno, D. (1988). Adding a conscience to competitive learning. In Proceedings of international joint conference on neural networks (pp. 117–124). San Diego, CA: IEEE Press.
  • 10
    • 84869492326 scopus 로고    scopus 로고
    • Minimal Euclidean distance chart based on support vector regression for monitoring mean shifts of auto-correlated processes
    • Du, S. C., & Lv, J. (2013). Minimal Euclidean distance chart based on support vector regression for monitoring mean shifts of auto-correlated processes. International Journal of Production Economics, 141(1), 377–387.
    • (2013) International Journal of Production Economics , vol.141 , Issue.1 , pp. 377-387
    • Du, S.C.1    Lv, J.2
  • 11
    • 71749085820 scopus 로고    scopus 로고
    • A proposed framework for control chart pattern recognition in multivariate process using artificial neural networks
    • El-Midany, T. T., El-Baz, M. A., & Abd-Elwahed, M. S. (2010). A proposed framework for control chart pattern recognition in multivariate process using artificial neural networks. Expert Systems with Applications, 37(2), 1035–1042.
    • (2010) Expert Systems with Applications , vol.37 , Issue.2 , pp. 1035-1042
    • El-Midany, T.T.1    El-Baz, M.A.2    Abd-Elwahed, M.S.3
  • 13
    • 84888639250 scopus 로고    scopus 로고
    • Identification of concurrent control chart patterns with singular spectrum analysis and learning vector quantization
    • Gu, N., Cao, Z. Q., Xie, L. J., et al. (2012). Identification of concurrent control chart patterns with singular spectrum analysis and learning vector quantization. Journal of Intelligent Manufacturing,. doi:10.1007/s10845-012-0659-0.
    • (2012) Journal of Intelligent Manufacturing
    • Gu, N.1    Cao, Z.Q.2    Xie, L.J.3
  • 14
    • 0013527549 scopus 로고    scopus 로고
    • Robustness of the neural network based control chart pattern recognition system to non-normality
    • Guh, R.-S. (2002). Robustness of the neural network based control chart pattern recognition system to non-normality. International Journal of Quality and Reliability Management, 19(1), 97–112.
    • (2002) International Journal of Quality and Reliability Management , vol.19 , Issue.1 , pp. 97-112
    • Guh, R.-S.1
  • 15
    • 2142653625 scopus 로고    scopus 로고
    • Optimizing feedforward neural networks for control chart pattern recognition through genetic algorithms
    • Guh, R.-S. (2004). Optimizing feedforward neural networks for control chart pattern recognition through genetic algorithms. International Journal of Pattern Recognition and Artificial Intelligence, 18(2), 75–99.
    • (2004) International Journal of Pattern Recognition and Artificial Intelligence , vol.18 , Issue.2 , pp. 75-99
    • Guh, R.-S.1
  • 16
    • 23144467659 scopus 로고    scopus 로고
    • A hybrid learning-based model for on-line detection and analysis of control chart patterns
    • Guh, R.-S. (2005). A hybrid learning-based model for on-line detection and analysis of control chart patterns. Computers and Industrial Engineering, 49(1), 35–62.
    • (2005) Computers and Industrial Engineering , vol.49 , Issue.1 , pp. 35-62
    • Guh, R.-S.1
  • 17
    • 46149100082 scopus 로고    scopus 로고
    • Real-time recognition of control chart patterns in autocorrelated manufacturing processes using a learning vector quantization network-based approach
    • Guh, R.-S. (2008). Real-time recognition of control chart patterns in autocorrelated manufacturing processes using a learning vector quantization network-based approach. International Journal of Production Research, 46(14), 3959–3991.
    • (2008) International Journal of Production Research , vol.46 , Issue.14 , pp. 3959-3991
    • Guh, R.-S.1
  • 18
    • 0032673229 scopus 로고    scopus 로고
    • A neural network based model for abnormal pattern recognition of control charts
    • Guh, R.-S., & Hsieh, Y.-C. (1999). A neural network based model for abnormal pattern recognition of control charts. Computers and Industrial Engineering, 36(1), 97–108.
    • (1999) Computers and Industrial Engineering , vol.36 , Issue.1 , pp. 97-108
    • Guh, R.-S.1    Hsieh, Y.-C.2
  • 19
    • 50349096476 scopus 로고    scopus 로고
    • An effective application of decision tree learning for online detection of mean shifts in multivariate control charts
    • Guh, R. S., & Shiue, Y. R. (2008). An effective application of decision tree learning for online detection of mean shifts in multivariate control charts. Computers and Industrial Engineering, 55(2), 475–493.
    • (2008) Computers and Industrial Engineering , vol.55 , Issue.2 , pp. 475-493
    • Guh, R.S.1    Shiue, Y.R.2
  • 20
    • 0033221564 scopus 로고    scopus 로고
    • A neural network approach to characterize pattern parameters in process control charts
    • Guh, R.-S., & Tannock, J. D. T. (1999). A neural network approach to characterize pattern parameters in process control charts. Journal of Intelligent Manufacturing, 10(5), 449–462.
    • (1999) Journal of Intelligent Manufacturing , vol.10 , Issue.5 , pp. 449-462
    • Guh, R.-S.1    Tannock, J.D.T.2
  • 21
    • 85027944759 scopus 로고    scopus 로고
    • Online monitoring and fault identification of mean shifts in bivariate processes using decision tree learning techniques
    • He, S.-G., He, Z., & Wang, G. A. (2013). Online monitoring and fault identification of mean shifts in bivariate processes using decision tree learning techniques. Journal of Intelligent Manufacturing, 24, 25–34.
    • (2013) Journal of Intelligent Manufacturing , vol.24 , pp. 25-34
    • He, S.-G.1    He, Z.2    Wang, G.A.3
  • 22
    • 84947021729 scopus 로고    scopus 로고
    • Hsu, C.-W., Chang, C.-C., & Lin, C.-J. (2010). A practical guide to support vector classification. Technical report: Department of Computer Science and Information Engineering, National Taiwan University
    • Hsu, C.-W., Chang, C.-C., & Lin, C.-J. (2010). A practical guide to support vector classification. Technical report: Department of Computer Science and Information Engineering, National Taiwan University.
  • 23
    • 0005422806 scopus 로고
    • Multilayer perceptions for detecting cyclic data on control charts
    • Hwarng, H. B. (1995). Multilayer perceptions for detecting cyclic data on control charts. International Journal of Production Research, 33(11), 3101–3117.
    • (1995) International Journal of Production Research , vol.33 , Issue.11 , pp. 3101-3117
    • Hwarng, H.B.1
  • 24
    • 1342265964 scopus 로고    scopus 로고
    • Hwarng, H. B. (2004). Detecting process mean shift in the presence of autocorrelation: A neural-network based monitoring scheme. International Journal of Production Research, 42(3), 573– 595
    • Hwarng, H. B. (2004). Detecting process mean shift in the presence of autocorrelation: A neural-network based monitoring scheme. International Journal of Production Research, 42(3), 573– 595.
  • 25
    • 27844603392 scopus 로고    scopus 로고
    • Simultaneous identification of mean shift and correlation change in AR(1) processes
    • Hwarng, H. B. (2005). Simultaneous identification of mean shift and correlation change in AR(1) processes. International Journal of Production Research, 43(9), 1761–1783.
    • (2005) International Journal of Production Research , vol.43 , Issue.9 , pp. 1761-1783
    • Hwarng, H.B.1
  • 26
    • 0027589082 scopus 로고
    • X-bar control chart pattern identification through efficient off-line neural network training
    • Hwarng, H. B., & Hubele, N. F. (1993a). X-bar control chart pattern identification through efficient off-line neural network training. IIE Transactions, 25(3), 27–40.
    • (1993) IIE Transactions , vol.25 , Issue.3 , pp. 27-40
    • Hwarng, H.B.1    Hubele, N.F.2
  • 27
    • 0027579104 scopus 로고
    • Back-propagation pattern recognizers for X-bar control charts: Methodology and performance
    • Hwarng, H. B., & Hubele, N. F. (1993b). Back-propagation pattern recognizers for X-bar control charts: Methodology and performance. Computers and Industrial Engineering, 24(2), 219–235.
    • (1993) Computers and Industrial Engineering , vol.24 , Issue.2 , pp. 219-235
    • Hwarng, H.B.1    Hubele, N.F.2
  • 28
    • 70450233892 scopus 로고    scopus 로고
    • Recognizing control chart patterns with neural network and numerical fitting
    • Jiang, P. Y., Liu, D. Y., & Zeng, Z. J. (2009). Recognizing control chart patterns with neural network and numerical fitting. Journal of Intelligent Manufacturing, 20, 625–635.
    • (2009) Journal of Intelligent Manufacturing , vol.20 , pp. 625-635
    • Jiang, P.Y.1    Liu, D.Y.2    Zeng, Z.J.3
  • 29
    • 84947027243 scopus 로고    scopus 로고
    • Kohonen, T. (2001). Self-organizing maps, 3rd extended edition. In Springer series in information sciences (Vol. 30). Springer, Berlin, Heidelberg, New York
    • Kohonen, T. (2001). Self-organizing maps, 3rd extended edition. In Springer series in information sciences (Vol. 30). Springer, Berlin, Heidelberg, New York.
  • 30
    • 0024124595 scopus 로고    scopus 로고
    • Kohonen, T., Barna, G., & Chrisley, R. (1988). Statistical pattern recognition with neural networks: Benchmarking studies. In Proceedings of international joint conference on neural networks (pp. 161–168). San Diego, CA: IEEE Press
    • Kohonen, T., Barna, G., & Chrisley, R. (1988). Statistical pattern recognition with neural networks: Benchmarking studies. In Proceedings of international joint conference on neural networks (pp. 161–168). San Diego, CA: IEEE Press.
  • 31
    • 0002748218 scopus 로고
    • How neural nets work
    • Anderson ZA, (ed), American Institute of Physics, New York
    • Lapedes, A., & Farber, R. (1988). How neural nets work. In Z. A. Anderson (Ed.), Neural information processing systems (pp. 442–456). New York: American Institute of Physics.
    • (1988) Neural information processing systems , pp. 442-456
    • Lapedes, A.1    Farber, R.2
  • 32
    • 80054955956 scopus 로고    scopus 로고
    • Effective recognition of control chart patterns in autocorrelated data using a support vector machine based approach
    • Lin, S.-Y., Guh, R.-S., & Shiue, Y.-R. (2011). Effective recognition of control chart patterns in autocorrelated data using a support vector machine based approach. Computers and Industrial Engineering, 61(4), 1123–1134.
    • (2011) Computers and Industrial Engineering , vol.61 , Issue.4 , pp. 1123-1134
    • Lin, S.-Y.1    Guh, R.-S.2    Shiue, Y.-R.3
  • 34
    • 84947042131 scopus 로고    scopus 로고
    • Lucy-Bouler, T. L. (1993). Application to forecasting of neural network recognition of shifts and trends in quality control data. In Proceedings of world congress on neural networks (pp. 631–633). Portland, UK: IEEE Press
    • Lucy-Bouler, T. L. (1993). Application to forecasting of neural network recognition of shifts and trends in quality control data. In Proceedings of world congress on neural networks (pp. 631–633). Portland, UK: IEEE Press.
  • 35
    • 84947023430 scopus 로고    scopus 로고
    • Minitab Inc. (2006). Meet MINITAB release 15. State College, PA: Minitab
    • Minitab Inc. (2006). Meet MINITAB release 15. State College, PA: Minitab.
  • 37
    • 28844486614 scopus 로고    scopus 로고
    • Niaki, S. T. A., & Abbasi, B. (2005). Fault diagnosis in multivariate control charts using artificial neural networks. International Quality and Reliability Engineering, 21(8), 825–840
    • Niaki, S. T. A., & Abbasi, B. (2005). Fault diagnosis in multivariate control charts using artificial neural networks. International Quality and Reliability Engineering, 21(8), 825–840.
  • 38
    • 34248138917 scopus 로고    scopus 로고
    • Using recurrent neural networks to detect changes in autocorrelated manufacturing processes for quality monitoring
    • Pacella, M., & Semeraro, Q. (2007). Using recurrent neural networks to detect changes in autocorrelated manufacturing processes for quality monitoring. Computers and Industrial Engineering, 52(4), 502–520.
    • (2007) Computers and Industrial Engineering , vol.52 , Issue.4 , pp. 502-520
    • Pacella, M.1    Semeraro, Q.2
  • 39
    • 0034313880 scopus 로고    scopus 로고
    • Optimizing the parameters of multilayered feedforward neural networks through Taguchi design of experiments
    • Packianather, M. S., Drake, P. R., & Rowlands, H. (2000). Optimizing the parameters of multilayered feedforward neural networks through Taguchi design of experiments. Quality and Reliability Engineering International, 16(6), 461–473.
    • (2000) Quality and Reliability Engineering International , vol.16 , Issue.6 , pp. 461-473
    • Packianather, M.S.1    Drake, P.R.2    Rowlands, H.3
  • 42
    • 79956115039 scopus 로고    scopus 로고
    • On-line analysis of out-of-control signals in multivariate manufacturing processes using a hybrid learning-based model
    • Salehi, M., Bahreininejad, A., & Nakhai, I. (2011). On-line analysis of out-of-control signals in multivariate manufacturing processes using a hybrid learning-based model. Neurocomputing, 74(12–13), 2083–2095.
    • (2011) Neurocomputing , vol.74 , Issue.12-13 , pp. 2083-2095
    • Salehi, M.1    Bahreininejad, A.2    Nakhai, I.3
  • 43
    • 0030270341 scopus 로고    scopus 로고
    • An expert system model for implementing statistical process control in the health care industry
    • Tsacle, E. G., & Aly, N. A. (1996). An expert system model for implementing statistical process control in the health care industry. Computers and Industrial Engineering, 31(1–2), 447–450.
    • (1996) Computers and Industrial Engineering , vol.31 , Issue.1-2 , pp. 447-450
    • Tsacle, E.G.1    Aly, N.A.2
  • 44
    • 67749088653 scopus 로고    scopus 로고
    • A hybrid approach for identification of concurrent control chart patterns
    • Wang, C.-H., Dong, T.-P., & Kuo, W. (2009). A hybrid approach for identification of concurrent control chart patterns. Journal of Intelligent Manufacturing, 20, 409–419.
    • (2009) Journal of Intelligent Manufacturing , vol.20 , pp. 409-419
    • Wang, C.-H.1    Dong, T.-P.2    Kuo, W.3
  • 45
    • 34547699508 scopus 로고    scopus 로고
    • Identification of control chart patterns using wavelet filtering and robust fuzzy clustering
    • Wang, C.-H., & Kuo, W. (2007). Identification of control chart patterns using wavelet filtering and robust fuzzy clustering. Journal of Intelligent Manufacturing, 18, 343–350.
    • (2007) Journal of Intelligent Manufacturing , vol.18 , pp. 343-350
    • Wang, C.-H.1    Kuo, W.2
  • 46
    • 0036610685 scopus 로고    scopus 로고
    • Mean shifts detection and classification in multivariate process: A neural-fuzzy approach
    • COI: 1:CAS:528:DC%2BD3sXitlSr
    • Wang, T. Y., & Chen, L. H. (2002). Mean shifts detection and classification in multivariate process: A neural-fuzzy approach. Journal of Intelligent Manufacturing, 13(3), 211–221.
    • (2002) Journal of Intelligent Manufacturing , vol.13 , Issue.3 , pp. 211-221
    • Wang, T.Y.1    Chen, L.H.2
  • 47
    • 84952149041 scopus 로고
    • Run-length distributions of special-cause control charts for correlated processes
    • Wardell, D. G., Moskowitz, H., & Plante, R. D. (1994). Run-length distributions of special-cause control charts for correlated processes. Technometrics, 36(1), 3–17.
    • (1994) Technometrics , vol.36 , Issue.1 , pp. 3-17
    • Wardell, D.G.1    Moskowitz, H.2    Plante, R.D.3
  • 48
    • 84947035423 scopus 로고    scopus 로고
    • Western Electric Company. (1958). Statistical quality control handbook. Indianapolis: Western Electric
    • Western Electric Company. (1958). Statistical quality control handbook. Indianapolis: Western Electric.
  • 49
    • 53849102241 scopus 로고    scopus 로고
    • A neural network ensemble model for on-line monitoring of process mean and variance shifts in correlated processes
    • Wu, B., & Yu, J. B. (2009). A neural network ensemble model for on-line monitoring of process mean and variance shifts in correlated processes. Expert Systems with Applications, 36(1), 909–921.
    • (2009) Expert Systems with Applications , vol.36 , Issue.1 , pp. 909-921
    • Wu, B.1    Yu, J.B.2
  • 50
    • 1342308552 scopus 로고    scopus 로고
    • An augmented neural network classification approach to detecting mean shifts in correlated manufacturing process parameters
    • Zobel, C. W., Cook, D. F., & Nottingham, Q. J. (2004). An augmented neural network classification approach to detecting mean shifts in correlated manufacturing process parameters. International Journal of Production Research, 42(4), 741–758.
    • (2004) International Journal of Production Research , vol.42 , Issue.4 , pp. 741-758
    • Zobel, C.W.1    Cook, D.F.2    Nottingham, Q.J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.