메뉴 건너뛰기




Volumn 18, Issue 3, 2007, Pages 959-963

Comparing support vector machines and feedforward neural networks with similar hidden-layer weights

Author keywords

Feedforward neural networks (FNNs); Sparse models; Support vector machines (SVMs)

Indexed keywords

ALGORITHMS; COMPUTATIONAL METHODS; COMPUTER SIMULATION; FEEDFORWARD NEURAL NETWORKS; MATHEMATICAL MODELS;

EID: 34248640313     PISSN: 10459227     EISSN: None     Source Type: Journal    
DOI: 10.1109/TNN.2007.891656     Document Type: Article
Times cited : (35)

References (13)
  • 4
    • 0026116468 scopus 로고
    • Orthogonal least squares learning algorithm for radial basis function networks
    • Mar
    • S. Chen, C. F. N. Cowan, and P. M. Grant, "Orthogonal least squares learning algorithm for radial basis function networks," IEEE Trans. Neural Netw., vol. 2, no. 2, pp. 302-309, Mar. 1991.
    • (1991) IEEE Trans. Neural Netw , vol.2 , Issue.2 , pp. 302-309
    • Chen, S.1    Cowan, C.F.N.2    Grant, P.M.3
  • 5
    • 33745789043 scopus 로고    scopus 로고
    • Building support vector machines with reduced classifier complexity
    • S. S. Keerthi, O. Chapelle, and D. DeCoste, "Building support vector machines with reduced classifier complexity," J. Mach. Learn. Res. vol. 7, pp. 1493-1515, 2006.
    • (2006) J. Mach. Learn. Res , vol.7 , pp. 1493-1515
    • Keerthi, S.S.1    Chapelle, O.2    DeCoste, D.3
  • 6
    • 0031146959 scopus 로고    scopus 로고
    • Constructive algorithms for structure learning in feedforward neural networks for regression problems
    • May
    • T. Y. Kwok and D. Y. Yeung, "Constructive algorithms for structure learning in feedforward neural networks for regression problems," IEEE Trans. Neural Netw., vol. 8, no. 3, pp. 630-645, May 1997.
    • (1997) IEEE Trans. Neural Netw , vol.8 , Issue.3 , pp. 630-645
    • Kwok, T.Y.1    Yeung, D.Y.2
  • 7
    • 0027262895 scopus 로고
    • Multilayer feedforward networks with a nonpolynomial activation function can approximate any function
    • M. Leshno, V. Y. Lin, A. Pinkus, and S. Schocken, "Multilayer feedforward networks with a nonpolynomial activation function can approximate any function," Neural Netw., vol. 6, pp. 861-867, 1993.
    • (1993) Neural Netw , vol.6 , pp. 861-867
    • Leshno, M.1    Lin, V.Y.2    Pinkus, A.3    Schocken, S.4
  • 8
    • 0001002401 scopus 로고
    • Approximation and radial-basis-function networks
    • J. Park and I. W. Sandberg, "Approximation and radial-basis-function networks," Neural Comput., vol. 5, pp. 305-316, 1993.
    • (1993) Neural Comput , vol.5 , pp. 305-316
    • Park, J.1    Sandberg, I.W.2
  • 9
    • 33745193947 scopus 로고    scopus 로고
    • A sequential algorithm for feed-forward neural networks with optimal coefficients and interacting frequencies
    • E. Romero and R. Alquézar, "A sequential algorithm for feed-forward neural networks with optimal coefficients and interacting frequencies," Neurocomput., vol. 69, pp. 1540-1552, 2006.
    • (2006) Neurocomput , vol.69 , pp. 1540-1552
    • Romero, E.1    Alquézar, R.2
  • 11
    • 0001224048 scopus 로고    scopus 로고
    • Sparse Bayesian learning and the relevance vector machine
    • M. Tipping, "Sparse Bayesian learning and the relevance vector machine," J. Mach. Learn. Res., vol. 1, pp. 211-244, 2001.
    • (2001) J. Mach. Learn. Res , vol.1 , pp. 211-244
    • Tipping, M.1
  • 13
    • 0036643065 scopus 로고    scopus 로고
    • Kernel matching pursuit
    • P. Vincent and Y. Bengio, "Kernel matching pursuit," Mach. Learn. vol. 48, pp. 165-187, 2002.
    • (2002) Mach. Learn , vol.48 , pp. 165-187
    • Vincent, P.1    Bengio, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.