메뉴 건너뛰기




Volumn 6, Issue , 2015, Pages

ESRP2 controls an adult splicing programme in hepatocytes to support postnatal liver maturation

Author keywords

[No Author keywords available]

Indexed keywords

ALBUMIN; CDH2 PROTEIN; CYCLIN B2; CYCLIN D1; CYCLIN DEPENDENT KINASE 1; CYCLIN DEPENDENT KINASE 6; CYCLIN E; CYCLIN E1; EPITHELIAL SPLICING REGULATORY PROTEIN 1; EPITHELIAL SPLICING REGULATORY PROTEIN 2; KI 67 ANTIGEN; MEMBRANE PROTEIN; MESSENGER RNA; MESSENGER RNA PRECURSOR; MUSCLEBLIND LIKE PROTEIN 2; PROTEIN P14; PROTEIN P28; RAS PROTEIN; REGULATOR PROTEIN; RHO FACTOR; RNA BINDING PROTEIN; RNA ISOFORM; TRANSCRIPTOME; UNCLASSIFIED DRUG; UVOMORULIN; ESRP2 PROTEIN, HUMAN; ESRP2 PROTEIN, MOUSE; ISOPROTEIN;

EID: 84946601363     PISSN: None     EISSN: 20411723     Source Type: Journal    
DOI: 10.1038/ncomms9768     Document Type: Article
Times cited : (80)

References (62)
  • 1
    • 76249102739 scopus 로고    scopus 로고
    • Organogenesis and development of the liver
    • Si-Tayeb, K., Lemaigre, F. P. & Duncan, S. A. Organogenesis and development of the liver. Dev. Cell 18, 175-189 (2010).
    • (2010) Dev. Cell , vol.18 , pp. 175-189
    • Si-Tayeb, K.1    Lemaigre, F.P.2    Duncan, S.A.3
  • 2
    • 42349083585 scopus 로고    scopus 로고
    • Genetic programming of liver and pancreas progenitors: Lessons for stem-cell differentiation
    • Zaret, K. S. Genetic programming of liver and pancreas progenitors: lessons for stem-cell differentiation. Nat. Rev. Genet. 9, 329-340 (2008).
    • (2008) Nat. Rev. Genet. , vol.9 , pp. 329-340
    • Zaret, K.S.1
  • 3
    • 0345017786 scopus 로고    scopus 로고
    • Transcription factors in liver development, differentiation, and regeneration
    • Costa, R. H., Kalinichenko, V. V., Holterman, A. X. & Wang, X. Transcription factors in liver development, differentiation, and regeneration. Hepatology 38, 1331-1347 (2003).
    • (2003) Hepatology , vol.38 , pp. 1331-1347
    • Costa, R.H.1    Kalinichenko, V.V.2    Holterman, A.X.3    Wang, X.4
  • 4
    • 33747370376 scopus 로고    scopus 로고
    • Plasticity and expanding complexity of the hepatic transcription factor network during liver development
    • Kyrmizi, I. et al. Plasticity and expanding complexity of the hepatic transcription factor network during liver development. Genes Dev. 20, 2293-2305 (2006).
    • (2006) Genes Dev. , vol.20 , pp. 2293-2305
    • Kyrmizi, I.1
  • 5
    • 84878550364 scopus 로고    scopus 로고
    • Splicing factor SRSF3 is crucial for hepatocyte differentiation and metabolic function
    • Sen, S., Jumaa, H. & Webster, N. J. Splicing factor SRSF3 is crucial for hepatocyte differentiation and metabolic function. Nat. Commun. 4, 1336 (2013).
    • (2013) Nat. Commun. , vol.4 , pp. 1336
    • Sen, S.1    Jumaa, H.2    Webster, N.J.3
  • 6
    • 79960961204 scopus 로고    scopus 로고
    • Expression of the splicing factor gene SFRS10 is reduced in human obesity and contributes to enhanced lipogenesis
    • Pihlajamaki, J. et al. Expression of the splicing factor gene SFRS10 is reduced in human obesity and contributes to enhanced lipogenesis. Cell Metab. 14, 208-218 (2011).
    • (2011) Cell Metab. , vol.14 , pp. 208-218
    • Pihlajamaki, J.1
  • 7
    • 84903759888 scopus 로고    scopus 로고
    • Splicing regulator SLU7 is essential for maintaining liver homeostasis
    • Elizalde, M. et al. Splicing regulator SLU7 is essential for maintaining liver homeostasis. J. Clin. Invest. 124, 2909-2920 (2014).
    • (2014) J. Clin. Invest. , vol.124 , pp. 2909-2920
    • Elizalde, M.1
  • 8
    • 0034718614 scopus 로고    scopus 로고
    • Alternative splicing of the rat sodium/bile acid transporter changes its cellular localization and transport properties
    • Lazaridis, K. N. et al. Alternative splicing of the rat sodium/bile acid transporter changes its cellular localization and transport properties. Proc. Natl. Acad. Sci. USA 97, 11092-11097 (2000).
    • (2000) Proc. Natl. Acad. Sci. USA , vol.97 , pp. 11092-11097
    • Lazaridis, K.N.1
  • 9
    • 4444312418 scopus 로고    scopus 로고
    • Nutritional regulation of mRNA processing
    • Salati, L. M. et al. Nutritional regulation of mRNA processing. J. Nutr. 134, 2437S-2443S (2004).
    • (2004) J. Nutr. , vol.134 , pp. 2437S-2443S
    • Salati, L.M.1
  • 10
    • 75849145292 scopus 로고    scopus 로고
    • Expansion of the eukaryotic proteome by alternative splicing
    • Nilsen, T. W. & Graveley, B. R. Expansion of the eukaryotic proteome by alternative splicing. Nature 463, 457-463 (2010).
    • (2010) Nature , vol.463 , pp. 457-463
    • Nilsen, T.W.1    Graveley, B.R.2
  • 11
    • 84930691710 scopus 로고    scopus 로고
    • Mechanisms and regulation of alternative pre-mRNA splicing
    • Lee, Y. & Rio, D. C. Mechanisms and regulation of alternative pre-mRNA splicing. Annu. Rev. Biochem. 84, 291-323 (2015).
    • (2015) Annu. Rev. Biochem. , vol.84 , pp. 291-323
    • Lee, Y.1    Rio, D.C.2
  • 12
    • 56749098074 scopus 로고    scopus 로고
    • Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing
    • Pan, Q., Shai, O., Lee, L. J., Frey, B. J. & Blencowe, B. J. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat. Genet. 40, 1413-1415 (2008).
    • (2008) Nat. Genet. , vol.40 , pp. 1413-1415
    • Pan, Q.1    Shai, O.2    Lee, L.J.3    Frey, B.J.4    Blencowe, B.J.5
  • 13
    • 56549101959 scopus 로고    scopus 로고
    • Alternative isoform regulation in human tissue transcriptomes
    • Wang, E. T. et al. Alternative isoform regulation in human tissue transcriptomes. Nature 456, 470-476 (2008).
    • (2008) Nature , vol.456 , pp. 470-476
    • Wang, E.T.1
  • 14
    • 80053027909 scopus 로고    scopus 로고
    • Functional consequences of developmentally regulated alternative splicing
    • Kalsotra, A. & Cooper, T. A. Functional consequences of developmentally regulated alternative splicing. Nat. Rev. Genet. 12, 715-729 (2011).
    • (2011) Nat. Rev. Genet. , vol.12 , pp. 715-729
    • Kalsotra, A.1    Cooper, T.A.2
  • 15
    • 0013394889 scopus 로고    scopus 로고
    • Mechanisms of alternative pre-messenger RNA splicing
    • Black, D. L. Mechanisms of alternative pre-messenger RNA splicing. Annu. Rev. Biochem. 72, 291-336 (2003).
    • (2003) Annu. Rev. Biochem. , vol.72 , pp. 291-336
    • Black, D.L.1
  • 16
    • 77952029221 scopus 로고    scopus 로고
    • Deciphering the splicing code
    • Barash, Y. et al. Deciphering the splicing code. Nature 465, 53-59 (2010).
    • (2010) Nature , vol.465 , pp. 53-59
    • Barash, Y.1
  • 17
    • 72849106592 scopus 로고    scopus 로고
    • RNA processing and its regulation: Global insights into biological networks
    • Licatalosi, D. D. & Darnell, R. B. RNA processing and its regulation: global insights into biological networks. Nat. Rev. Genet. 11, 75-87 (2010).
    • (2010) Nat. Rev. Genet. , vol.11 , pp. 75-87
    • Licatalosi, D.D.1    Darnell, R.B.2
  • 18
    • 84922255144 scopus 로고    scopus 로고
    • Context-dependent control of alternative splicing by RNA-binding proteins
    • Fu, X. D. & Ares, Jr. M. Context-dependent control of alternative splicing by RNA-binding proteins. Nat. Rev. Genet. 15, 689-701 (2014).
    • (2014) Nat. Rev. Genet. , vol.15 , pp. 689-701
    • Fu, X.D.1    Ares, M.2
  • 19
    • 18344364099 scopus 로고    scopus 로고
    • Understanding alternative splicing: Towards a cellular code
    • Matlin, A. J., Clark, F. & Smith, C. W. Understanding alternative splicing: towards a cellular code. Nat. Rev. Mol. Cell Biol. 6, 386-398 (2005).
    • (2005) Nat. Rev. Mol. Cell Biol. , vol.6 , pp. 386-398
    • Matlin, A.J.1    Clark, F.2    Smith, C.W.3
  • 20
    • 84864912095 scopus 로고    scopus 로고
    • Muscleblind-like 2-mediated alternative splicing in the developing brain and dysregulation in myotonic dystrophy
    • Charizanis, K. et al. Muscleblind-like 2-mediated alternative splicing in the developing brain and dysregulation in myotonic dystrophy. Neuron 75, 437-450 (2012).
    • (2012) Neuron , vol.75 , pp. 437-450
    • Charizanis, K.1
  • 21
    • 84926386137 scopus 로고    scopus 로고
    • Essential roles for the splicing regulator nSR100/SRRM4 during nervous system development
    • Quesnel-Vallieres, M., Irimia, M., Cordes, S. P. & Blencowe, B. J. Essential roles for the splicing regulator nSR100/SRRM4 during nervous system development. Genes Dev. 29, 746-759 (2015).
    • (2015) Genes Dev. , vol.29 , pp. 746-759
    • Quesnel-Vallieres, M.1    Irimia, M.2    Cordes, S.P.3    Blencowe, B.J.4
  • 22
    • 23044431574 scopus 로고    scopus 로고
    • Nova regulates brain-specific splicing to shape the synapse
    • Ule, J. et al. Nova regulates brain-specific splicing to shape the synapse. Nat. Genet. 37, 844-852 (2005).
    • (2005) Nat. Genet. , vol.37 , pp. 844-852
    • Ule, J.1
  • 23
    • 84857803861 scopus 로고    scopus 로고
    • The splicing regulator Rbfox2 is required for both cerebellar development and mature motor function
    • Gehman, L. T. et al. The splicing regulator Rbfox2 is required for both cerebellar development and mature motor function. Genes Dev. 26, 445-460 (2012).
    • (2012) Genes Dev. , vol.26 , pp. 445-460
    • Gehman, L.T.1
  • 24
    • 69449093703 scopus 로고    scopus 로고
    • Regulation of vertebrate nervous system alternative splicing and development by an SR-related protein
    • Calarco, J. A. et al. Regulation of vertebrate nervous system alternative splicing and development by an SR-related protein. Cell 138, 898-910 (2009).
    • (2009) Cell , vol.138 , pp. 898-910
    • Calarco, J.A.1
  • 25
    • 84898747945 scopus 로고    scopus 로고
    • The splicing regulator PTBP2 controls a program of embryonic splicing required for neuronal maturation
    • Li, Q. et al. The splicing regulator PTBP2 controls a program of embryonic splicing required for neuronal maturation. eLife 3, e01201 (2014).
    • (2014) ELife , vol.3 , pp. e01201
    • Li, Q.1
  • 26
    • 58149492467 scopus 로고    scopus 로고
    • A postnatal switch of CELF and MBNL proteins reprograms alternative splicing in the developing heart
    • Kalsotra, A. et al. A postnatal switch of CELF and MBNL proteins reprograms alternative splicing in the developing heart. Proc. Natl. Acad. Sci. USA 105, 20333-20338 (2008).
    • (2008) Proc. Natl. Acad. Sci. USA , vol.105 , pp. 20333-20338
    • Kalsotra, A.1
  • 27
    • 19944427655 scopus 로고    scopus 로고
    • ASF/SF2-regulated CaMKIIdelta alternative splicing temporally reprograms excitation-contraction coupling in cardiac muscle
    • Xu, X. et al. ASF/SF2-regulated CaMKIIdelta alternative splicing temporally reprograms excitation-contraction coupling in cardiac muscle. Cell 120, 59-72 (2005).
    • (2005) Cell , vol.120 , pp. 59-72
    • Xu, X.1
  • 28
    • 84860667942 scopus 로고    scopus 로고
    • RBM20, a gene for hereditary cardiomyopathy, regulates titin splicing
    • Guo, W. et al. RBM20, a gene for hereditary cardiomyopathy, regulates titin splicing. Nat. Med. 18, 766-773 (2012).
    • (2012) Nat. Med. , vol.18 , pp. 766-773
    • Guo, W.1
  • 29
    • 84899084487 scopus 로고    scopus 로고
    • Alternative splicing regulates vesicular trafficking genes in cardiomyocytes during postnatal heart development
    • Giudice, J. et al. Alternative splicing regulates vesicular trafficking genes in cardiomyocytes during postnatal heart development. Nat. Commun. 5, 3603 (2014).
    • (2014) Nat. Commun. , vol.5 , pp. 3603
    • Giudice, J.1
  • 30
    • 64549159302 scopus 로고    scopus 로고
    • SRp38 regulates alternative splicing and is required for Ca(2+) handling in the embryonic heart
    • Feng, Y. et al. SRp38 regulates alternative splicing and is required for Ca(2+) handling in the embryonic heart. Dev. Cell 16, 528-538 (2009).
    • (2009) Dev. Cell , vol.16 , pp. 528-538
    • Feng, Y.1
  • 31
    • 84924631336 scopus 로고    scopus 로고
    • Repression of the central splicing regulator RBFox2 is functionally linked to pressure overload-induced heart failure
    • Wei, C. et al. Repression of the central splicing regulator RBFox2 is functionally linked to pressure overload-induced heart failure. Cell Rep. 10, 1435-1638 (2015).
    • (2015) Cell Rep. , vol.10 , pp. 1435-1638
    • Wei, C.1
  • 32
    • 77950513681 scopus 로고    scopus 로고
    • MicroRNAs coordinate an alternative splicing network during mouse postnatal heart development
    • Kalsotra, A., Wang, K., Li, P. F. & Cooper, T. A. MicroRNAs coordinate an alternative splicing network during mouse postnatal heart development. Genes Dev. 24, 653-658 (2010).
    • (2010) Genes Dev. , vol.24 , pp. 653-658
    • Kalsotra, A.1    Wang, K.2    Li, P.F.3    Cooper, T.A.4
  • 33
    • 84906791713 scopus 로고    scopus 로고
    • Rbfox2-coordinated alternative splicing of Mef2d and Rock2 controls myoblast fusion during myogenesis
    • Singh, R. K. et al. Rbfox2-coordinated alternative splicing of Mef2d and Rock2 controls myoblast fusion during myogenesis. Mol. Cell 55, 592-603 (2014).
    • (2014) Mol. Cell , vol.55 , pp. 592-603
    • Singh, R.K.1
  • 34
    • 84876512920 scopus 로고    scopus 로고
    • Quaking and PTB control overlapping splicing regulatory networks during muscle cell differentiation
    • Hall, M. P. et al. Quaking and PTB control overlapping splicing regulatory networks during muscle cell differentiation. RNA 19, 627-638 (2013).
    • (2013) RNA , vol.19 , pp. 627-638
    • Hall, M.P.1
  • 35
    • 33846135109 scopus 로고    scopus 로고
    • MicroRNAs regulate the expression of the alternative splicing factor nPTB during muscle development
    • Boutz, P. L., Chawla, G., Stoilov, P. & Black, D. L. MicroRNAs regulate the expression of the alternative splicing factor nPTB during muscle development. Genes Dev. 21, 71-84 (2007).
    • (2007) Genes Dev. , vol.21 , pp. 71-84
    • Boutz, P.L.1    Chawla, G.2    Stoilov, P.3    Black, D.L.4
  • 36
    • 33745248133 scopus 로고    scopus 로고
    • Failure of MBNL1-dependent post-natal splicing transitions in myotonic dystrophy
    • Lin, X. et al. Failure of MBNL1-dependent post-natal splicing transitions in myotonic dystrophy. Hum. Mol. Genet. 15, 2087-2097 (2006).
    • (2006) Hum. Mol. Genet. , vol.15 , pp. 2087-2097
    • Lin, X.1
  • 37
    • 84907976655 scopus 로고    scopus 로고
    • RBM24 is a major regulator of muscle-specific alternative splicing
    • Yang, J. et al. RBM24 is a major regulator of muscle-specific alternative splicing. Dev. Cell 31, 87-99 (2014).
    • (2014) Dev. Cell , vol.31 , pp. 87-99
    • Yang, J.1
  • 38
    • 84928691633 scopus 로고    scopus 로고
    • Induced transcription and stability of CELF2 mRNA drives widespread alternative splicing during T-cell signaling
    • Mallory, M. J. et al. Induced transcription and stability of CELF2 mRNA drives widespread alternative splicing during T-cell signaling. Proc. Natl. Acad. Sci. USA 112, E2139-E2148 (2015).
    • (2015) Proc. Natl. Acad. Sci. USA , vol.112 , pp. E2139-E2148
    • Mallory, M.J.1
  • 39
    • 74749089043 scopus 로고    scopus 로고
    • Context-dependent regulatory mechanism of the splicing factor hnRNP L
    • Motta-Mena, L. B., Heyd, F. & Lynch, K. W. Context-dependent regulatory mechanism of the splicing factor hnRNP L. Mol. Cell 37, 223-234 (2010).
    • (2010) Mol. Cell , vol.37 , pp. 223-234
    • Motta-Mena, L.B.1    Heyd, F.2    Lynch, K.W.3
  • 40
    • 48749100692 scopus 로고    scopus 로고
    • Regulation of CD45 alternative splicing by heterogeneous ribonucleoprotein, hnRNPLL
    • Oberdoerffer, S. et al. Regulation of CD45 alternative splicing by heterogeneous ribonucleoprotein, hnRNPLL. Science 321, 686-691 (2008).
    • (2008) Science , vol.321 , pp. 686-691
    • Oberdoerffer, S.1
  • 41
    • 84861302942 scopus 로고    scopus 로고
    • Genome-wide determination of a broad ESRP-regulated posttranscriptional network by high-throughput sequencing
    • Dittmar, K. A. et al. Genome-wide determination of a broad ESRP-regulated posttranscriptional network by high-throughput sequencing. Mol. Cell Biol. 32, 1468-1482 (2012).
    • (2012) Mol. Cell Biol. , vol.32 , pp. 1468-1482
    • Dittmar, K.A.1
  • 42
    • 77957767273 scopus 로고    scopus 로고
    • An ESRP-regulated splicing programme is abrogated during the epithelial-mesenchymal transition
    • Warzecha, C. C. et al. An ESRP-regulated splicing programme is abrogated during the epithelial-mesenchymal transition. EMBO J. 29, 3286-3300 (2010).
    • (2010) EMBO J. , vol.29 , pp. 3286-3300
    • Warzecha, C.C.1
  • 43
    • 61649087689 scopus 로고    scopus 로고
    • ESRP1 and ESRP2 are epithelial cell-type-specific regulators of FGFR2 splicing
    • Warzecha, C. C., Sato, T. K., Nabet, B., Hogenesch, J. B. & Carstens, R. P. ESRP1 and ESRP2 are epithelial cell-type-specific regulators of FGFR2 splicing. Mol. Cell 33, 591-601 (2009).
    • (2009) Mol. Cell , vol.33 , pp. 591-601
    • Warzecha, C.C.1    Sato, T.K.2    Nabet, B.3    Hogenesch, J.B.4    Carstens, R.P.5
  • 44
    • 0024336445 scopus 로고
    • Functional specialization of different hepatocyte populations
    • Jungermann, K. & Katz, N. Functional specialization of different hepatocyte populations. Physiol. Rev. 69, 708-764 (1989).
    • (1989) Physiol. Rev. , vol.69 , pp. 708-764
    • Jungermann, K.1    Katz, N.2
  • 45
    • 84879408529 scopus 로고    scopus 로고
    • Alternative cleavage and polyadenylation: Extent, regulation and function
    • Elkon, R., Ugalde, A. P. & Agami, R. Alternative cleavage and polyadenylation: extent, regulation and function. Nat. Rev. Genet. 14, 496-506 (2013).
    • (2013) Nat. Rev. Genet. , vol.14 , pp. 496-506
    • Elkon, R.1    Ugalde, A.P.2    Agami, R.3
  • 46
    • 84887053121 scopus 로고    scopus 로고
    • Ubiquitously transcribed genes use alternative polyadenylation to achieve tissue-specific expression
    • Lianoglou, S., Garg, V., Yang, J. L., Leslie, C. S. & Mayr, C. Ubiquitously transcribed genes use alternative polyadenylation to achieve tissue-specific expression. Genes Dev. 27, 2380-2396 (2013).
    • (2013) Genes Dev. , vol.27 , pp. 2380-2396
    • Lianoglou, S.1    Garg, V.2    Yang, J.L.3    Leslie, C.S.4    Mayr, C.5
  • 47
    • 0038482108 scopus 로고    scopus 로고
    • Liver cell polyploidization: A pivotal role for binuclear hepatocytes
    • Guidotti, J. E. et al. Liver cell polyploidization: a pivotal role for binuclear hepatocytes. J. Biol. Chem. 278, 19095-19101 (2003).
    • (2003) J. Biol. Chem. , vol.278 , pp. 19095-19101
    • Guidotti, J.E.1
  • 48
    • 0026537433 scopus 로고
    • Adaptations of glucose and fatty acid metabolism during perinatal period and suckling-weaning transition
    • Girard, J., Ferre, P., Pegorier, J. P. & Duee, P. H. Adaptations of glucose and fatty acid metabolism during perinatal period and suckling-weaning transition. Physiol. Rev. 72, 507-562 (1992).
    • (1992) Physiol. Rev. , vol.72 , pp. 507-562
    • Girard, J.1    Ferre, P.2    Pegorier, J.P.3    Duee, P.H.4
  • 49
    • 84929493518 scopus 로고    scopus 로고
    • Role of precursor mRNA splicing in nutrient-induced alterations in gene expression and metabolism
    • Ravi, S., Schilder, R. J. & Kimball, S. R. Role of precursor mRNA splicing in nutrient-induced alterations in gene expression and metabolism. J. Nutr. 145, 841-846 (2015).
    • (2015) J. Nutr. , vol.145 , pp. 841-846
    • Ravi, S.1    Schilder, R.J.2    Kimball, S.R.3
  • 51
    • 84859852225 scopus 로고    scopus 로고
    • Growth control by committee: Intercellular junctions, cell polarity, and the cytoskeleton regulate Hippo signaling
    • Boggiano, J. C. & Fehon, R. G. Growth control by committee: intercellular junctions, cell polarity, and the cytoskeleton regulate Hippo signaling. Dev. Cell 22, 695-702 (2012).
    • (2012) Dev. Cell , vol.22 , pp. 695-702
    • Boggiano, J.C.1    Fehon, R.G.2
  • 52
    • 84905364059 scopus 로고    scopus 로고
    • Rho guanine nucleotide exchange factors: Regulators of Rho GTPase activity in development and disease
    • Cook, D. R., Rossman, K. L. & Der, C. J. Rho guanine nucleotide exchange factors: regulators of Rho GTPase activity in development and disease. Oncogene 33, 4021-4035 (2014).
    • (2014) Oncogene , vol.33 , pp. 4021-4035
    • Cook, D.R.1    Rossman, K.L.2    Der, C.J.3
  • 53
    • 52449095361 scopus 로고    scopus 로고
    • The RSK family of kinases: Emerging roles in cellular signalling
    • Anjum, R. & Blenis, J. The RSK family of kinases: emerging roles in cellular signalling. Nat. Rev. Mol. Cell Biol. 9, 747-758 (2008).
    • (2008) Nat. Rev. Mol. Cell Biol. , vol.9 , pp. 747-758
    • Anjum, R.1    Blenis, J.2
  • 54
    • 84855320189 scopus 로고    scopus 로고
    • Accurate identification of A-to-I RNA editing in human by transcriptome sequencing
    • Bahn, J. H. et al. Accurate identification of A-to-I RNA editing in human by transcriptome sequencing. Genome Res. 22, 142-150 (2012).
    • (2012) Genome Res. , vol.22 , pp. 142-150
    • Bahn, J.H.1
  • 55
    • 84864453922 scopus 로고    scopus 로고
    • Identification of allele-specific alternative mRNA processing via transcriptome sequencing
    • Li, G. et al. Identification of allele-specific alternative mRNA processing via transcriptome sequencing. Nucleic Acids Res. 40, e104 (2012).
    • (2012) Nucleic Acids Res. , vol.40 , pp. e104
    • Li, G.1
  • 56
    • 77958471357 scopus 로고    scopus 로고
    • Differential expression analysis for sequence count data
    • Anders, S. & Huber, W. Differential expression analysis for sequence count data. Genome Biol. 11, R106 (2010).
    • (2010) Genome Biol. , vol.11 , pp. R106
    • Anders, S.1    Huber, W.2
  • 57
    • 84860385776 scopus 로고    scopus 로고
    • MATS: A Bayesian framework for flexible detection of differential alternative splicing from RNA-Seq data
    • Shen, S. et al. MATS: a Bayesian framework for flexible detection of differential alternative splicing from RNA-Seq data. Nucleic Acids Res. 40, e61 (2012).
    • (2012) Nucleic Acids Res. , vol.40 , pp. e61
    • Shen, S.1
  • 58
    • 38849149795 scopus 로고    scopus 로고
    • 28-way vertebrate alignment and conservation track in the UCSC Genome Browser
    • Miller, W. et al. 28-way vertebrate alignment and conservation track in the UCSC Genome Browser. Genome Res. 17, 1797-1808 (2007).
    • (2007) Genome Res. , vol.17 , pp. 1797-1808
    • Miller, W.1
  • 59
    • 61449172037 scopus 로고    scopus 로고
    • Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources
    • Huang da, W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44-57 (2009).
    • (2009) Nat. Protoc. , vol.4 , pp. 44-57
    • Huang Da, W.1    Sherman, B.T.2    Lempicki, R.A.3
  • 60
    • 64549104807 scopus 로고    scopus 로고
    • ClueGO: A Cytoscape plug-in to decipher functionally grouped gene ontology annotation networks
    • Bindea, G. et al. ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology annotation networks. Bioinformatics 25, 1091-1093 (2009).
    • (2009) Bioinformatics , vol.25 , pp. 1091-1093
    • Bindea, G.1
  • 62
    • 77952972412 scopus 로고    scopus 로고
    • Isolation and culture of adult mouse hepatocytes
    • Li, W. C., Ralphs, K. L. & Tosh, D. Isolation and culture of adult mouse hepatocytes. Methods Mol. Biol. 633, 185-196 (2010).
    • (2010) Methods Mol. Biol. , vol.633 , pp. 185-196
    • Li, W.C.1    Ralphs, K.L.2    Tosh, D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.