메뉴 건너뛰기




Volumn 13, Issue 2, 2012, Pages 131-138

Optimizing radial basis function neural network based on rough sets and affinity propagation clustering algorithm

Author keywords

Affinity propagation; Clustering; Radial basis function neural network (RBFNN); Rough sets

Indexed keywords

AFFINITY PROPAGATION; ATTRIBUTE REDUCTION; CLUSTERING; CONVENTIONAL METHODS; DATA SETS; GENERALIZATION CAPABILITY; HIDDEN LAYERS; INPUT LAYERS; LEAST SQUARE METHODS; NUMBER OF CLUSTERS; OUTPUT LAYER; PRIORI KNOWLEDGE; RADIAL BASIS FUNCTION NEURAL NETWORKS; ROUGH SET;

EID: 84860763426     PISSN: 18691951     EISSN: 1869196X     Source Type: Journal    
DOI: 10.1631/jzus.C1100176     Document Type: Article
Times cited : (25)

References (24)
  • 1
    • 77957910156 scopus 로고    scopus 로고
    • Stable modeling based control methods using a new RBF network
    • [doi:10.1016/j.isatra.2010.04.005]
    • Beyhan, S., Alci, M., 2010. Stable modeling based control methods using a new RBF network. ISA Trans., 49(4): 510-518. [doi:10.1016/j.isatra.2010.04.005]
    • (2010) ISA Trans. , vol.49 , Issue.4 , pp. 510-518
    • Beyhan, S.1    Alci, M.2
  • 2
    • 0003408496 scopus 로고    scopus 로고
    • Irvine, CA, [Accessed on Sept. 23, 2011]
    • Blake, C.L., Merz, C.J., 1998. UCI Repository of Machine Learning Databases, 1998. Department of Information and Computer Science, University of California, Irvine, CA. Available from http://www.ics.uci.edu/mlearn/ Machine-Learning.html [Accessed on Sept. 23, 2011].
    • (1998) UCI Repository of Machine Learning Databases, 1998
    • Blake, C.L.1    Merz, C.J.2
  • 3
    • 0026116468 scopus 로고
    • Orthogonal least squares learning algorithm for radial basis function networks
    • [doi:10.1109/72.80341]
    • Chen, S., Cowan, C.F.N., Grant, P.M., 1991. Orthogonal least squares learning algorithm for radial basis function networks. IEEE Trans. Neur. Network, 2(2):302-309. [doi:10.1109/72.80341]
    • (1991) IEEE Trans. Neur. Network , vol.2 , Issue.2 , pp. 302-309
    • Chen, S.1    Cowan, C.F.N.2    Grant, P.M.3
  • 4
    • 70449520177 scopus 로고    scopus 로고
    • A hybrid forecast marketing timing model based on probabilistic neural network, rough set and C4.5
    • [doi:10.1016/j.eswa.2009.07.019]
    • Cheng, J.H., Chen, H.P., Lin, Y.M., 2010. A hybrid forecast marketing timing model based on probabilistic neural network, rough set and C4.5. Exp. Syst. Appl., 37(3): 1814-1820. [doi:10.1016/j.eswa.2009.07.019]
    • (2010) Exp. Syst. Appl. , vol.37 , Issue.3 , pp. 1814-1820
    • Cheng, J.H.1    Chen, H.P.2    Lin, Y.M.3
  • 5
    • 77958074263 scopus 로고    scopus 로고
    • A RBF neural network model with GARCH errors: Application to electricity price forecasting
    • [doi:10.1016/j.epsr.2010.07.015]
    • Coelho, L.S., Santos, A.A.P., 2011. A RBF neural network model with GARCH errors: application to electricity price forecasting. Electr. Power Syst. Res., 81(1):74-83.[doi:10.1016/j.epsr.2010.07.015]
    • (2011) Electr. Power Syst. Res. , vol.81 , Issue.1 , pp. 74-83
    • Coelho, L.S.1    Santos, A.A.P.2
  • 6
    • 56849119544 scopus 로고    scopus 로고
    • Radial-basis-function neural network based on fast recursive algorithm and its application
    • Du, D.J., Fei, M.R., Li, L.X., 2008. Radial-basis-function neural network based on fast recursive algorithm and its application. Control Theory Appl., 25(5):827-830.
    • (2008) Control Theory Appl. , vol.25 , Issue.5 , pp. 827-830
    • Du, D.J.1    Fei, M.R.2    Li, L.X.3
  • 7
    • 77952485893 scopus 로고    scopus 로고
    • A fast multi-output RBF neural network construction method
    • [doi:10.1016/j.neucom.2010.01.014]
    • Du, D.J., Li, K., Fei, M.R., 2010. A fast multi-output RBF neural network construction method. Neurocomputing, 73(10-12):2196-2202. [doi:10.1016/j. neucom.2010.01.014]
    • (2010) Neurocomputing , vol.73 , Issue.10-12 , pp. 2196-2202
    • Du, D.J.1    Li, K.2    Fei, M.R.3
  • 8
    • 33847172327 scopus 로고    scopus 로고
    • Clustering by passing messages between data points
    • DOI 10.1126/science.1136800
    • Frey, B.J., Dueck, D., 2007. Clustering by passing messages between data points. Science, 315(5814):972-976. [doi: 10.1126/science.1136800] (Pubitemid 46281181)
    • (2007) Science , vol.315 , Issue.5814 , pp. 972-976
    • Frey, B.J.1    Dueck, D.2
  • 9
    • 35248838920 scopus 로고    scopus 로고
    • Multi-step ahead nonlinear identification of Lorenz's chaotic system using radial basis neural network with learning by clustering and particle swarm optimization
    • DOI 10.1016/j.chaos.2006.05.077, PII S0960077906005443
    • Guerra, A.F., Coelho, L., 2008. Multi-step ahead nonlinear identification of Lorenz's chaotic system using radial basis neural network with learning by clustering and particle swarm optimization. Chaos Sol. Fract., 35(5): 967-979. [doi:10.1016/j.chaos.2006.05.077] (Pubitemid 47562758)
    • (2008) Chaos, Solitons and Fractals , vol.35 , Issue.5 , pp. 967-979
    • Guerra, F.A.1    Coelho, L.D.S.2
  • 10
    • 78751613684 scopus 로고    scopus 로고
    • The multidimensional function approximation based on constructive wavelet RBF neural network
    • [doi:10.1016/j.asoc.2010.07.016]
    • Hou, M.Z., Han, X.L., 2011. The multidimensional function approximation based on constructive wavelet RBF neural network. Appl. Soft Comput., 11(2):2173-2177. [doi:10.1016/j.asoc.2010.07.016]
    • (2011) Appl. Soft Comput. , vol.11 , Issue.2 , pp. 2173-2177
    • Hou, M.Z.1    Han, X.L.2
  • 11
    • 77949267118 scopus 로고    scopus 로고
    • Power quality disturbance classification using Hilbert transform and RBF networks
    • [doi:10.1016/j.neucom.2009.11.008]
    • Jayasree, T., Devaraj, D., Sukanesh, R., 2010. Power quality disturbance classification using Hilbert transform and RBF networks. Neurocomputing, 73(7-9):1451-1456. [doi:10.1016/j.neucom.2009.11.008]
    • (2010) Neurocomputing , vol.73 , Issue.7-9 , pp. 1451-1456
    • Jayasree, T.1    Devaraj, D.2    Sukanesh, R.3
  • 12
    • 56449087271 scopus 로고    scopus 로고
    • A novel face recognition approach based on kernel discriminative common vectors (KDCV) feature extraction and RBF neural network
    • [doi:10.1016/j.neucom.2007.08.027]
    • Jing, X.Y., Yao, Y.F., Yang, J.Y., Zhang, D., 2008. A novel face recognition approach based on kernel discriminative common vectors (KDCV) feature extraction and RBF neural network. Neurocomputing, 71(13-15):3044-3048. [doi:10.1016/j.neucom.2007.08.027]
    • (2008) Neurocomputing , vol.71 , Issue.13-15 , pp. 3044-3048
    • Jing, X.Y.1    Yao, Y.F.2    Yang, J.Y.3    Zhang, D.4
  • 13
    • 70449528756 scopus 로고    scopus 로고
    • Time series prediction using RBF neural networks with a nonlinear time-varying evolution PSO algorithm
    • [doi:10.1016/j.neucom.2009.07.005]
    • Lee, C.M., Ko, C.N., 2009. Time series prediction using RBF neural networks with a nonlinear time-varying evolution PSO algorithm. Neurocomputing, 73(1-3):449-460. [doi:10.1016/j.neucom.2009.07.005]
    • (2009) Neurocomputing , vol.73 , Issue.1-3 , pp. 449-460
    • Lee, C.M.1    Ko, C.N.2
  • 14
    • 0036740269 scopus 로고    scopus 로고
    • RBF neural network center selection based on Fisher ratio class separability measure
    • [doi:10.1109/TNN.2002.1031953]
    • Mao, K.Z., 2002. RBF neural network center selection based on Fisher ratio class separability measure. IEEE Trans. Neur. Networks, 13(5):1211-1217. [doi:10.1109/TNN.2002.1031953]
    • (2002) IEEE Trans. Neur. Networks , vol.13 , Issue.5 , pp. 1211-1217
    • Mao, K.Z.1
  • 15
    • 28244449236 scopus 로고    scopus 로고
    • Neuron selection for RBF neural network classifier based on data structure preserving criterion
    • DOI 10.1109/TNN.2005.853575
    • Mao, K.Z., Huang, G.B., 2005. Neuron selection for RBF neural network classifier based on data structure preserving criterion. IEEE Trans. Neur. Networks, 16(6): 1531-1540. [doi:10.1109/TNN.2005.853575] (Pubitemid 41709649)
    • (2005) IEEE Transactions on Neural Networks , vol.16 , Issue.6 , pp. 1531-1540
    • Mao, K.Z.1    Huang, G.-B.2
  • 16
    • 79951949969 scopus 로고    scopus 로고
    • Design of information granule-oriented RBF neural networks and its application to power supply for high-field magnet
    • [doi:10.1016/j.engappai.2010.11.001]
    • Park, H.S., Chung, Y.D., Oh, S.K., Pedrycz, W., Kim, H.K., 2011. Design of information granule-oriented RBF neural networks and its application to power supply for high-field magnet. Eng. Appl. Artif. Intell., 24(3):543-554. [doi:10.1016/j.engappai.2010.11.001]
    • (2011) Eng. Appl. Artif. Intell. , vol.24 , Issue.3 , pp. 543-554
    • Park, H.S.1    Chung, Y.D.2    Oh, S.K.3    Pedrycz, W.4    Kim, H.K.5
  • 18
    • 61849167996 scopus 로고    scopus 로고
    • Application of GA-RBF networks to the nondestructive determination of active component in pharmaceutical powder by NIR spectroscopy
    • [doi:10.1016/j.jtice.2008.08.002]
    • Qu, N., Mi, H., Wang, B., Ren, Y.L., 2009. Application of GA-RBF networks to the nondestructive determination of active component in pharmaceutical powder by NIR spectroscopy. J. Taiwan Inst. Chem. Eng., 40(2):162-167. [doi:10.1016/j.jtice.2008.08.002]
    • (2009) J. Taiwan Inst. Chem. Eng. , vol.40 , Issue.2 , pp. 162-167
    • Qu, N.1    Mi, H.2    Wang, B.3    Ren, Y.L.4
  • 19
    • 79551685695 scopus 로고    scopus 로고
    • Forecasting stock indices using radial basis function neural networks optimized by artificial fish swarm algorithm
    • [doi:10.1016/j.knosys.2010.11.001]
    • Shen, W., Guo, X.P., Wu, C., Wu, D.S., 2011. Forecasting stock indices using radial basis function neural networks optimized by artificial fish swarm algorithm. Knowl-Based Syst., 24(3):378-385. [doi:10.1016/j.knosys.2010.11.001]
    • (2011) Knowl-Based Syst. , vol.24 , Issue.3 , pp. 378-385
    • Shen, W.1    Guo, X.P.2    Wu, C.3    Wu, D.S.4
  • 20
    • 67650609880 scopus 로고    scopus 로고
    • Erroneous measurement detection in substation automation system using OLS based RBF neural network
    • [doi:10.1016/j.ijepes.2009.03.008]
    • Su, S., Duan, X.Z., Chan, W.L., Li, Z.H., 2009. Erroneous measurement detection in substation automation system using OLS based RBF neural network. Int. J. Electr. Power Energy Syst., 31(7-8):351-355. [doi:10.1016/j.ijepes.2009. 03.008]
    • (2009) Int. J. Electr. Power Energy Syst. , vol.31 , Issue.7-8 , pp. 351-355
    • Su, S.1    Duan, X.Z.2    Chan, W.L.3    Li, Z.H.4
  • 21
    • 40049107015 scopus 로고    scopus 로고
    • Predictive control of SOFC based on a GA-RBF neural network model
    • [doi:10.1016/j.jpowsour.2007.12.036]
    • Wu, X.J., Zhu, X.J., Cao, G.Y., Tu, H.Y., 2008. Predictive control of SOFC based on a GA-RBF neural network model. J. Power Sources, 179(1):232-239. [doi:10.1016/j.jpowsour.2007.12.036]
    • (2008) J. Power Sources , vol.179 , Issue.1 , pp. 232-239
    • Wu, X.J.1    Zhu, X.J.2    Cao, G.Y.3    Tu, H.Y.4
  • 22
    • 54249109459 scopus 로고    scopus 로고
    • Local and global approaches of affinity propagation clustering for large scale data
    • [doi:10.1631/jzus.A0720058]
    • Xia, D.Y., Wu, F., Zhang, X.Q., Zhuang, Y.T., 2008. Local and global approaches of affinity propagation clustering for large scale data. J. Zhejiang Univ.-Sci. A, 9(10):1373-1381. [doi:10.1631/jzus.A0720058]
    • (2008) J. Zhejiang Univ.-Sci. A , vol.9 , Issue.10 , pp. 1373-1381
    • Xia, D.Y.1    Wu, F.2    Zhang, X.Q.3    Zhuang, Y.T.4
  • 23
    • 0031170740 scopus 로고    scopus 로고
    • A recursive orthogonal least squares algorithm for training RBF networks
    • Yu, D.L., Gomm, J.B., Williams, D., 1997. A recursive orthogonal least squares algorithm for training RBF networks. Neur. Process. Lett., 5(3):167-176. [doi:10.1023/A:1009622226531] (Pubitemid 127505506)
    • (1997) Neural Processing Letters , vol.5 , Issue.3 , pp. 167-176
    • Yu, D.L.1    Gomm, J.B.2    Williams, D.3
  • 24
    • 4944239007 scopus 로고    scopus 로고
    • RBF neural networks for the prediction of building interference effects
    • [doi:10.1016/j.compstruc.2004.05.014]
    • Zhang, A.S., Zhang, L., 2004. RBF neural networks for the prediction of building interference effects. Comput. Struct., 82(27):2333-2339. [doi:10.1016/j.compstruc.2004.05.014]
    • (2004) Comput. Struct. , vol.82 , Issue.27 , pp. 2333-2339
    • Zhang, A.S.1    Zhang, L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.