-
1
-
-
76249131385
-
Challenges for rechargeable Li batteries†
-
Goodenough J B, Kim Y. Challenges for rechargeable Li batteries†. Chem Mater, 2010, 22: 587–603
-
(2010)
Chem Mater
, vol.22
, pp. 587-603
-
-
Goodenough, J.B.1
Kim, Y.2
-
2
-
-
17644387736
-
Nanostructured materials for advanced energy conversion and storage devices
-
Arico A S, Bruce P, Scrosati B, et al. Nanostructured materials for advanced energy conversion and storage devices. Nat Mater, 2005, 4: 366–377
-
(2005)
Nat Mater
, vol.4
, pp. 366-377
-
-
Arico, A.S.1
Bruce, P.2
Scrosati, B.3
-
3
-
-
84877687451
-
Metal oxides and oxysalts as anode materials for Li ion batteries
-
Reddy M V, Subba Rao G V, Chowdari B V. Metal oxides and oxysalts as anode materials for Li ion batteries. Chem Rev, 2013, 113: 5364–5457
-
(2013)
Chem Rev
, vol.113
, pp. 5364-5457
-
-
Reddy, M.V.S.1
Rao, G.V.2
Chowdari, B.V.3
-
4
-
-
7644220712
-
Lithium batteries and cathode materials
-
Whittingham M S. Lithium batteries and cathode materials. Chem Rev, 2004, 104: 4271–4302
-
(2004)
Chem Rev
, vol.104
, pp. 4271-4302
-
-
Whittingham, M.S.1
-
5
-
-
84855393828
-
Graphene-based composites
-
Huang X, Qi X, Boey F, et al. Graphene-based composites. Chem Soc Rev, 2012, 41: 666–686
-
(2012)
Chem Soc Rev
, vol.41
, pp. 666-686
-
-
Huang, X.1
Qi, X.2
Boey, F.3
-
6
-
-
84922186968
-
Beyond graphene: materials chemistry toward high performance inorganic functional materials
-
Chen K, Song S, Xue D. Beyond graphene: materials chemistry toward high performance inorganic functional materials. J Mater Chem A, 2015, 3: 2441–2453
-
(2015)
J Mater Chem A
, vol.3
, pp. 2441-2453
-
-
Chen, K.1
Song, S.2
Xue, D.3
-
7
-
-
84939865403
-
Structural design of graphene for use in electrochemical energy storage devices
-
Chen K, Song S, Liu F, et al. Structural design of graphene for use in electrochemical energy storage devices. Chem Soc Rev, 2015, 44: 6230–6257
-
(2015)
Chem Soc Rev
, vol.44
, pp. 6230-6257
-
-
Chen, K.1
Song, S.2
Liu, F.3
-
8
-
-
84916614063
-
Morphology engineering of high performance binary oxide electrodes
-
Chen K, Sun C, Xue D. Morphology engineering of high performance binary oxide electrodes. Phys Chem Chem Phys, 2015, 17: 732–750
-
(2015)
Phys Chem Chem Phys
, vol.17
, pp. 732-750
-
-
Chen, K.1
Sun, C.2
Xue, D.3
-
9
-
-
84941570322
-
Chemical reaction and crystallization control on electrode materials for electrochemical energy storage (in Chinese)
-
Chen K, Xue D. Chemical reaction and crystallization control on electrode materials for electrochemical energy storage (in Chinese). Sci Sin Tech, 2015, 45: 36–49
-
(2015)
Sci Sin Tech
, vol.45
, pp. 36-49
-
-
Chen, K.1
Xue, D.2
-
10
-
-
84926015492
-
Study on the crystallization process of function inorganic crystal materials (in Chinese)
-
Sun C, Xue D. Study on the crystallization process of function inorganic crystal materials (in Chinese). Sci Sin Tech, 2014, 44: 1123–1236
-
(2014)
Sci Sin Tech
, vol.44
, pp. 1123-1236
-
-
Sun, C.1
Xue, D.2
-
11
-
-
84902170448
-
An ionic aqueous pseudocapacitor system: Electroactive ions in both a salt electrode and redox electrolyte
-
Chen K, Song S, Xue D. An ionic aqueous pseudocapacitor system: Electroactive ions in both a salt electrode and redox electrolyte. RSC Adv, 2014, 4: 23338–22343
-
(2014)
RSC Adv
, vol.4
, pp. 22343-23338
-
-
Chen, K.1
Song, S.2
Xue, D.3
-
12
-
-
84878073802
-
Graphene-based electrodes for electrochemical energy storage
-
Xu C, Xu B, Gu Y, et al. Graphene-based electrodes for electrochemical energy storage. Energy Environ Sci, 2013, 6: 1388
-
(2013)
Energy Environ Sci
, vol.6
, pp. 1388
-
-
Xu, C.1
Xu, B.2
Gu, Y.3
-
15
-
-
84901228867
-
Application prospects of high-voltage cathode materials in all-solid-state lithium-ion batteries
-
Tian J, Jin Y, Guan Y, et al. Application prospects of high-voltage cathode materials in all-solid-state lithium-ion batteries. Chin Sci Bull, 2014, 59: 1950–1963
-
(2014)
Chin Sci Bull
, vol.59
, pp. 1950-1963
-
-
Tian, J.1
Jin, Y.2
Guan, Y.3
-
17
-
-
2142852918
-
4 by Cr doping and its identification by first-principles calculations
-
4 by Cr doping and its identification by first-principles calculations. Phys Rev B, 2003, 68: 195108
-
(2003)
Phys Rev B
, vol.68
, pp. 195108
-
-
Shi, S.1
Liu, L.2
Ouyang, C.3
-
18
-
-
0030195385
-
An electrochemical investigation into the lithium insertion properties of LixCoO2
-
Barker J, Pynenburg R, Koksbang R, et al. An electrochemical investigation into the lithium insertion properties of LixCoO2. Electrochim Acta, 1996, 41: 2481–2488
-
(1996)
Electrochim Acta
, vol.41
, pp. 2481-2488
-
-
Barker, J.1
Pynenburg, R.2
Koksbang, R.3
-
19
-
-
0036499858
-
4 spinel thin-film and porous laminate
-
4 spinel thin-film and porous laminate. Electrochim Acta, 2002, 47: 1607–1613
-
(2002)
Electrochim Acta
, vol.47
, pp. 1607-1613
-
-
Cao, F.1
Prakash, J.2
-
21
-
-
84908152529
-
4/C/RGO for high-performance Li-Ion batteries
-
4/C/RGO for high-performance Li-Ion batteries. ACS Appl Mater Inter, 2014, 6: 17556–17563
-
(2014)
ACS Appl Mater Inter
, vol.6
, pp. 17556-17563
-
-
Lin, M.1
Chen, Y.2
Chen, B.3
-
22
-
-
84905035644
-
4 by electrostatic absorbing with improved electrochemical performance for rechargeable lithium batteries
-
4 by electrostatic absorbing with improved electrochemical performance for rechargeable lithium batteries. Electrochim Acta, 2014, 139: 69–75
-
(2014)
Electrochim Acta
, vol.139
, pp. 69-75
-
-
Li, X.1
Li, T.2
Zhang, Y.3
-
23
-
-
84894243171
-
4/graphene hybrids for high rate Li-ion batteries
-
4/graphene hybrids for high rate Li-ion batteries. J Power Sources, 2014, 257: 65–69
-
(2014)
J Power Sources
, vol.257
, pp. 65-69
-
-
Fan, Q.1
Lei, L.2
Xu, X.3
-
24
-
-
72149087188
-
4/graphene composites by co-precipitation method
-
4/graphene composites by co-precipitation method. Electrochem Commun, 2010, 12: 10–13
-
(2010)
Electrochem Commun
, vol.12
, pp. 10-13
-
-
Ding, Y.1
Jiang, Y.2
Xu, F.3
-
25
-
-
84921417215
-
4/carbon-coated reduced graphene oxide hybrids for high-power lithium-ion battery cathodes
-
4/carbon-coated reduced graphene oxide hybrids for high-power lithium-ion battery cathodes. Chem Eur J, 2015, 21: 2132–2138
-
(2015)
Chem Eur J
, vol.21
, pp. 2132-2138
-
-
Ha, S.H.1
Lee, Y.J.2
-
26
-
-
84924351766
-
4 cathode material modified with a nitrogen-doped graphene aerogel for high-power lithium ion batteries
-
4 cathode material modified with a nitrogen-doped graphene aerogel for high-power lithium ion batteries. Energy Environ Sci, 2015, 8: 869–875
-
(2015)
Energy Environ Sci
, vol.8
, pp. 869-875
-
-
Wang, B.A.1
Abdulla, W.2
Wang, D.3
-
27
-
-
84876921496
-
Graphene in lithium ion battery cathode materials: A review
-
Kucinskis G, Bajars G, Kleperis J. Graphene in lithium ion battery cathode materials: A review. J Power Sources, 2013, 240: 66–79
-
(2013)
J Power Sources
, vol.240
, pp. 66-79
-
-
Kucinskis, G.1
Bajars, G.2
Kleperis, J.3
-
28
-
-
79960911019
-
4 nanorods grown on graphene sheets for ultrahigh-rate-performance lithium ion batteries
-
4 nanorods grown on graphene sheets for ultrahigh-rate-performance lithium ion batteries. Angew Chem Int Edit, 2011, 50: 7364–7368
-
(2011)
Angew Chem Int Edit
, vol.50
, pp. 7364-7368
-
-
Wang, H.1
Yang, Y.2
Liang, Y.3
-
29
-
-
79960978506
-
3/graphene nanocomposites as cathode material for lithium ion batteries
-
3/graphene nanocomposites as cathode material for lithium ion batteries. Chem Commun, 2011, 47: 9110–9112
-
(2011)
Chem Commun
, vol.47
, pp. 9110-9112
-
-
Liu, H.1
Gao, P.2
Fang, J.3
-
31
-
-
76249115189
-
Positive electrode materials for Li-ion and Li-batteries
-
Ellis B L, Lee K T, Nazar L F. Positive electrode materials for Li-ion and Li-batteries. Chem Mater, 2010, 22: 691–714
-
(2010)
Chem Mater
, vol.22
, pp. 691-714
-
-
Ellis, B.L.1
Lee, K.T.2
Nazar, L.F.3
-
32
-
-
84884312218
-
4 cathode composites for enhanced high voltage performance in Li ion batteries
-
4 cathode composites for enhanced high voltage performance in Li ion batteries. J Electrochem Soc, 2013, 160: A832–A837
-
(2013)
J Electrochem Soc
, vol.160
, pp. 832-837
-
-
Prabakar, S.J.R.1
Hwang, Y.H.2
Lee, B.3
-
34
-
-
84856498646
-
5 spheres as a high-power cathode material for lithium ion batteries
-
5 spheres as a high-power cathode material for lithium ion batteries. Nanoscale, 2011, 3: 4752–4758
-
(2011)
Nanoscale
, vol.3
, pp. 4752-4758
-
-
Rui, X.1
Zhu, J.2
Sim, D.3
-
35
-
-
83455203950
-
LiNi1/3Co1/3Mn1/3O2–graphene composite as a promising cathode for lithium-ion batteries
-
Rao V C, Leela Mohana Reddy A, Ishikawa Y, et al. LiNi1/3Co1/3Mn1/3O2–graphene composite as a promising cathode for lithium-ion batteries. ACS Appl Mater Inter, 2011, 3: 2966–2972
-
(2011)
ACS Appl Mater Inter
, vol.3
, pp. 2966-2972
-
-
Rao, V.C.1
Reddy, A.2
Ishikawa, Y.3
-
36
-
-
84876229716
-
Graphene: A two-dimensional platform for lithium storage
-
Han S, Wu D, Li S, et al. Graphene: A two-dimensional platform for lithium storage. Small, 2013, 9: 1173–1187
-
(2013)
Small
, vol.9
, pp. 1173-1187
-
-
Han, S.1
Wu, D.2
Li, S.3
-
37
-
-
11644298091
-
Mechanisms for lithium insertion in carbonaceous materials
-
Dahn J R, Zheng T, Liu Y, et al. Mechanisms for lithium insertion in carbonaceous materials. Science, 1995, 270: 590–593
-
(1995)
Science
, vol.270
, pp. 590-593
-
-
Dahn, J.R.1
Zheng, T.2
Liu, Y.3
-
38
-
-
67650072909
-
Lithium storage in carbon nanostructures
-
Kaskhedikar N A, Maier J. Lithium storage in carbon nanostructures. Adv Mater, 2009, 21: 2664–2680
-
(2009)
Adv Mater
, vol.21
, pp. 2664-2680
-
-
Kaskhedikar, N.A.1
Maier, J.2
-
39
-
-
67651149845
-
Li storage properties of disordered graphene nanosheets
-
Pan D, Wang S, Zhao B, et al. Li storage properties of disordered graphene nanosheets. Chem Mater, 2009, 21: 3136–3142
-
(2009)
Chem Mater
, vol.21
, pp. 3136-3142
-
-
Pan, D.1
Wang, S.2
Zhao, B.3
-
40
-
-
79961077734
-
Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries
-
Wu Z S, Ren W, Xu L, et al. Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries. ACS Nano, 2011, 5: 5463–5471
-
(2011)
ACS Nano
, vol.5
, pp. 5463-5471
-
-
Wu, Z.S.1
Ren, W.2
Xu, L.3
-
41
-
-
84859849835
-
Nitrogen-doped graphene nanosheets as anode materials for lithium ion batteries: A first-principles study
-
Ma C, Shao X, Cao D. Nitrogen-doped graphene nanosheets as anode materials for lithium ion batteries: A first-principles study. J Mater Chem, 2012, 22: 8911
-
(2012)
J Mater Chem
, vol.22
, pp. 8911
-
-
Ma, C.1
Shao, X.2
Cao, D.3
-
42
-
-
78649614247
-
Synthesis of nitrogen- doped graphene films for lithium battery application
-
Reddy A L, Srivastava A, Gowda S R, et al. Synthesis of nitrogen- doped graphene films for lithium battery application. ACS Nano, 2010, 4: 6337–6342
-
(2010)
ACS Nano
, vol.4
, pp. 6337-6342
-
-
Reddy, A.L.1
Srivastava, A.2
Gowda, S.R.3
-
43
-
-
84871811692
-
Facile one-step hydrazine-assisted solvothermal synthesis of nitrogen-doped reduced graphene oxide: reduction effect and mechanisms
-
Wang R, Wang Y, Xu C, et al. Facile one-step hydrazine-assisted solvothermal synthesis of nitrogen-doped reduced graphene oxide: reduction effect and mechanisms. RSC Adv, 2013, 3: 1194–1200
-
(2013)
RSC Adv
, vol.3
, pp. 1194-1200
-
-
Wang, R.1
Wang, Y.2
Xu, C.3
-
44
-
-
84896325416
-
Solvothermal-induced 3D macroscopic SnO2/nitrogen-doped graphene aerogels for high capacity and long-life lithium storage
-
Wang R, Xu C, Sun J, et al. Solvothermal-induced 3D macroscopic SnO2/nitrogen-doped graphene aerogels for high capacity and long-life lithium storage. ACS Appl Mater Inter, 2014, 6: 3427–3436
-
(2014)
ACS Appl Mater Inter
, vol.6
, pp. 3427-3436
-
-
Wang, R.1
Xu, C.2
Sun, J.3
-
45
-
-
84900496572
-
Solvothermal-induced self-assembly of Fe2O3/GS aerogels for high Li-storage and excellent stability
-
Wang R, Xu C, Du M, et al. Solvothermal-induced self-assembly of Fe2O3/GS aerogels for high Li-storage and excellent stability. Small, 2014, 10: 2260–2269
-
(2014)
Small
, vol.10
, pp. 2260-2269
-
-
Wang, R.1
Xu, C.2
Du, M.3
-
46
-
-
84943153032
-
3 Nanocubes/ Nitrogen-doped Graphene Aerogels: Nucleation Mechanism and Lithium Storage Properties
-
3 Nanocubes/ Nitrogen-doped Graphene Aerogels: Nucleation Mechanism and Lithium Storage Properties. Sci Rep, 2014, 4: 7171
-
(2014)
Sci Rep
, vol.4
, pp. 7171
-
-
Wang, R.1
Xu, C.2
Sun, J.3
-
47
-
-
84907808702
-
Synthesis of nitrogen-doped reduced graphene oxide directly from nitrogen-doped graphene oxide as a high-performance lithium ion battery anode
-
Du M, Sun J, Chang J, et al. Synthesis of nitrogen-doped reduced graphene oxide directly from nitrogen-doped graphene oxide as a high-performance lithium ion battery anode. RSC Adv, 2014, 4: 42412–42417
-
(2014)
RSC Adv
, vol.4
, pp. 42412-42417
-
-
Du, M.1
Sun, J.2
Chang, J.3
-
48
-
-
84867288645
-
Self-assembled nanocomposite of silicon nanoparticles encapsulated in graphene through electrostatic attraction for lithium-ion batteries
-
Zhou X, Yin Y X, Wan L J, et al. Self-assembled nanocomposite of silicon nanoparticles encapsulated in graphene through electrostatic attraction for lithium-ion batteries. Adv Energy Mater, 2012, 2: 1086–1090
-
(2012)
Adv Energy Mater
, vol.2
, pp. 1086-1090
-
-
Zhou, X.1
Yin, Y.X.2
Wan, L.J.3
-
49
-
-
84899822402
-
Dual conductive network-enabled graphene/ Si–C composite anode with high areal capacity for lithium-ion batteries
-
Yi R, Zai J, Dai F, et al. Dual conductive network-enabled graphene/ Si–C composite anode with high areal capacity for lithium-ion batteries. Nano Energy, 2014, 6: 211–218
-
(2014)
Nano Energy
, vol.6
, pp. 211-218
-
-
Yi, R.1
Zai, J.2
Dai, F.3
-
50
-
-
84884220863
-
Highly robust silicon nanowire/ graphene core-shell electrodes without polymeric binders
-
Lee S E, Kim H J, Kim H, et al. Highly robust silicon nanowire/ graphene core-shell electrodes without polymeric binders. Nanoscale, 2013, 5: 8986–8991
-
(2013)
Nanoscale
, vol.5
, pp. 8986-8991
-
-
Lee, S.E.1
Kim, H.J.2
Kim, H.3
-
51
-
-
84906654005
-
Elastica-Silicon Nanoparticle Backboned Graphene Hybrid as a Self-Compacting Anode for High-Rate Lithium Ion Batteries
-
Ko M, Chae S, Jeong S, et al. Elastica-Silicon Nanoparticle Backboned Graphene Hybrid as a Self-Compacting Anode for High-Rate Lithium Ion Batteries. ACS Nano, 2014, 8: 8591–8599
-
(2014)
ACS Nano
, vol.8
, pp. 8591-8599
-
-
Ko, M.1
Chae, S.2
Jeong, S.3
-
52
-
-
84906809739
-
Subeutectic growth of single-crystal silicon nanowires grown on and wrapped with graphene nanosheets: High-performance anode material for lithium-ion battery
-
Hassan F M, Elsayed A R, Chabot V, et al. Subeutectic growth of single-crystal silicon nanowires grown on and wrapped with graphene nanosheets: High-performance anode material for lithium-ion battery. ACS Appl Mater Inter, 2014, 6: 13757–13764
-
(2014)
ACS Appl Mater Inter
, vol.6
, pp. 13757-13764
-
-
Hassan, F.M.1
Elsayed, A.R.2
Chabot, V.3
-
53
-
-
84880847759
-
Atomic-scale observation of lithiation reaction front in nanoscale SnO2 materials
-
Nie A, Gan L Y, Cheng Y, et al. Atomic-scale observation of lithiation reaction front in nanoscale SnO2 materials. ACS Nano, 2013, 7: 6203–6211
-
(2013)
ACS Nano
, vol.7
, pp. 6203-6211
-
-
Nie, A.1
Gan, L.Y.2
Cheng, Y.3
-
54
-
-
84055197736
-
Direct growth of monodisperse SnO2 nanorods on graphene as high capacity anode materials for lithium ion batteries
-
Xu C H, Sun J, Gao L. Direct growth of monodisperse SnO2 nanorods on graphene as high capacity anode materials for lithium ion batteries. J Mater Chem, 2012, 22: 975–979
-
(2012)
J Mater Chem
, vol.22
, pp. 975-979
-
-
Xu, C.H.1
Sun, J.2
Gao, L.3
-
55
-
-
84865191883
-
Controllable synthesis of monodisperse ultrathin SnO2 nanorods on nitrogen-doped graphene and its ultrahigh lithium storage properties
-
Xu C, Sun J, Gao L. Controllable synthesis of monodisperse ultrathin SnO2 nanorods on nitrogen-doped graphene and its ultrahigh lithium storage properties. Nanoscale, 2012, 4: 5425
-
(2012)
Nanoscale
, vol.4
, pp. 5425
-
-
Xu, C.1
Sun, J.2
Gao, L.3
-
56
-
-
84925219196
-
2/graphene nanosheets for enhanced lithium storage
-
2/graphene nanosheets for enhanced lithium storage. Chem Eur J, 2015, 21: 5617–5622
-
(2015)
Chem Eur J
, vol.21
, pp. 5617-5622
-
-
Liu, Y.1
Liu, P.2
Wu, D.3
-
57
-
-
84923197620
-
SnO2 nanocrystals anchored on N-doped graphene for high-performance lithium storage
-
Zhou W, Wang J, Zhang F, et al. SnO2 nanocrystals anchored on N-doped graphene for high-performance lithium storage. Chem Commun, 2015, 51: 3660–3662
-
(2015)
Chem Commun
, vol.51
, pp. 3660-3662
-
-
Zhou, W.1
Wang, J.2
Zhang, F.3
-
58
-
-
80052526478
-
4-graphene nanocomposites for Li ion battery anodes
-
4-graphene nanocomposites for Li ion battery anodes. Chem Commun, 2011, 47: 10371–10373
-
(2011)
Chem Commun
, vol.47
, pp. 10371-10373
-
-
Behera, S.K.1
-
59
-
-
84878688575
-
3 sol and their composite with reduced graphene oxide for lithium ion batteries
-
3 sol and their composite with reduced graphene oxide for lithium ion batteries. J Mater Chem A, 2013, 1: 7154–7158
-
(2013)
J Mater Chem A
, vol.1
, pp. 7154-7158
-
-
Du, M.1
Xu, C.2
Sun, J.3
-
60
-
-
78149422502
-
Fabrication of graphene- encapsulated oxide nanoparticles: Towards high-performance anode materials for lithium storage
-
Yang S, Feng X, Ivanovici S, et al. Fabrication of graphene- encapsulated oxide nanoparticles: Towards high-performance anode materials for lithium storage. Angew Chem, 2010, 49: 8408–8411
-
(2010)
Angew Chem
, vol.49
, pp. 8408-8411
-
-
Yang, S.1
Feng, X.2
Ivanovici, S.3
-
61
-
-
84892680140
-
4/nitrogen modified graphene electrode as Li-ion battery anode with high reversible capacity and improved initial cycle performance
-
4/nitrogen modified graphene electrode as Li-ion battery anode with high reversible capacity and improved initial cycle performance. Nano Energy, 2014, 3: 134–143
-
(2014)
Nano Energy
, vol.3
, pp. 134-143
-
-
Lai, L.1
Zhu, J.2
Li, Z.3
-
62
-
-
84927152245
-
4 nanoparticles encapsulated in a thin carbon nanosheet array for high and reversible lithium storage
-
4 nanoparticles encapsulated in a thin carbon nanosheet array for high and reversible lithium storage. J Mater Chem A, 2015, 3: 8825–8831
-
(2015)
J Mater Chem A
, vol.3
, pp. 8825-8831
-
-
Peng, L.1
Feng, Y.2
Bai, Y.3
-
63
-
-
84908299746
-
CoO hollow cube/reduced graphene oxide composites with enhanced lithium storage capability
-
Guan X, Nai J, Zhang Y, et al. CoO hollow cube/reduced graphene oxide composites with enhanced lithium storage capability. Chem Mater, 2014, 26: 5958–5964
-
(2014)
Chem Mater
, vol.26
, pp. 5958-5964
-
-
Guan, X.1
Nai, J.2
Zhang, Y.3
-
64
-
-
84905851920
-
Nanostructured metal sulfides for energy storage
-
Rui X, Tan H, Yan Q. Nanostructured metal sulfides for energy storage. Nanoscale, 2014, 6: 9889–9924
-
(2014)
Nanoscale
, vol.6
, pp. 9889-9924
-
-
Rui, X.1
Tan, H.2
Yan, Q.3
-
65
-
-
79959807824
-
2/graphene composites with excellent electrochemical performances for lithium ion batteries
-
2/graphene composites with excellent electrochemical performances for lithium ion batteries. ACS Nano, 2011, 5: 4720–4728
-
(2011)
ACS Nano
, vol.5
, pp. 4720-4728
-
-
Chang, K.1
Chen, W.2
-
66
-
-
79955048025
-
2/graphene nanosheet composites with extraordinarily high electrochemical performance for lithium ion batteries
-
2/graphene nanosheet composites with extraordinarily high electrochemical performance for lithium ion batteries. Chem Commun, 2011, 47: 4252–4254
-
(2011)
Chem Commun
, vol.47
, pp. 4252-4254
-
-
Chang, K.1
Chen, W.2
-
67
-
-
80054932141
-
Single-layer MoS2/graphene dispersed in amorphous carbon: Towards high electrochemical performances in rechargeable lithium ion batteries
-
Chang K, Chen W. Single-layer MoS2/graphene dispersed in amorphous carbon: Towards high electrochemical performances in rechargeable lithium ion batteries. J Mater Chem, 2011, 21: 17175
-
(2011)
J Mater Chem
, vol.21
, pp. 17175
-
-
Chang, K.1
Chen, W.2
-
68
-
-
84860377520
-
2@graphene nanocomposites for rechargeable lithium batteries
-
2@graphene nanocomposites for rechargeable lithium batteries. J Mater Chem, 2012, 22: 9494
-
(2012)
J Mater Chem
, vol.22
, pp. 9494
-
-
Jiang, Z.1
Wang, C.2
Du, G.3
-
69
-
-
84893233266
-
Design of advanced porous graphene materials: from graphene nanomesh to 3D architectures
-
Jiang L, Fan Z. Design of advanced porous graphene materials: from graphene nanomesh to 3D architectures. Nanoscale, 2014, 6: 1922–1945
-
(2014)
Nanoscale
, vol.6
, pp. 1922-1945
-
-
Jiang, L.1
Fan, Z.2
-
70
-
-
77955529587
-
Self-assembled graphene hydrogel via a one-step hydrothermal process
-
Xu Y, Sheng K, Li C, et al. Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano, 2010, 4: 4324–4330
-
(2010)
ACS Nano
, vol.4
, pp. 4324-4330
-
-
Xu, Y.1
Sheng, K.2
Li, C.3
-
71
-
-
77957723012
-
Synthesis of graphene aerogel with high electrical conductivity
-
Worsley M A, Pauzauskie P J, Olson T Y, et al. Synthesis of graphene aerogel with high electrical conductivity. J Am Chem Soc, 2010, 132: 14067–14069
-
(2010)
J Am Chem Soc
, vol.132
, pp. 14067-14069
-
-
Worsley, M.A.1
Pauzauskie, P.J.2
Olson, T.Y.3
-
72
-
-
79955051635
-
Mechanically strong and highly conductive graphene aerogel and its use as electrodes for electrochemical power sources
-
Zhang X, Sui Z, Xu B, et al. Mechanically strong and highly conductive graphene aerogel and its use as electrodes for electrochemical power sources. J Mater Chem, 2011, 21: 6494
-
(2011)
J Mater Chem
, vol.21
, pp. 6494
-
-
Zhang, X.1
Sui, Z.2
Xu, B.3
-
73
-
-
83455200154
-
Self-assembly and embedding of nanoparticles by in situ reduced graphene for preparation of a 3D graphene/ nanoparticle aerogel
-
Chen W, Li S, Chen C, et al. Self-assembly and embedding of nanoparticles by in situ reduced graphene for preparation of a 3D graphene/ nanoparticle aerogel. Adv Mater, 2011, 23: 5679–5683
-
(2011)
Adv Mater
, vol.23
, pp. 5679-5683
-
-
Chen, W.1
Li, S.2
Chen, C.3
-
74
-
-
84878599483
-
4 nanospheres for enhanced lithium storage
-
4 nanospheres for enhanced lithium storage. Adv Mater, 2013, 25: 2909–2914
-
(2013)
Adv Mater
, vol.25
, pp. 2909-2914
-
-
Wei, W.1
Yang, S.2
Zhou, H.3
-
75
-
-
84881139398
-
Graphene-network-backboned architectures for high-performance lithium storage
-
Gong Y, Yang S, Liu Z, et al. Graphene-network-backboned architectures for high-performance lithium storage. Adv Mater, 2013, 25: 3979–3984
-
(2013)
Adv Mater
, vol.25
, pp. 3979-3984
-
-
Gong, Y.1
Yang, S.2
Liu, Z.3
-
76
-
-
84891559931
-
A bottom-up approach to build 3D architectures from nanosheets for superior lithium storage
-
Gong Y, Yang S, Zhan L, et al. A bottom-up approach to build 3D architectures from nanosheets for superior lithium storage. Adv Funct Mater, 2014, 24: 125–130
-
(2014)
Adv Funct Mater
, vol.24
, pp. 125-130
-
-
Gong, Y.1
Yang, S.2
Zhan, L.3
-
77
-
-
84887253612
-
4 by a metal ion induced self-assembly process for high-performance Li-ion batteries
-
4 by a metal ion induced self-assembly process for high-performance Li-ion batteries. J Mater Chem A, 2013, 1: 14658–14665
-
(2013)
J Mater Chem A
, vol.1
, pp. 14658-14665
-
-
Chang, Y.H.1
Li, J.2
Wang, B.3
-
78
-
-
84897394780
-
Three-dimensional reduced graphene oxides hydrogel anchored with ultrafine CoO nanoparticles as anode for lithium ion batteries
-
Zhang M, Wang Y, Jia M. Three-dimensional reduced graphene oxides hydrogel anchored with ultrafine CoO nanoparticles as anode for lithium ion batteries. Electrochim Acta, 2014, 129: 425–432
-
(2014)
Electrochim Acta
, vol.129
, pp. 425-432
-
-
Zhang, M.1
Wang, Y.2
Jia, M.3
-
79
-
-
84903746648
-
2 nanoparticles for high-performance lithium-ion batteries
-
2 nanoparticles for high-performance lithium-ion batteries. J Mater Chem A, 2014, 2: 11124
-
(2014)
J Mater Chem A
, vol.2
, pp. 11124
-
-
Jiang, X.1
Yang, X.2
Zhu, Y.3
-
80
-
-
84876138818
-
In situ assembly of graphene sheets-supported SnS2 nanoplates into 3D macroporous aerogels for high-performance lithium ion batteries
-
Jiang X, Yang X, Zhu Y, et al. In situ assembly of graphene sheets-supported SnS2 nanoplates into 3D macroporous aerogels for high-performance lithium ion batteries. J Power Sources, 2013, 237: 178–186
-
(2013)
J Power Sources
, vol.237
, pp. 178-186
-
-
Jiang, X.1
Yang, X.2
Zhu, Y.3
-
81
-
-
84907738836
-
Preparation of colloidal graphene in quantity by electrochemical exfoliation
-
Chen K, Xue D. Preparation of colloidal graphene in quantity by electrochemical exfoliation. J Colloid Interf Sci, 2014, 436: 41–46
-
(2014)
J Colloid Interf Sci
, vol.436
, pp. 41-46
-
-
Chen, K.1
Xue, D.2
-
83
-
-
84921810728
-
2 with porosity-tuned graphene as a strategy for high-rate performance in lithium battery anodes
-
2 with porosity-tuned graphene as a strategy for high-rate performance in lithium battery anodes. Carbon, 2015, 85: 289–298
-
(2015)
Carbon
, vol.85
, pp. 289-298
-
-
Nam, S.1
Yang, S.J.2
Lee, S.3
-
84
-
-
84921754531
-
Spray-assisted deep-frying process for the in situ spherical assembly of graphene for energy- storage devices
-
Park S H, Kim H K, Yoon S B, et al. Spray-assisted deep-frying process for the in situ spherical assembly of graphene for energy- storage devices. Chem Mater, 2015, 27: 457–465
-
(2015)
Chem Mater
, vol.27
, pp. 457-465
-
-
Park, S.H.1
Kim, H.K.2
Yoon, S.B.3
-
85
-
-
84920595950
-
4-decorated hollow graphene balls prepared by spray pyrolysis process for ultrafast and long cycle-life lithium ion batteries
-
4-decorated hollow graphene balls prepared by spray pyrolysis process for ultrafast and long cycle-life lithium ion batteries. Carbon, 2014, 79: 58–66
-
(2014)
Carbon
, vol.79
, pp. 58-66
-
-
Choi, S.H.1
Kang, Y.C.2
-
86
-
-
84886077129
-
Facile preparation of ordered porous graphene-metal oxide@C binder-free electrodes with high Li storage performance
-
Zhu J, Yang D, Rui X, et al. Facile preparation of ordered porous graphene-metal oxide@C binder-free electrodes with high Li storage performance. Small, 2013, 9: 3390–3397
-
(2013)
Small
, vol.9
, pp. 3390-3397
-
-
Zhu, J.1
Yang, D.2
Rui, X.3
-
87
-
-
84930226176
-
4/macroporous graphene composite for high-performance Li storage
-
4/macroporous graphene composite for high-performance Li storage. J Mater Chem A, 2015, 3: 12031–12037
-
(2015)
J Mater Chem A
, vol.3
, pp. 12031-12037
-
-
Lu, X.1
Wang, R.2
Bai, Y.3
-
89
-
-
84901189539
-
4 composite as anode material for Li-ion batteries with long cycling life and ultrahigh rate capability
-
4 composite as anode material for Li-ion batteries with long cycling life and ultrahigh rate capability. Chin Sci Bull, 2014, 59: 2017–2023
-
(2014)
Chin Sci Bull
, vol.59
, pp. 2017-2023
-
-
Ma, D.1
Yuan, S.2
Cao, Z.3
-
90
-
-
84884246355
-
An overview of carbon materials for flexible electrochemical capacitors
-
He Y, Chen W, Gao C, et al. An overview of carbon materials for flexible electrochemical capacitors. Nanoscale, 2013, 5: 8799
-
(2013)
Nanoscale
, vol.5
, pp. 8799
-
-
He, Y.1
Chen, W.2
Gao, C.3
-
91
-
-
84890506709
-
Free standing reduced graphene oxide film cathodes for lithium ion batteries
-
Ha S H, Jeong Y S, Lee Y J. Free standing reduced graphene oxide film cathodes for lithium ion batteries. ACS Appl Mater Inter, 2013, 5: 12295–12303
-
(2013)
ACS Appl Mater Inter
, vol.5
, pp. 12295-12303
-
-
Ha, S.H.1
Jeong, Y.S.2
Lee, Y.J.3
-
92
-
-
77954942930
-
Non-annealed graphene paper as a binder-free anode for lithium-ion batteries
-
Abouimrane A, Compton O C, Amine K, et al. Non-annealed graphene paper as a binder-free anode for lithium-ion batteries. J Phys Chem C, 2010, 114: 12800–12804
-
(2010)
J Phys Chem C
, vol.114
, pp. 12800-12804
-
-
Abouimrane, A.1
Compton, O.C.2
Amine, K.3
-
93
-
-
84875695750
-
Free-standing graphene–carbon nanotube hybrid papers used as current collector and binder free anodes for lithium ion batteries
-
Hu Y, Li X, Wang J, et al. Free-standing graphene–carbon nanotube hybrid papers used as current collector and binder free anodes for lithium ion batteries. J Power Sources, 2013, 237: 41–46
-
(2013)
J Power Sources
, vol.237
, pp. 41-46
-
-
Hu, Y.1
Li, X.2
Wang, J.3
-
94
-
-
84863115760
-
Folded structured graphene paper for high performance electrode materials
-
Liu F, Song S, Xue D, et al. Folded structured graphene paper for high performance electrode materials. Adv Mater, 2012, 24: 1089–1094
-
(2012)
Adv Mater
, vol.24
, pp. 1089-1094
-
-
Liu, F.1
Song, S.2
Xue, D.3
-
95
-
-
81855177540
-
Flexible holey graphene paper electrodes with enhanced rate capability for energy storage applications
-
Zhao X, Hayner C M, Kung M C, et al. Flexible holey graphene paper electrodes with enhanced rate capability for energy storage applications. ACS Nano, 2011, 5: 8739–8749
-
(2011)
ACS Nano
, vol.5
, pp. 8739-8749
-
-
Zhao, X.1
Hayner, C.M.2
Kung, M.C.3
-
96
-
-
84859742777
-
In-plane vacancy-enabled high-power Si-Graphene composite electrode for lithium-ion batteries
-
Zhao X, Hayner C M, Kung M C, et al. In-plane vacancy-enabled high-power Si-Graphene composite electrode for lithium-ion batteries. Adv Energy Mater, 2011, 1: 1079–1084
-
(2011)
Adv Energy Mater
, vol.1
, pp. 1079-1084
-
-
Zhao, X.1
Hayner, C.M.2
Kung, M.C.3
-
97
-
-
84876535910
-
4/graphene hybrid films for lithium-ion batteries
-
4/graphene hybrid films for lithium-ion batteries. J Mater Chem A, 2013, 1: 1794–1800
-
(2013)
J Mater Chem A
, vol.1
, pp. 1794-1800
-
-
Wang, R.H.1
Xu, C.H.2
Sun, J.3
-
98
-
-
84897708701
-
Fe2O3@SnO2 nanoparticle decorated graphene flexible films as high-performance anode materials for lithium-ion batteries
-
Liu S, Wang R, Liu M, et al. Fe2O3@SnO2 nanoparticle decorated graphene flexible films as high-performance anode materials for lithium-ion batteries. J Mater Chem A, 2014, 2: 4598
-
(2014)
J Mater Chem A
, vol.2
, pp. 4598
-
-
Liu, S.1
Wang, R.2
Liu, M.3
-
99
-
-
84902662866
-
4 nanocrystal/rGO paper for high-performance lithium ion batteries
-
4 nanocrystal/rGO paper for high-performance lithium ion batteries. J Mater Chem A, 2014, 2: 9636
-
(2014)
J Mater Chem A
, vol.2
, pp. 9636
-
-
Zhang, K.1
Zhao, W.2
Lee, J.T.3
-
100
-
-
84870516250
-
Flexible free-standing graphene/SnO2 nanocomposites paper for Li-ion battery
-
Liang J, Zhao Y, Guo L, et al. Flexible free-standing graphene/SnO2 nanocomposites paper for Li-ion battery. ACS Appl Mater Inter, 2012, 4: 5742–5748
-
(2012)
ACS Appl Mater Inter
, vol.4
, pp. 5742-5748
-
-
Liang, J.1
Zhao, Y.2
Guo, L.3
-
102
-
-
84880276450
-
Homogeneous CoO on graphene for binder-free and ultralong-life lithium ion batteries
-
Huang X L, Wang R Z, Xu D, et al. Homogeneous CoO on graphene for binder-free and ultralong-life lithium ion batteries. Adv Funct Mater, 2013, 23: 4345–4353
-
(2013)
Adv Funct Mater
, vol.23
, pp. 4345-4353
-
-
Huang, X.L.1
Wang, R.Z.2
Xu, D.3
-
103
-
-
84903445825
-
2/GS hybrid electrodes for binder-free and ultralong- life lithium ion batteries
-
2/GS hybrid electrodes for binder-free and ultralong- life lithium ion batteries. Nano Energy, 2014, 8: 183–195
-
(2014)
Nano Energy
, vol.8
, pp. 183-195
-
-
Wang, R.1
Xu, C.2
Sun, J.3
-
104
-
-
84929080002
-
A general method of fabricating flexible spinel-type oxide/reduced graphene oxide nanocomposite aerogels as advanced anodes for lithium-ion batteries
-
Zeng G, Shi N, Hess M, et al. A general method of fabricating flexible spinel-type oxide/reduced graphene oxide nanocomposite aerogels as advanced anodes for lithium-ion batteries. ACS Nano, 2015, 9: 4227–4235
-
(2015)
ACS Nano
, vol.9
, pp. 4227-4235
-
-
Zeng, G.1
Shi, N.2
Hess, M.3
|