-
1
-
-
0041339769
-
Supervised fuzzy clustering for the identification of fuzzy classifiers
-
Abonyi J., Szeifert F. Supervised fuzzy clustering for the identification of fuzzy classifiers Pattern Recognition Letters 24 2003 2195 2207
-
(2003)
Pattern Recognition Letters
, vol.24
, pp. 2195-2207
-
-
Abonyi, J.1
Szeifert, F.2
-
2
-
-
56349089940
-
Support vector machines combined with feature selection for breast cancer diagnosis
-
Akay M.F. Support vector machines combined with feature selection for breast cancer diagnosis Expert Systems With Applications 36 2009 3240 3247
-
(2009)
Expert Systems With Applications
, vol.36
, pp. 3240-3247
-
-
Akay, M.F.1
-
6
-
-
0036161034
-
Training Invariant Support Vector Machines
-
Decoste D., Schölkopf B. Training Invariant Support Vector Machines Machine Learning 46 2002 161 190
-
(2002)
Machine Learning
, vol.46
, pp. 161-190
-
-
Decoste, D.1
Schölkopf, B.2
-
7
-
-
84902456334
-
Computer-aided detection of breast cancer on mammograms: A swarm intelligence optimized wavelet neural network approach
-
Dheeba J., Singh N.A., Selvi S.T. Computer-aided detection of breast cancer on mammograms: A swarm intelligence optimized wavelet neural network approach Journal of Biomedical Informatics 49 2014 45 52
-
(2014)
Journal of Biomedical Informatics
, vol.49
, pp. 45-52
-
-
Dheeba, J.1
Singh, N.A.2
Selvi, S.T.3
-
8
-
-
77949522811
-
Why does unsupervised pre-training help deep learning?
-
Erhan D., Bengio Y., Courville A., Manzagol P.-A., Vincent P., Bengio S. Why does unsupervised pre-training help deep learning? Journal of Machine Learning Research 11 2010 625 660
-
(2010)
Journal of Machine Learning Research
, vol.11
, pp. 625-660
-
-
Erhan, D.1
Bengio, Y.2
Courville, A.3
Manzagol, P.-A.4
Vincent, P.5
Bengio, S.6
-
11
-
-
84886563124
-
-
Accessed 03.09.14
-
Hinton, G.E.(2009a).Deep belief nets. < http://www.cs.toronto.edu/∼hinton/nipstutorial/nipstut3.pdf > Accessed 03.09.14.
-
(2009)
Deep belief nets
-
-
Hinton, G.E.1
-
12
-
-
84887348655
-
-
Accessed 03.09. 14
-
Hinton, G.E.(2009b). Deep belief networks. < http://www.scholarpedia.org/article/Deep-belief
-
(2009)
Deep belief networks
-
-
Hinton, G.E.1
-
14
-
-
15344347807
-
Gradient-based learning applied to document recognition
-
IEEE Press
-
Lecun Y., LeCun Y., Bottou L., Bengio Y., Haffner P. Gradient-based learning applied to document recognition Intelligent Signal Processing 2001 IEEE Press 306 351
-
(2001)
Intelligent Signal Processing
, pp. 306-351
-
-
Lecun, Y.1
LeCun, Y.2
Bottou, L.3
Bengio, Y.4
Haffner, P.5
-
17
-
-
0032960792
-
Obtaining interpretable fuzzy classification rules from medical data
-
Nauck D., Kruse R. Obtaining interpretable fuzzy classification rules from medical data Artificial Intelligence in Medicine 16 1999 149 169
-
(1999)
Artificial Intelligence in Medicine
, vol.16
, pp. 149-169
-
-
Nauck, D.1
Kruse, R.2
-
18
-
-
84946420866
-
-
Accessed 03.09.14
-
Palm, R.B.(2012). Deep learning toolbox. < https://github.com/rasmusbergpalm/DeepLearnToolbox > Accessed 03.09.14.
-
(2012)
Deep learning toolbox
-
-
Palm, R.B.1
-
19
-
-
84864679424
-
Classification of breast cancer by comparing backpropagation training algorithm
-
Paulin F. Classification of breast cancer by comparing backpropagation training algorithm Intenational Journal on Computer Science and Engineering 3 2011 327 332
-
(2011)
Intenational Journal on Computer Science and Engineering
, vol.3
, pp. 327-332
-
-
Paulin, F.1
-
21
-
-
34249317613
-
Breast cancer diagnosis using least square support vector machine
-
Polat K., Günes S. Breast cancer diagnosis using least square support vector machine Digital Signal Processing 17 2007 694 701
-
(2007)
Digital Signal Processing
, vol.17
, pp. 694-701
-
-
Polat, K.1
Günes, S.2
-
24
-
-
84910651844
-
Deep learning in neural networks: An overview
-
Schmidhuber J. Deep learning in neural networks: An overview Neural Networks 61C 2014 85 117
-
(2014)
Neural Networks
, vol.61 C
, pp. 85-117
-
-
Schmidhuber, J.1
-
25
-
-
0034159928
-
Generating concise and accurate classification rules for breast cancer diagnosis
-
Setiono R. Generating concise and accurate classification rules for breast cancer diagnosis Artificial Intelligence in Medicine 18 2000 205 219
-
(2000)
Artificial Intelligence in Medicine
, vol.18
, pp. 205-219
-
-
Setiono, R.1
-
26
-
-
84946420867
-
-
IOS Press
-
Suykens J.A.K., Horvath G., Basu S., Micchelli C., Vandewalle J. Advances in Learning Theory Vol. 190 2003 IOS Press 392
-
(2003)
Advances in Learning Theory
, vol.190
, pp. 392
-
-
Suykens, J.A.K.1
Horvath, G.2
Basu, S.3
Micchelli, C.4
Vandewalle, J.5
-
27
-
-
33947653184
-
Implementing automated diagnostic systems for breast cancer detection
-
Übeyli E.D. Implementing automated diagnostic systems for breast cancer detection Expert Systems With Applications 33 2007 1054 1062
-
(2007)
Expert Systems With Applications
, vol.33
, pp. 1054-1062
-
-
Übeyli, E.D.1
-
28
-
-
84946420868
-
-
(original). Accessed 03.09.14
-
Wisconsin breast cancer dataset (WBCD) (2014). (original). Accessed 03.09.14 < https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Original%29 >.
-
(2014)
Wisconsin breast cancer dataset (WBCD)
-
-
-
29
-
-
84946420869
-
-
Accessed 03.09.14
-
World cancer research fund. (2014). < http://www.wcrf.org/int/cancer-facts-figures/data-specific-cancers/breast-cancer-statistics > Accessed 03.09.14.
-
(2014)
-
-
|