-
1
-
-
85032751310
-
The emerging field of signal processing ongraphs extending high-dimensional data analysis to networksand other irregular domains
-
May
-
D. I Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Vandergheynst,The emerging field of signal processing ongraphs: Extending high-dimensional data analysis to networksand other irregular domains, IEEE Signal Processing Magazine,vol. 30, no. 3, pp. 83-98, May 2013
-
(2013)
IEEE Signal Processing Magazine
, vol.30
, Issue.3
, pp. 83-98
-
-
Shuman, D.I.1
Narang, S.K.2
Frossard, P.3
Ortega, A.4
Vandergheynst, P.5
-
2
-
-
84874990386
-
Discrete signal processingon graphs
-
Apr
-
A. Sandryhaila and J. M. F. Moura, Discrete signal processingon graphs, IEEE Transactions on Signal Processing, vol. 61,no. 7, pp. 1644-1656, Apr 2013
-
(2013)
IEEE Transactions on Signal Processing
, vol.61
, Issue.7
, pp. 1644-1656
-
-
Sandryhaila, A.1
Moura, J.M.F.2
-
3
-
-
84879854889
-
Representation learning:A review and new perspectives
-
Aug
-
Y. Bengio, A. Courville, and P. Vincent, Representation learning:A review and new perspectives, IEEE Transactions onPattern Analysis and Machine Intelligence, vol. 35, no. 8, pp. 1798-1828, Aug 2013
-
(2013)
IEEE Transactions OnPattern Analysis and Machine Intelligence
, vol.35
, Issue.8
, pp. 1798-1828
-
-
Bengio, Y.1
Courville, A.2
Vincent, P.3
-
4
-
-
84899013108
-
On spectral clustering: Analysisand an algorithm
-
A. Ng, M. Jordan, and Y. Weiss, On spectral clustering: Analysisand an algorithm, in Advances in Neural InformationProcessing Systems 14 (NIPS), 2001, pp. 849-856
-
(2001)
Advances in Neural InformationProcessing Systems 14 (NIPS)
, pp. 849-856
-
-
Ng, A.1
Jordan, M.2
Weiss, Y.3
-
5
-
-
41549101939
-
Model selectionthrough sparse maximum likelihood estimation for multivariateGaussian or binary data
-
Jun
-
O. Banerjee, L. E. Ghaoui, and A. d'Aspremont, Model selectionthrough sparse maximum likelihood estimation for multivariateGaussian or binary data, Journal of Machine LearningResearch, vol. 9, pp. 485-516, Jun 2008
-
(2008)
Journal of Machine LearningResearch
, vol.9
, pp. 485-516
-
-
Banerjee, O.1
Ghaoui, L.E.2
D'Aspremont, A.3
-
6
-
-
45849134070
-
Sparse inverse covarianceestimation with the graphical lasso
-
Jul
-
J. Friedman, T. Hastie, and R. Tibshirani, Sparse inverse covarianceestimation with the graphical lasso, Biostatistics, vol. 9, no. 3, pp. 432-441, Jul 2008
-
(2008)
Biostatistics
, vol.9
, Issue.3
, pp. 432-441
-
-
Friedman, J.1
Hastie, T.2
Tibshirani, R.3
-
8
-
-
84949802590
-
-
3rd Edition Wiley, Jul
-
D. J. Bartholomew, M. Knott, and I. Moustaki, Latent variablemodels and factor analysis: A unified approach, 3rd Edition,Wiley, Jul 2011
-
(2011)
Latent Variablemodels and Factor Analysis: A Unified Approach
-
-
Bartholomew, D.J.1
Knott, M.2
Moustaki, I.3
-
11
-
-
79954564965
-
Should penalized least squares regression be interpretedas maximum a posteriori estimation?
-
May
-
R. Gribonval, Should penalized least squares regression be interpretedas maximum a posteriori estimation?, IEEE Transactionson Signal Processing, vol. 59, no. 5, pp. 2405-2410,May 2011
-
(2011)
IEEE Transactionson Signal Processing
, vol.59
, Issue.5
, pp. 2405-2410
-
-
Gribonval, R.1
-
13
-
-
84927642038
-
-
in arXiv:1406. 7842
-
X. Dong, D. Thanou, P. Frossard, and P. Vandergheynst,Learning Graphs from Signal Observations under SmoothnessPrior, in arXiv:1406. 7842, 2014
-
(2014)
Learning Graphs from Signal Observations under SmoothnessPrior
-
-
Dong, X.1
Thanou, D.2
Frossard, P.3
Vandergheynst, P.4
-
14
-
-
84881624577
-
A graph theoretical regression model for brain connectivitylearning of Alzheimer's disease
-
C. Hu, L. Cheng, J. Sepulcre, G. E. Fakhri, Y. M. Lu, and Q. Li,A graph theoretical regression model for brain connectivitylearning of Alzheimer's disease, in Proceedings of the IEEEInternational Symposium on Biomedical Imaging (ISBI), 2013
-
(2013)
Proceedings of the IEEEInternational Symposium on Biomedical Imaging (ISBI)
-
-
Hu, C.1
Cheng, L.2
Sepulcre, J.3
Fakhri, G.E.4
Lu, Y.M.5
Li, Q.6
-
16
-
-
36849072045
-
Graph implementations for nonsmoothconvex programs
-
V. Blondel, S. Boyd, and H. Kimura, Eds., Lecture Notesin Control and Information Sciences. Springer-Verlag Limited
-
M. Grant and S. Boyd, Graph implementations for nonsmoothconvex programs, in Recent Advances in Learning and Control,V. Blondel, S. Boyd, and H. Kimura, Eds., Lecture Notesin Control and Information Sciences, pp. 95-110. Springer-Verlag Limited, 2008, http://stanford. edu/boyd/graph-dcp. html
-
(2008)
Recent Advances in Learning and Control
, pp. 95-110
-
-
Grant, M.1
Boyd, S.2
-
17
-
-
80051762104
-
Distributedoptimization and statistical learning via the alternatingdirection method of multipliers
-
S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, Distributedoptimization and statistical learning via the alternatingdirection method of multipliers, Foundations and Trends inMachine Learning, vol. 3, no. 1, pp. 1-122, 2011
-
(2011)
Foundations and Trends InMachine Learning
, vol.3
, Issue.1
, pp. 1-122
-
-
Boyd, S.1
Parikh, N.2
Chu, E.3
Peleato, B.4
Eckstein, J.5
|