메뉴 건너뛰기




Volumn 2015-August, Issue , 2015, Pages 3736-3740

Laplacian matrix learning for smooth graph signal representation

Author keywords

factor analysis; Gaussian prior; Graph learning; graph signal processing; representation theory

Indexed keywords

AUDIO SIGNAL PROCESSING; FACTOR ANALYSIS; GAUSSIAN DISTRIBUTION; LEARNING ALGORITHMS; MATRIX ALGEBRA; MULTIVARIANT ANALYSIS; SPEECH COMMUNICATION;

EID: 84946097309     PISSN: 15206149     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICASSP.2015.7178669     Document Type: Conference Paper
Times cited : (57)

References (18)
  • 1
    • 85032751310 scopus 로고    scopus 로고
    • The emerging field of signal processing ongraphs extending high-dimensional data analysis to networksand other irregular domains
    • May
    • D. I Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Vandergheynst,The emerging field of signal processing ongraphs: Extending high-dimensional data analysis to networksand other irregular domains, IEEE Signal Processing Magazine,vol. 30, no. 3, pp. 83-98, May 2013
    • (2013) IEEE Signal Processing Magazine , vol.30 , Issue.3 , pp. 83-98
    • Shuman, D.I.1    Narang, S.K.2    Frossard, P.3    Ortega, A.4    Vandergheynst, P.5
  • 5
    • 41549101939 scopus 로고    scopus 로고
    • Model selectionthrough sparse maximum likelihood estimation for multivariateGaussian or binary data
    • Jun
    • O. Banerjee, L. E. Ghaoui, and A. d'Aspremont, Model selectionthrough sparse maximum likelihood estimation for multivariateGaussian or binary data, Journal of Machine LearningResearch, vol. 9, pp. 485-516, Jun 2008
    • (2008) Journal of Machine LearningResearch , vol.9 , pp. 485-516
    • Banerjee, O.1    Ghaoui, L.E.2    D'Aspremont, A.3
  • 6
    • 45849134070 scopus 로고    scopus 로고
    • Sparse inverse covarianceestimation with the graphical lasso
    • Jul
    • J. Friedman, T. Hastie, and R. Tibshirani, Sparse inverse covarianceestimation with the graphical lasso, Biostatistics, vol. 9, no. 3, pp. 432-441, Jul 2008
    • (2008) Biostatistics , vol.9 , Issue.3 , pp. 432-441
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 11
    • 79954564965 scopus 로고    scopus 로고
    • Should penalized least squares regression be interpretedas maximum a posteriori estimation?
    • May
    • R. Gribonval, Should penalized least squares regression be interpretedas maximum a posteriori estimation?, IEEE Transactionson Signal Processing, vol. 59, no. 5, pp. 2405-2410,May 2011
    • (2011) IEEE Transactionson Signal Processing , vol.59 , Issue.5 , pp. 2405-2410
    • Gribonval, R.1
  • 16
    • 36849072045 scopus 로고    scopus 로고
    • Graph implementations for nonsmoothconvex programs
    • V. Blondel, S. Boyd, and H. Kimura, Eds., Lecture Notesin Control and Information Sciences. Springer-Verlag Limited
    • M. Grant and S. Boyd, Graph implementations for nonsmoothconvex programs, in Recent Advances in Learning and Control,V. Blondel, S. Boyd, and H. Kimura, Eds., Lecture Notesin Control and Information Sciences, pp. 95-110. Springer-Verlag Limited, 2008, http://stanford. edu/boyd/graph-dcp. html
    • (2008) Recent Advances in Learning and Control , pp. 95-110
    • Grant, M.1    Boyd, S.2
  • 17
    • 80051762104 scopus 로고    scopus 로고
    • Distributedoptimization and statistical learning via the alternatingdirection method of multipliers
    • S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, Distributedoptimization and statistical learning via the alternatingdirection method of multipliers, Foundations and Trends inMachine Learning, vol. 3, no. 1, pp. 1-122, 2011
    • (2011) Foundations and Trends InMachine Learning , vol.3 , Issue.1 , pp. 1-122
    • Boyd, S.1    Parikh, N.2    Chu, E.3    Peleato, B.4    Eckstein, J.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.