메뉴 건너뛰기




Volumn 61, Issue 7, 2013, Pages 1644-1656

Discrete signal processing on graphs

Author keywords

Graph Fourier transform; graphical models; Markov random fields; network science; signal processing

Indexed keywords

GRAPH FOURIER TRANSFORMS; GRAPHICAL MODEL; MARKOV RANDOM FIELDS; MOBILE SERVICE PROVIDERS; NETWORK SCIENCE; SOCIAL SETTINGS; SPECTRAL REPRESENTATIONS; WEATHER STATIONS;

EID: 84874990386     PISSN: 1053587X     EISSN: None     Source Type: Journal    
DOI: 10.1109/TSP.2013.2238935     Document Type: Article
Times cited : (1505)

References (69)
  • 6
    • 0004047518 scopus 로고    scopus 로고
    • New York, NY USA: Oxford Univ Press
    • S. L. Lauritzen, Graphical Models. New York, NY, USA: Oxford Univ. Press, 1996.
    • (1996) Graphical Models
    • Lauritzen, S.L.1
  • 7
    • 0343360263 scopus 로고    scopus 로고
    • Decision Graphs, Washington DC USA: IEEE Comput. Soc. Press
    • F. V. Jensen, Bayesian Networks and Decision Graphs. Washington, DC, USA: IEEE Comput. Soc. Press, 2001.
    • (2001) Bayesian Networks
    • Jensen, F.V.1
  • 8
    • 4043129651 scopus 로고    scopus 로고
    • Graphical models
    • DOI 10.1214/088342304000000026, Bayes Then and Now
    • M. I. Jordan, "Graphical models," Statistical Science (Special Issue on Bayesian Statistics), vol. 19, no. 1, pp. 140-155, 2004. (Pubitemid 39056883)
    • (2004) Statistical Science , vol.19 , Issue.1 , pp. 140-155
    • Jordan, M.I.1
  • 14
    • 0345421566 scopus 로고    scopus 로고
    • Multiresolution Markov models for signal and image processing
    • DOI 10.1109/JPROC.2002.800717, PII 1011092002800717
    • A. S. Willsky, "Multiresolution Markov models for signal and image processing," Proc. IEEE, vol. 90, no. 8, pp. 1396-1458, 2002. (Pubitemid 43785865)
    • (2002) Proceedings of the IEEE , vol.90 , Issue.8 , pp. 1396-1458
    • Willsky, A.S.1
  • 15
    • 0000913755 scopus 로고
    • Spatial interaction and the statistical analysis of lattice systems
    • J. Besag, "Spatial interaction and the statistical analysis of lattice systems," J. Roy. Statist. Soc., vol. 36, no. 2, pp. 192-236, 1974.
    • (1974) J. Roy. Statist. Soc , vol.36 , Issue.2 , pp. 192-236
    • Besag, J.1
  • 17
    • 84870486301 scopus 로고    scopus 로고
    • Finding non-overlapping clusters for generalized inference over graphical models
    • D. Vats and J. M. F. Moura, "Finding non-overlapping clusters for generalized inference over graphical models," IEEE Trans. Signal Process., vol. 60, no. 12, pp. 6368-6381, 2012.
    • (2012) IEEE Trans. Signal Process , vol.60 , Issue.12 , pp. 6368-6381
    • Vats, D.1    Moura, J.M.F.2
  • 19
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • DOI 10.1126/science.290.5500.2319
    • J. F. Tenenbaum, V. Silva, and J. C. Langford, "A global geometric framework for nonlinear dimensionality reduction," Science, vol. 290, pp. 2319-2323, 2000. (Pubitemid 32041577)
    • (2000) Science , vol.290 , Issue.5500 , pp. 2319-2323
    • Tenenbaum, J.B.1    De Silva, V.2    Langford, J.C.3
  • 20
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • DOI 10.1126/science.290.5500.2323
    • S. Roweis and L. Saul, "Nonlinear dimensionality reduction by locally linear embedding," Science, vol. 290, pp. 2323-2326, 2000. (Pubitemid 32041578)
    • (2000) Science , vol.290 , Issue.5500 , pp. 2323-2326
    • Roweis, S.T.1    Saul, L.K.2
  • 21
    • 0042378381 scopus 로고    scopus 로고
    • Laplacian eigenmaps for dimensionality reduction and data representation
    • DOI 10.1162/089976603321780317
    • M. Belkin and P. Niyogi, "Laplacian eigenmaps for dimensionality reduction and data representation," Neural Comp., vol. 15, no. 6, pp. 1373-1396, 2003. (Pubitemid 37049796)
    • (2003) Neural Computation , vol.15 , Issue.6 , pp. 1373-1396
    • Belkin, M.1    Niyogi, P.2
  • 24
    • 85156243206 scopus 로고    scopus 로고
    • Using manifold structure for partially labeled classification
    • M. Belkin and P. Niyogi, "Using manifold structure for partially labeled classification," in Proc. NIPS, 2002, p. 929.
    • (2002) Proc. NIPS , pp. 929
    • Belkin, M.1    Niyogi, P.2
  • 25
    • 26944489604 scopus 로고    scopus 로고
    • From graphs to manifolds- Weak and strong pointwise consistency of graph Laplacians
    • M. Hein, J. Audibert, and U. von Luxburg, "From graphs to manifolds - Weak and strong pointwise consistency of graph Laplacians," in Proc. COLT, 2005, pp. 470-485.
    • (2005) Proc. COLT , pp. 470-485
    • Hein, M.1    Audibert, J.2    Von Luxburg, U.3
  • 26
    • 34547263725 scopus 로고    scopus 로고
    • Empirical graph Laplacian approximation of Laplace-Beltrami operators: Large sample results
    • E. Gine and V. Koltchinskii, "Empirical graph Laplacian approximation of Laplace-Beltrami operators: Large sample results," IMS Lecture Notes Monograph Series, vol. 51, pp. 238-259, 2006.
    • (2006) IMS Lecture Notes Monograph Series , vol.51 , pp. 238-259
    • Gine, E.1    Koltchinskii, V.2
  • 27
    • 34547313657 scopus 로고    scopus 로고
    • Graph Laplacians and their convergence on random neighborhood graphs
    • M. Hein, J. Audibert, and U. von Luxburg, "Graph Laplacians and their convergence on random neighborhood graphs," J. Mach. Learn., vol. 8, pp. 1325-1370, Jun. 2007. (Pubitemid 47143710)
    • (2007) Journal of Machine Learning Research , vol.8 , pp. 1325-1370
    • Hein, M.1    Audibert, J.-Y.2    Von Luxburg, U.3
  • 31
    • 3042820611 scopus 로고    scopus 로고
    • Distributed regression: An efficient framework for modeling sensor network data
    • C. Guestrin, P. Bodik, R. Thibaux, M. Paskin, and S. Madden, "Distributed regression: An efficient framework for modeling sensor network data," in Proc. IPSN, 2004, pp. 1-10.
    • (2004) Proc. IPSN
    • Guestrin, C.1    Bodik, P.2    Thibaux, R.3    Paskin, M.4    Madden, S.5
  • 34
    • 34247324405 scopus 로고    scopus 로고
    • An architecture for distributed wavelet analysis and processing in sensor networks
    • R. Wagner, A. Cohen, R. G. Baraniuk, S. Du, and D. B. Johnson, "An architecture for distributed wavelet analysis and processing in sensor networks," in Proc. IPSN, 2006, pp. 243-250.
    • (2006) Proc. IPSN , pp. 243-250
    • Wagner, R.1    Cohen, A.2    Baraniuk, R.G.3    Du, S.4    Johnson, D.B.5
  • 36
    • 78651067962 scopus 로고    scopus 로고
    • Local two-channel critically sampled filter-banks on graphs
    • S. K. Narang and A. Ortega, "Local two-channel critically sampled filter-banks on graphs," in Proc. ICIP, 2010, pp. 333-336.
    • (2010) Proc. ICIP , pp. 333-336
    • Narang, S.K.1    Ortega, A.2
  • 37
    • 84861117945 scopus 로고    scopus 로고
    • Perfect reconstruction two-channel wavelet filter banks for graph structured data
    • S. K. Narang and A. Ortega, "Perfect reconstruction two-channel wavelet filter banks for graph structured data," IEEE Trans. Signal Process., vol. 60, no. 6, pp. 2786-2799, 2012.
    • (2012) IEEE Trans. Signal Process , vol.60 , Issue.6 , pp. 2786-2799
    • Narang, S.K.1    Ortega, A.2
  • 40
    • 84867602822 scopus 로고    scopus 로고
    • Uncertainty principles for signals defined on graphs: Bounds and characterizations
    • A. Agaskar and Y. M. Lu, "Uncertainty principles for signals defined on graphs: Bounds and characterizations," in Proc. Int. Conf. Acoust., Speech, Signal Process. (ICASSP), 2012, pp. 3493-3496.
    • (2012) Proc. Int. Conf. Acoust., Speech, Signal Process. (ICASSP) , pp. 3493-3496
    • Agaskar, A.1    Lu, Y.M.2
  • 41
    • 84874974658 scopus 로고    scopus 로고
    • Spectral graph uncertainty principle
    • Submitted for publication
    • A. Agaskar and Y. Lu, "Spectral graph uncertainty principle," IEEE Trans. Inf. Theory, Jun. 2012, submitted for publication.
    • (2012) IEEE Trans. Inf. Theory, Jun
    • Agaskar, A.1    Lu, Y.2
  • 42
    • 0141473171 scopus 로고    scopus 로고
    • The algebraic approach to the discrete cosine and sine transforms and their fast algorithms
    • M. Püschel and J. M. F. Moura, "The algebraic approach to the discrete cosine and sine transforms and their fast algorithms," SIAM J. Comput., vol. 32, no. 5, pp. 1280-1316, 2003.
    • (2003) SIAM J. Comput , vol.32 , Issue.5 , pp. 1280-1316
    • Püschel, M.1    Moura, J.M.F.2
  • 44
    • 44449141641 scopus 로고    scopus 로고
    • Algebraic signal processing theory: Foundation and 1-D time
    • M. Püschel and J. M. F. Moura, "Algebraic signal processing theory: Foundation and 1-D time," IEEE Trans. Signal Process., vol. 56, no. 8, pp. 3572-3585, 2008.
    • (2008) IEEE Trans. Signal Process , vol.56 , Issue.8 , pp. 3572-3585
    • Püschel, M.1    Moura, J.M.F.2
  • 45
    • 44449162315 scopus 로고    scopus 로고
    • Algebraic signal processing theory: 1-Dspace
    • M. Püschel and J. M. F. Moura, "Algebraic signal processing theory: 1-Dspace," IEEE Trans. Signal Process., vol. 56, no. 8, pp. 3586-3599, 2008.
    • (2008) IEEE Trans. Signal Process , vol.56 , Issue.8 , pp. 3586-3599
    • Püschel, M.1    Moura, J.M.F.2
  • 46
    • 41849146783 scopus 로고    scopus 로고
    • Algebraic signal processing theory: Cooley-Tukey type algorithms for DCTs and DSTs
    • DOI 10.1109/TSP.2007.907919
    • M. Püschel and J. M. F. Moura, "Algebraic signal processing theory: Cooley-Tukey type algorithms for DCTs and DSTs," IEEE Trans. Signal Process., vol. 56, no. 4, pp. 1502-1521, 2008. (Pubitemid 351493845)
    • (2008) IEEE Transactions on Signal Processing , vol.56 , Issue.4 , pp. 1502-1521
    • Puschel, D.1    Moura, J.M.F.2
  • 47
    • 80051513363 scopus 로고    scopus 로고
    • Algebraic signal processing theory: Cooley-Tukey type algorithms for polynomial transforms based on induction
    • A. Sandryhaila, J. Kovacevic, and M. Püschel, "Algebraic signal processing theory: Cooley-Tukey type algorithms for polynomial transforms based on induction," SIAM J. Matrix Anal. Appl., vol. 32, no. 2, pp. 364-384, 2011.
    • (2011) SIAM J. Matrix Anal. Appl , vol.32 , Issue.2 , pp. 364-384
    • Sandryhaila, A.1    Kovacevic, J.2    Püschel, M.3
  • 48
    • 34249026299 scopus 로고    scopus 로고
    • Algebraic signal processing theory: 2-D spatial hexagonal lattice
    • DOI 10.1109/TIP.2007.896626
    • M. Püschel and M. Rötteler, "Algebraic signal processing theory: 2-D hexagonal spatial lattice," IEEE Trans. Image Process., vol. 16, no. 6, pp. 1506-1521, 2007. (Pubitemid 46796048)
    • (2007) IEEE Transactions on Image Processing , vol.16 , Issue.6 , pp. 1506-1521
    • Puschel, M.1    Rotteler, M.2
  • 49
    • 84860007987 scopus 로고    scopus 로고
    • Algebraic signal processing theory: 1-D nearest-neighbor models
    • A. Sandryhaila, J. Kovacevic, and M. Püschel, "Algebraic signal processing theory: 1-D nearest-neighbor models," IEEE Trans. Signal Process., vol. 60, no. 5, pp. 2247-2259, 2012.
    • (2012) IEEE Trans. Signal Process , vol.60 , Issue.5 , pp. 2247-2259
    • Sandryhaila, A.1    Kovacevic, J.2    Püschel, M.3
  • 50
    • 84855960358 scopus 로고    scopus 로고
    • Efficient compression of QRS complexes using Hermite expansion
    • A. Sandryhaila, S. Saba, M. Püschel, and J. Kovacevic, "Efficient compression of QRS complexes using Hermite expansion," IEEE Trans. Signal Process., vol. 60, no. 2, pp. 947-955, 2012.
    • (2012) IEEE Trans. Signal Process , vol.60 , Issue.2 , pp. 947-955
    • Sandryhaila, A.1    Saba, S.2    Püschel, M.3    Kovacevic, J.4
  • 51
    • 84860002927 scopus 로고    scopus 로고
    • Nearest-neighbor image model
    • To be published
    • A. Sandryhaila and J. M. F. Moura, "Nearest-neighbor image model," in Proc. ICIP, 2012, to be published.
    • (2012) Proc. ICIP
    • Sandryhaila, A.1    Moura, J.M.F.2
  • 53
    • 80052258226 scopus 로고    scopus 로고
    • Matched filtering for subgraph detection in dynamic networks
    • B. A. Miller, M. S. Beard, and N. T. Bliss, "Matched filtering for subgraph detection in dynamic networks," in Proc. SSP, 2011, pp. 509-512.
    • (2011) Proc. SSP , pp. 509-512
    • Miller, B.A.1    Beard, M.S.2    Bliss, N.T.3
  • 57
    • 0003538307 scopus 로고
    • New York, NY USA: Chelsea
    • F. R. Gantmacher, Matrix Theory. New York, NY, USA: Chelsea, 1959, vol. I.
    • (1959) Matrix Theory , vol.1
    • Gantmacher, F.R.1
  • 62
    • 84874977441 scopus 로고    scopus 로고
    • National ClimaticData Center, 2011 [Online].Available: ftp://ftp.ncdc. noaa.gov/pub/data/gsod
    • (2011)
  • 63
    • 84874988642 scopus 로고    scopus 로고
    • NCDC NOAA 1981-2010 Climate Normals, 2011 [Online]. Available: ncdc.noaa.gov/oa/climate/normals/usnormals.html
    • NCDC NOAA 1981-2010 Climate Normals, 2011 [Online]. Available: ncdc.noaa.gov/oa/climate/normals/usnormals.html
  • 64
  • 66
    • 14344254639 scopus 로고    scopus 로고
    • Combining active learning and semi-supervised learning ising Gaussian fields and harmonic functions
    • X. Zhu, J. Lafferty, and Z. Ghahramani, "Combining active learning and semi-supervised learning ising Gaussian fields and harmonic functions," in Proc. ICML, 2003, pp. 58-65.
    • (2003) Proc , vol.ICML , pp. 58-65
    • Zhu, X.1    Lafferty, J.2    Ghahramani, Z.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.