-
3
-
-
84873672132
-
A shift-invariant latent variable model for automatic music transcription
-
E. Benetos and S. Dixon. A shift-invariant latent variable model for automatic music transcription. Computer Music Journal, 36(4):81–94, 2012.
-
(2012)
Computer Music Journal
, vol.36
, Issue.4
, pp. 81-94
-
-
Benetos, E.1
Dixon, S.2
-
4
-
-
84888346652
-
Automatic music transcription: Challenges and future directions
-
December
-
E. Benetos, S. Dixon, D. Giannoulis, H. Kirchhoff, and A. Klapuri. Automatic music transcription: challenges and future directions. Journal of Intelligent Information Systems, 41(3):407–434, December 2013.
-
(2013)
Journal of Intelligent Information Systems
, vol.41
, Issue.3
, pp. 407-434
-
-
Benetos, E.1
Dixon, S.2
Giannoulis, D.3
Kirchhoff, H.4
Klapuri, A.5
-
6
-
-
0028392483
-
Learning long-term dependencies with gradient descent is difficult
-
Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependencies with gradient descent is difficult. IEEE Trans. Neural Networks, 5(2):157–166, 1994.
-
(1994)
IEEE Trans. Neural Networks
, vol.5
, Issue.2
, pp. 157-166
-
-
Bengio, Y.1
Simard, P.2
Frasconi, P.3
-
7
-
-
76949083547
-
Enforcing harmonicity and smoothness in bayesian non-negative matrix factorization applied to polyphonic music transcription
-
March
-
N. Bertin, R. Badeau, and E. Vincent. Enforcing harmonicity and smoothness in Bayesian non-negative matrix factorization applied to polyphonic music transcription. IEEE Trans. Audio, Speech, and Language Processing, 18(3):538–549, March 2010.
-
(2010)
IEEE Trans. Audio, Speech, and Language Processing
, vol.18
, Issue.3
, pp. 538-549
-
-
Bertin, N.1
Badeau, R.2
Vincent, E.3
-
8
-
-
84867593805
-
Polyphonic piano note transcription with recurrent neural networks
-
March
-
S. Böck and M. Schedl. Polyphonic piano note transcription with recurrent neural networks. In ICASSP, pages 121–124, March 2012.
-
(2012)
ICASSP
, pp. 121-124
-
-
Böck, S.1
Schedl, M.2
-
9
-
-
84867129058
-
Modeling temporal dependencies in high-dimensional sequences: Application to polyphonic music generation and transcription
-
N. Boulanger-Lewandowski, Y. Bengio, and P. Vincent. Modeling temporal dependencies in high-dimensional sequences: Application to polyphonic music generation and transcription. In 29th Int. Conf. Machine Learning, 2012.
-
(2012)
29th Int. Conf. Machine Learning
-
-
Boulanger-Lewandowski, N.1
Bengio, Y.2
Vincent, P.3
-
12
-
-
0002629270
-
Maximum likelihood from incomplete data via the EM algorithm
-
A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, 39(1):1–38, 1977.
-
(1977)
Journal of the Royal Statistical Society
, vol.39
, Issue.1
, pp. 1-38
-
-
Dempster, A.P.1
Laird, N.M.2
Rubin, D.B.3
-
13
-
-
77956540787
-
Multiple fundamental frequency estimation by modeling spectral peaks and non-peak regions
-
November
-
Z. Duan, B. Pardo, and C. Zhang. Multiple fundamental frequency estimation by modeling spectral peaks and non-peak regions. IEEE Trans. Audio, Speech, and Language Processing, 18(8):2121–2133, November 2010.
-
(2010)
IEEE Trans. Audio, Speech, and Language Processing
, vol.18
, Issue.8
, pp. 2121-2133
-
-
Duan, Z.1
Pardo, B.2
Zhang, C.3
-
14
-
-
2442437071
-
RWC music database: Music genre database and musical instrument sound database
-
Baltimore, USA, October
-
M. Goto, H. Hashiguchi, T. Nishimura, and R. Oka. RWC music database: music genre database and musical instrument sound database. In ISMIR, Baltimore, USA, October 2003.
-
(2003)
ISMIR
-
-
Goto, M.1
Hashiguchi, H.2
Nishimura, T.3
Oka, R.4
-
16
-
-
85013775361
-
Adaptive nonlinear system identification with echo state networks
-
H. Jaeger. Adaptive nonlinear system identification with echo state networks. In Advances in neural information processing systems, pages 593–600, 2002.
-
(2002)
Advances in Neural Information Processing Systems
, pp. 593-600
-
-
Jaeger, H.1
-
18
-
-
0033592606
-
Learning the parts of objects by non-negative matrix factorization
-
October
-
D. D. Li and H. S. Seung. Learning the parts of objects by non-negative matrix factorization. Nature, 401:788–791, October 1999.
-
(1999)
Nature
, vol.401
, pp. 788-791
-
-
Li, D.D.1
Seung, H.S.2
-
19
-
-
80053451847
-
Learning recurrent neural networks with hessian-free optimization
-
J. Martens and I. Sutskever. Learning recurrent neural networks with Hessian-free optimization. In 28th Int. Conf. Machine Learning, pages 1033–1040, 2011.
-
(2011)
28th Int. Conf. Machine Learning
, pp. 1033-1040
-
-
Martens, J.1
Sutskever, I.2
-
20
-
-
84873578548
-
A classification-based polyphonic piano transcription approach using learned feature representations
-
October
-
J. Nam, J. Ngiam, H. Lee, and M. Slaney. A classification-based polyphonic piano transcription approach using learned feature representations. In ISMIR, pages 175–180, October 2011.
-
(2011)
ISMIR
, pp. 175-180
-
-
Nam, J.1
Ngiam, J.2
Lee, H.3
Slaney, M.4
-
22
-
-
84880524303
-
Dynamic bayesian networks for symbolic polyphonic pitch modeling
-
S.A. Raczynski, E. Vincent, and S. Sagayama. Dynamic Bayesian networks for symbolic polyphonic pitch modeling. IEEE Transactions on Audio, Speech, and Language Processing, 21(9):1830–1840, 2013.
-
(2013)
IEEE Transactions on Audio, Speech, and Language Processing
, vol.21
, Issue.9
, pp. 1830-1840
-
-
Raczynski, S.A.1
Vincent, E.2
Sagayama, S.3
-
24
-
-
77950147390
-
Separation by “humming”: User-guided sound extraction from monophonic mixtures
-
October
-
P. Smaragdis and G. Mysore. Separation by “humming”: user-guided sound extraction from monophonic mixtures. In IEEE WASPAA, pages 69–72, October 2009.
-
(2009)
IEEE WASPAA
, pp. 69-72
-
-
Smaragdis, P.1
Mysore, G.2
-
25
-
-
84857289846
-
A probabilistic latent variable model for acoustic modeling
-
Whistler, Canada, December
-
P. Smaragdis, B. Raj, and M. Shashanka. A probabilistic latent variable model for acoustic modeling. In Neural Information Processing Systems Workshop, Whistler, Canada, December 2006.
-
(2006)
Neural Information Processing Systems Workshop
-
-
Smaragdis, P.1
Raj, B.2
Shashanka, M.3
-
27
-
-
0025503558
-
Backpropagation through time: What it does and how to do it
-
P. J. Werbos. Backpropagation through time: what it does and how to do it. Proceedings of the IEEE, 78(10):1550–1560, 1990.
-
(1990)
Proceedings of the IEEE
, vol.78
, Issue.10
, pp. 1550-1560
-
-
Werbos, P.J.1
|