메뉴 건너뛰기




Volumn 72, Issue , 2015, Pages 464-472

Chondrogenically primed mesenchymal stem cell-seeded alginate hydrogels promote early bone formation in critically-sized defects

Author keywords

Alginate; Degradation; Endochondral ossification; Large bone regeneration

Indexed keywords

ALGINATE; BIOCOMPATIBILITY; BONE; CARTILAGE; CELL CULTURE; DEFECTS; DEGRADATION; FLOWCHARTING; HISTOLOGY; STEM CELLS; TISSUE; TISSUE REGENERATION;

EID: 84945467894     PISSN: 00143057     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eurpolymj.2015.07.021     Document Type: Article
Times cited : (35)

References (46)
  • 1
    • 33847654340 scopus 로고    scopus 로고
    • Cell-based bone tissue engineering
    • G.J. Meijer, and et al. Cell-based bone tissue engineering PLoS Med. 4 2 2007 0260 0264
    • (2007) PLoS Med. , vol.4 , Issue.2 , pp. 0260-0264
    • Meijer, G.J.1
  • 2
    • 0033649024 scopus 로고    scopus 로고
    • Tissue engineering
    • R. Langer Tissue engineering Mol. Ther. 1 1 2000 12 15
    • (2000) Mol. Ther. , vol.1 , Issue.1 , pp. 12-15
    • Langer, R.1
  • 3
    • 77957943567 scopus 로고    scopus 로고
    • The healing of bony defects by cell-free collagen-based scaffolds compared to stem cell-seeded tissue engineered constructs
    • F.G. Lyons, and et al. The healing of bony defects by cell-free collagen-based scaffolds compared to stem cell-seeded tissue engineered constructs Biomaterials 31 35 2010 9232 9243
    • (2010) Biomaterials , vol.31 , Issue.35 , pp. 9232-9243
    • Lyons, F.G.1
  • 4
    • 75749108220 scopus 로고    scopus 로고
    • Vascularization in bone tissue engineering: physiology, current strategies, major hurdles and future challenges
    • M.I. Santos, and R.L. Reis Vascularization in bone tissue engineering: physiology, current strategies, major hurdles and future challenges Macromol. Biosci. 10 1 2010 12 27
    • (2010) Macromol. Biosci. , vol.10 , Issue.1 , pp. 12-27
    • Santos, M.I.1    Reis, R.L.2
  • 5
    • 84938740256 scopus 로고    scopus 로고
    • Recapitulating endochondral ossification: a promising route to in vivo bone regeneration
    • E.M. Thompson, and et al. Recapitulating endochondral ossification: a promising route to in vivo bone regeneration J. Tissue Eng. Regen. Med. 2014
    • (2014) J. Tissue Eng. Regen. Med.
    • Thompson, E.M.1
  • 6
    • 35748954326 scopus 로고    scopus 로고
    • Endochondral ossification: how cartilage is converted into bone in the developing skeleton
    • E.J. Mackie, and et al. Endochondral ossification: how cartilage is converted into bone in the developing skeleton Int. J. Biochem. Cell Biol. 40 1 2008 46 62
    • (2008) Int. J. Biochem. Cell Biol. , vol.40 , Issue.1 , pp. 46-62
    • Mackie, E.J.1
  • 7
    • 67649849633 scopus 로고    scopus 로고
    • Chondrogenic priming of human bone marrow stromal cells: a better route to bone repair?
    • E. Farrell, and et al. Chondrogenic priming of human bone marrow stromal cells: a better route to bone repair? Tissue Eng. Part C Methods 15 2 2009 285 295
    • (2009) Tissue Eng. Part C Methods , vol.15 , Issue.2 , pp. 285-295
    • Farrell, E.1
  • 8
    • 77952199886 scopus 로고    scopus 로고
    • Recapitulation of endochondral bone formation using human adult mesenchymal stem cells as a paradigm for developmental engineering
    • C. Scotti, and et al. Recapitulation of endochondral bone formation using human adult mesenchymal stem cells as a paradigm for developmental engineering Proc. Natl. Acad. Sci. USA 107 16 2010 7251 7256
    • (2010) Proc. Natl. Acad. Sci. USA , vol.107 , Issue.16 , pp. 7251-7256
    • Scotti, C.1
  • 9
    • 84874615532 scopus 로고    scopus 로고
    • Engineering of a functional bone organ through endochondral ossification
    • C. Scotti, and et al. Engineering of a functional bone organ through endochondral ossification Proc. Natl. Acad. Sci. USA 110 10 2013 3997 4002
    • (2013) Proc. Natl. Acad. Sci. USA , vol.110 , Issue.10 , pp. 3997-4002
    • Scotti, C.1
  • 10
    • 84896711225 scopus 로고    scopus 로고
    • Chondrogenically differentiated mesenchymal stromal cell pellets stimulate endochondral bone regeneration in critical-sized bone defects
    • J. van der Stok, and et al. Chondrogenically differentiated mesenchymal stromal cell pellets stimulate endochondral bone regeneration in critical-sized bone defects Eur. Cell Mater. 27 2014 137 148
    • (2014) Eur. Cell Mater. , vol.27 , pp. 137-148
    • Van Der Stok, J.1
  • 11
    • 33645689091 scopus 로고    scopus 로고
    • Lunate arthroplasty with autologous mesenchymal stem cells in a rabbit model
    • J.I. Huang, and et al. Lunate arthroplasty with autologous mesenchymal stem cells in a rabbit model J. Bone Joint Surg. - Ser. A 88 4 2006 744 752
    • (2006) J. Bone Joint Surg. - Ser. A , vol.88 , Issue.4 , pp. 744-752
    • Huang, J.I.1
  • 12
    • 79251570874 scopus 로고    scopus 로고
    • In-vivo generation of bone via endochondral ossification by in-vitro chondrogenic priming of adult human and rat mesenchymal stem cells
    • E. Farrell, and et al. In-vivo generation of bone via endochondral ossification by in-vitro chondrogenic priming of adult human and rat mesenchymal stem cells BMC Muscle. Disorders 12 31 2011
    • (2011) BMC Muscle. Disorders , vol.12 , Issue.31
    • Farrell, E.1
  • 13
    • 77955066100 scopus 로고    scopus 로고
    • Modulating endochondral ossification of multipotent stromal cells for bone regeneration
    • D. Gawlitta, and et al. Modulating endochondral ossification of multipotent stromal cells for bone regeneration Tissue Eng. - Part B: Rev. 16 4 2010 385 395
    • (2010) Tissue Eng. - Part B: Rev. , vol.16 , Issue.4 , pp. 385-395
    • Gawlitta, D.1
  • 14
    • 77956374419 scopus 로고    scopus 로고
    • Chondrogenic pre-induction of human mesenchymal stem cells on β-TCP: enhanced bone quality by endochondral heterotopic bone formation
    • P. Janicki, and et al. Chondrogenic pre-induction of human mesenchymal stem cells on β-TCP: enhanced bone quality by endochondral heterotopic bone formation Acta Biomater. 6 8 2010 3292 3301
    • (2010) Acta Biomater. , vol.6 , Issue.8 , pp. 3292-3301
    • Janicki, P.1
  • 15
    • 84903462515 scopus 로고    scopus 로고
    • Bone regeneration in a massive rat femur defect through endochondral ossification achieved with chondrogenically differentiated MSCs in a degradable scaffold
    • N. Harada, and et al. Bone regeneration in a massive rat femur defect through endochondral ossification achieved with chondrogenically differentiated MSCs in a degradable scaffold Biomaterials 35 27 2014 7800 7810
    • (2014) Biomaterials , vol.35 , Issue.27 , pp. 7800-7810
    • Harada, N.1
  • 16
    • 77957312861 scopus 로고    scopus 로고
    • Bioreactor based engineering of large-scale human cartilage grafts for joint resurfacing
    • R. Santoro, and et al. Bioreactor based engineering of large-scale human cartilage grafts for joint resurfacing Biomaterials 31 34 2010 8946 8952
    • (2010) Biomaterials , vol.31 , Issue.34 , pp. 8946-8952
    • Santoro, R.1
  • 17
    • 80053166672 scopus 로고    scopus 로고
    • Chondrocytes and bone marrow-derived mesenchymal stem cells undergoing chondrogenesis in agarose hydrogels of solid and channelled architectures respond differentially to dynamic culture conditions
    • E.J. Sheehy, C.T. Buckley, and D.J. Kelly Chondrocytes and bone marrow-derived mesenchymal stem cells undergoing chondrogenesis in agarose hydrogels of solid and channelled architectures respond differentially to dynamic culture conditions J. Tissue Eng. Regen. Med. 5 9 2011 747 758
    • (2011) J. Tissue Eng. Regen. Med. , vol.5 , Issue.9 , pp. 747-758
    • Sheehy, E.J.1    Buckley, C.T.2    Kelly, D.J.3
  • 18
    • 84890950683 scopus 로고    scopus 로고
    • A comparison of self-assembly and hydrogel encapsulation as a means to engineer functional cartilaginous grafts using culture expanded chondrocytes
    • T. Mesallati, C.T. Buckley, and D.J. Kelly A comparison of self-assembly and hydrogel encapsulation as a means to engineer functional cartilaginous grafts using culture expanded chondrocytes Tissue Eng. - Part C: Methods 20 1 2014 52 63
    • (2014) Tissue Eng. - Part C: Methods , vol.20 , Issue.1 , pp. 52-63
    • Mesallati, T.1    Buckley, C.T.2    Kelly, D.J.3
  • 19
    • 72649089182 scopus 로고    scopus 로고
    • Engineering of large cartilaginous tissues through the use of microchanneled hydrogels and rotational culture
    • C.T. Buckley, S.D. Thorpe, and D.J. Kelly Engineering of large cartilaginous tissues through the use of microchanneled hydrogels and rotational culture Tissue Eng. - Part A 15 11 2009 3213 3220
    • (2009) Tissue Eng. - Part A , vol.15 , Issue.11 , pp. 3213-3220
    • Buckley, C.T.1    Thorpe, S.D.2    Kelly, D.J.3
  • 20
    • 0042061223 scopus 로고    scopus 로고
    • Hydrogels for tissue engineering: scaffold design variables and applications
    • J.L. Drury, and D.J. Mooney Hydrogels for tissue engineering: scaffold design variables and applications Biomaterials 24 24 2003 4337 4351
    • (2003) Biomaterials , vol.24 , Issue.24 , pp. 4337-4351
    • Drury, J.L.1    Mooney, D.J.2
  • 21
    • 33846804536 scopus 로고    scopus 로고
    • Hydrogel effects on bone marrow stromal cell response to chondrogenic growth factors
    • R.M. Coleman, N.D. Case, and R.E. Guldberg Hydrogel effects on bone marrow stromal cell response to chondrogenic growth factors Biomaterials 28 12 2007 2077 2086
    • (2007) Biomaterials , vol.28 , Issue.12 , pp. 2077-2086
    • Coleman, R.M.1    Case, N.D.2    Guldberg, R.E.3
  • 22
    • 84931581549 scopus 로고    scopus 로고
    • Biomedical applications of hydrogels: a review of patents and commercial products
    • Available online 28 November 2014
    • E. Caló, and V.V. Khutoryanskiy Biomedical applications of hydrogels: a review of patents and commercial products Eur. Polym. J. 2014 Available online 28 November 2014
    • (2014) Eur. Polym. J.
    • Caló, E.1    Khutoryanskiy, V.V.2
  • 24
    • 80455173988 scopus 로고    scopus 로고
    • Alginate: properties and biomedical applications
    • K.Y. Lee, and D.J. Mooney Alginate: properties and biomedical applications Prog. Polym. Sci. 37 1 2012 106 126
    • (2012) Prog. Polym. Sci. , vol.37 , Issue.1 , pp. 106-126
    • Lee, K.Y.1    Mooney, D.J.2
  • 25
    • 84880093461 scopus 로고    scopus 로고
    • Alginate-based biomaterials for regenerative medicine applications
    • J. Sun, and H. Tan Alginate-based biomaterials for regenerative medicine applications Materials 6 4 2013 1285 1309
    • (2013) Materials , vol.6 , Issue.4 , pp. 1285-1309
    • Sun, J.1    Tan, H.2
  • 26
    • 84865449939 scopus 로고    scopus 로고
    • Variations in chondrogenesis of human bone marrow-derived mesenchymal stem cells in fibrin/alginate blended hydrogels
    • K. Ma, and et al. Variations in chondrogenesis of human bone marrow-derived mesenchymal stem cells in fibrin/alginate blended hydrogels Acta Biomater. 8 10 2012 3754 3764
    • (2012) Acta Biomater. , vol.8 , Issue.10 , pp. 3754-3764
    • Ma, K.1
  • 27
    • 1242295266 scopus 로고    scopus 로고
    • Chondrogenic differentiation of adipose-derived adult stem cells in agarose, alginate, and gelatin scaffolds
    • H.A. Awad, and et al. Chondrogenic differentiation of adipose-derived adult stem cells in agarose, alginate, and gelatin scaffolds Biomaterials 25 16 2004 3211 3222
    • (2004) Biomaterials , vol.25 , Issue.16 , pp. 3211-3222
    • Awad, H.A.1
  • 28
    • 84898426424 scopus 로고    scopus 로고
    • The in vitro and in vivo capacity of culture-expanded human cells from several sources encapsulated in alginate to form cartilage
    • M.M. Pleumeekers, and et al. The in vitro and in vivo capacity of culture-expanded human cells from several sources encapsulated in alginate to form cartilage Eur. Cell Mater. 27 2014 264 280
    • (2014) Eur. Cell Mater. , vol.27 , pp. 264-280
    • Pleumeekers, M.M.1
  • 29
    • 34248587094 scopus 로고    scopus 로고
    • Ectopic osteogenesis and chondrogenesis of bone marrow stromal stem cells in alginate system
    • X. Cai, and et al. Ectopic osteogenesis and chondrogenesis of bone marrow stromal stem cells in alginate system Cell Biol. Int. 31 8 2007 776 783
    • (2007) Cell Biol. Int. , vol.31 , Issue.8 , pp. 776-783
    • Cai, X.1
  • 30
    • 84920715952 scopus 로고    scopus 로고
    • Engineering cartilage or endochondral bone: a comparison of different naturally derived hydrogels
    • E.J. Sheehy, and et al. Engineering cartilage or endochondral bone: a comparison of different naturally derived hydrogels Acta Biomater. 13 2015 245 253
    • (2015) Acta Biomater. , vol.13 , pp. 245-253
    • Sheehy, E.J.1
  • 31
    • 78349309536 scopus 로고    scopus 로고
    • An alginate-based hybrid system for growth factor delivery in the functional repair of large bone defects
    • Y.M. Kolambkar, and et al. An alginate-based hybrid system for growth factor delivery in the functional repair of large bone defects Biomaterials 32 1 2011 65 74
    • (2011) Biomaterials , vol.32 , Issue.1 , pp. 65-74
    • Kolambkar, Y.M.1
  • 32
    • 3142703230 scopus 로고    scopus 로고
    • Dual growth factor delivery and controlled scaffold degradation enhance in vivo bone formation by transplanted bone marrow stromal cells
    • C.A. Simmons, and et al. Dual growth factor delivery and controlled scaffold degradation enhance in vivo bone formation by transplanted bone marrow stromal cells Bone 35 2 2004 562 569
    • (2004) Bone , vol.35 , Issue.2 , pp. 562-569
    • Simmons, C.A.1
  • 33
    • 84992187119 scopus 로고    scopus 로고
    • Tissue engineering whole bones through endochondral ossification: regenerating the distal phalanx
    • E.J. Sheehy, and et al. Tissue engineering whole bones through endochondral ossification: regenerating the distal phalanx BioRes. Open Access 4 1 2015 229 241
    • (2015) BioRes. Open Access , vol.4 , Issue.1 , pp. 229-241
    • Sheehy, E.J.1
  • 34
    • 84897074272 scopus 로고    scopus 로고
    • Altering the architecture of tissue engineered hypertrophic cartilaginous grafts facilitates vascularisation and accelerates mineralisation
    • E.J. Sheehy, and et al. Altering the architecture of tissue engineered hypertrophic cartilaginous grafts facilitates vascularisation and accelerates mineralisation PLoS One 9 3 2014 e90716
    • (2014) PLoS One , vol.9 , Issue.3
    • Sheehy, E.J.1
  • 35
    • 79551556433 scopus 로고    scopus 로고
    • Elastomeric osteoconductive synthetic scaffolds with acquired osteoinductivity expedite the repair of critical femoral defects in rats
    • T.M. Filion, and et al. Elastomeric osteoconductive synthetic scaffolds with acquired osteoinductivity expedite the repair of critical femoral defects in rats Tissue Eng. Part A 17 3-4 2011 503 511
    • (2011) Tissue Eng. Part A , vol.17 , Issue.3-4 , pp. 503-511
    • Filion, T.M.1
  • 36
    • 84866145758 scopus 로고    scopus 로고
    • Inducing ossification in an engineered 3D scaffold-free living cartilage template
    • T.T. Lau, and et al. Inducing ossification in an engineered 3D scaffold-free living cartilage template Biomaterials 33 33 2012 8406 8417
    • (2012) Biomaterials , vol.33 , Issue.33 , pp. 8406-8417
    • Lau, T.T.1
  • 37
    • 64549096039 scopus 로고    scopus 로고
    • Engineering endochondral bone: in vivo studies
    • S.M. Oliveira, and et al. Engineering endochondral bone: in vivo studies Tissue Eng. - Part A 15 3 2009 635 643
    • (2009) Tissue Eng. - Part A , vol.15 , Issue.3 , pp. 635-643
    • Oliveira, S.M.1
  • 38
    • 84917694815 scopus 로고    scopus 로고
    • Osteoinductivity of engineered cartilaginous templates devitalized by inducible apoptosis
    • P.E. Bourgine, and et al. Osteoinductivity of engineered cartilaginous templates devitalized by inducible apoptosis Proc. Natl. Acad. Sci. 111 49 2014 17426 17431
    • (2014) Proc. Natl. Acad. Sci. , vol.111 , Issue.49 , pp. 17426-17431
    • Bourgine, P.E.1
  • 39
    • 61549109884 scopus 로고    scopus 로고
    • Photocrosslinked alginate hydrogels with tunable biodegradation rates and mechanical properties
    • O. Jeon, and et al. Photocrosslinked alginate hydrogels with tunable biodegradation rates and mechanical properties Biomaterials 30 14 2009 2724 2734
    • (2009) Biomaterials , vol.30 , Issue.14 , pp. 2724-2734
    • Jeon, O.1
  • 40
    • 2342458374 scopus 로고    scopus 로고
    • Cranial repair using BMP-2 gene engineered bone marrow stromal cells1
    • S.C.-N. Chang, and et al. Cranial repair using BMP-2 gene engineered bone marrow stromal cells1 J. Surg. Res. 119 1 2004 85 91
    • (2004) J. Surg. Res. , vol.119 , Issue.1 , pp. 85-91
    • Chang, S.C.-N.1
  • 41
    • 84907494045 scopus 로고    scopus 로고
    • Alginate composites for bone tissue engineering: a review
    • J. Venkatesan, and et al. Alginate composites for bone tissue engineering: a review Int. J. Biol. Macromol. 72 2015 269 281
    • (2015) Int. J. Biol. Macromol. , vol.72 , pp. 269-281
    • Venkatesan, J.1
  • 42
    • 0642343446 scopus 로고    scopus 로고
    • Regulating bone formation via controlled scaffold degradation
    • E. Alsberg, and et al. Regulating bone formation via controlled scaffold degradation J. Dental Res. 82 11 2003 903 908
    • (2003) J. Dental Res. , vol.82 , Issue.11 , pp. 903-908
    • Alsberg, E.1
  • 43
    • 0037125967 scopus 로고    scopus 로고
    • Engineering growing tissues
    • E. Alsberg, and et al. Engineering growing tissues Proc. Natl. Acad. Sci. 99 19 2002 12025 12030
    • (2002) Proc. Natl. Acad. Sci. , vol.99 , Issue.19 , pp. 12025-12030
    • Alsberg, E.1
  • 44
    • 10044293137 scopus 로고    scopus 로고
    • Controlling alginate gel degradation utilizing partial oxidation and bimodal molecular weight distribution
    • T. Boontheekul, H.-J. Kong, and D.J. Mooney Controlling alginate gel degradation utilizing partial oxidation and bimodal molecular weight distribution Biomaterials 26 15 2005 2455 2465
    • (2005) Biomaterials , vol.26 , Issue.15 , pp. 2455-2465
    • Boontheekul, T.1    Kong, H.-J.2    Mooney, D.J.3
  • 45
    • 84872041618 scopus 로고    scopus 로고
    • Interleukin-1β modulates endochondral ossification by human adult bone marrow stromal cells
    • M. Mumme, and et al. Interleukin-1β modulates endochondral ossification by human adult bone marrow stromal cells Eur. Cells Mater. 24 2012 224 236
    • (2012) Eur. Cells Mater. , vol.24 , pp. 224-236
    • Mumme, M.1
  • 46
    • 72649087102 scopus 로고    scopus 로고
    • Octacalcium phosphate-precipitated alginate scaffold for bone regeneration
    • T. Fuji, and et al. Octacalcium phosphate-precipitated alginate scaffold for bone regeneration Tissue Eng. Part A 15 11 2009 3525 3535
    • (2009) Tissue Eng. Part A , vol.15 , Issue.11 , pp. 3525-3535
    • Fuji, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.