메뉴 건너뛰기




Volumn 15, Issue 1, 2015, Pages

Statistical power in parallel group point exposure studies with time-to-event outcomes: An empirical comparison of the performance of randomized controlled trials and the inverse probability of treatment weighting (IPTW) approach

Author keywords

Causal inference; Inverse probability of treatment weighting; Monte Carlo simulations; Observational study; Propensity score; Randomized controlled trial; Survival analysis

Indexed keywords

COMPARATIVE STUDY; HUMAN; METHODOLOGY; MONTE CARLO METHOD; OBSERVATIONAL STUDY; PROCEDURES; PROPENSITY SCORE; PROPORTIONAL HAZARDS MODEL; RANDOMIZED CONTROLLED TRIAL (TOPIC); STATISTICAL ANALYSIS; SURVIVAL ANALYSIS;

EID: 84944754060     PISSN: None     EISSN: 14712288     Source Type: Journal    
DOI: 10.1186/s12874-015-0081-3     Document Type: Article
Times cited : (10)

References (29)
  • 1
    • 77951622706 scopus 로고
    • The central role of the propensity score in observational studies for causal effects
    • Rosenbaum PR, Rubin DB. The central role of the propensity score in observational studies for causal effects. Biometrika. 1983;70:41-55.
    • (1983) Biometrika , vol.70 , pp. 41-55
    • Rosenbaum, P.R.1    Rubin, D.B.2
  • 2
    • 84949193513 scopus 로고
    • Reducing bias in observational studies using subclassification on the propensity score
    • Rosenbaum PR, Rubin DB. Reducing bias in observational studies using subclassification on the propensity score. J Am Stat Assoc. 1984;79:516-24.
    • (1984) J Am Stat Assoc , vol.79 , pp. 516-524
    • Rosenbaum, P.R.1    Rubin, D.B.2
  • 3
    • 79958704133 scopus 로고    scopus 로고
    • An introduction to propensity-score methods for reducing the effects of confounding in observational studies
    • 10.1080/00273171.2011.568786
    • Austin PC. An introduction to propensity-score methods for reducing the effects of confounding in observational studies. Multivar Behav Res. 2011;46:399-424. doi: 10.1080/00273171.2011.568786.
    • (2011) Multivar Behav Res , vol.46 , pp. 399-424
    • Austin, P.C.1
  • 4
    • 0000157861 scopus 로고
    • Model-based direct adjustment
    • Rosenbaum PR. Model-based direct adjustment. J Am Stat Assoc. 1987;82:387-94.
    • (1987) J Am Stat Assoc , vol.82 , pp. 387-394
    • Rosenbaum, P.R.1
  • 5
    • 79951791644 scopus 로고    scopus 로고
    • A tutorial and case study in propensity score analysis: An application to estimating the effect of in-hospital smoking cessation counseling on mortality
    • 10.1080/00273171.2011.540480
    • Austin PC. A tutorial and case study in propensity score analysis: an application to estimating the effect of in-hospital smoking cessation counseling on mortality. Multivar Behav Res. 2011;46:119-51. doi: 10.1080/00273171.2011.540480.
    • (2011) Multivar Behav Res , vol.46 , pp. 119-151
    • Austin, P.C.1
  • 6
    • 84944796673 scopus 로고    scopus 로고
    • Moving towards best practice when using inverse probability of treatment weighting (IPTW) using the propensity score to estimate causal treatment effects in observational studies
    • 10.1002/sim.6607
    • Austin PC, Stuart EA. Moving towards best practice when using inverse probability of treatment weighting (IPTW) using the propensity score to estimate causal treatment effects in observational studies. Stat Med. 2015. doi: 10.1002/sim.6607.
    • (2015) Stat Med
    • Austin, P.C.1    Stuart, E.A.2
  • 7
    • 33745842238 scopus 로고    scopus 로고
    • Estimating causal effects from epidemiological data
    • 10.1136/jech.2004.029496 2652882 16790829
    • Hernan MA, Robins JM. Estimating causal effects from epidemiological data. J Epidemiol Community Health. 2006;60:578-86. doi: 10.1136/jech.2004.029496.
    • (2006) J Epidemiol Community Health , vol.60 , pp. 578-586
    • Hernan, M.A.1    Robins, J.M.2
  • 8
    • 0023203943 scopus 로고
    • Interpretation and choice of effect measures in epidemiologic analyses
    • 1:STN:280:DyaL2s7otFKhtw%3D%3D 3551588
    • Greenland S. Interpretation and choice of effect measures in epidemiologic analyses. Am J Epidemiol. 1987;125(5):761-8.
    • (1987) Am J Epidemiol , vol.125 , Issue.5 , pp. 761-768
    • Greenland, S.1
  • 9
    • 0002864224 scopus 로고    scopus 로고
    • Confounding and collapsibility in causal inference
    • Greenland S, Robins JM, Pearl J. Confounding and collapsibility in causal inference. Stat Sci. 1999;14:29-46.
    • (1999) Stat Sci , vol.14 , pp. 29-46
    • Greenland, S.1    Robins, J.M.2    Pearl, J.3
  • 11
    • 0020974571 scopus 로고
    • Sample-size formula for the proportional-hazards regression model
    • 1:STN:280:DyaL2c%2FisVyqtQ%3D%3D 6354290
    • Schoenfeld DA. Sample-size formula for the proportional-hazards regression model. Biometrics. 1983;39(2):499-503.
    • (1983) Biometrics , vol.39 , Issue.2 , pp. 499-503
    • Schoenfeld, D.A.1
  • 12
    • 0023464656 scopus 로고
    • Statistical methods in cancer research. Volume II - The design and analysis of cohort studies
    • Breslow NE, Day NE. Statistical methods in cancer research. Volume II - The design and analysis of cohort studies. IARC Sci Publ. 1987;82:1-406.
    • (1987) IARC Sci Publ , vol.82 , pp. 1-406
    • Breslow, N.E.1    Day, N.E.2
  • 13
    • 72749123968 scopus 로고    scopus 로고
    • A substantial and confusing variation exists in handling of baseline covariates in randomized controlled trials: A review of trials published in leading medical journals
    • 10.1016/j.jclinepi.2009.06.002 19716262
    • Austin PC, Manca A, Zwarenstein M, Juurlink DN, Stanbrook MB. A substantial and confusing variation exists in handling of baseline covariates in randomized controlled trials: a review of trials published in leading medical journals. J Clin Epidemiol. 2010;63(2):142-53. doi: 10.1016/j.jclinepi.2009.06.002.
    • (2010) J Clin Epidemiol , vol.63 , Issue.2 , pp. 142-153
    • Austin, P.C.1    Manca, A.2    Zwarenstein, M.3    Juurlink, D.N.4    Stanbrook, M.B.5
  • 14
    • 84879167098 scopus 로고    scopus 로고
    • The performance of different propensity score methods for estimating marginal hazard ratios
    • 10.1002/sim.5705
    • Austin PC. The performance of different propensity score methods for estimating marginal hazard ratios. Stastisics in Medicine. 2012. doi: 10.1002/sim.5705.
    • (2012) Stastisics in Medicine
    • Austin, P.C.1
  • 15
    • 84862319389 scopus 로고    scopus 로고
    • Interpreting the concordance statistic of a logistic regression model: Relation to the variance and odds ratio of a continuous explanatory variable
    • 10.1186/1471-2288-12-82 3528632 22716998
    • Austin PC, Steyerberg EW. Interpreting the concordance statistic of a logistic regression model: relation to the variance and odds ratio of a continuous explanatory variable. BMC Med Res Methodol. 2012;12:82. doi: 10.1186/1471-2288-12-82.
    • (2012) BMC Med Res Methodol , vol.12 , pp. 82
    • Austin, P.C.1    Steyerberg, E.W.2
  • 16
    • 19944372078 scopus 로고    scopus 로고
    • Generating survival times to simulate Cox proportional hazards models
    • 15724232
    • Bender R, Augustin T, Blettner M. Generating survival times to simulate Cox proportional hazards models. Stat Med. 2005;24(11):1713-23.
    • (2005) Stat Med , vol.24 , Issue.11 , pp. 1713-1723
    • Bender, R.1    Augustin, T.2    Blettner, M.3
  • 17
    • 1942542443 scopus 로고    scopus 로고
    • Lipid-lowering therapy with statins in high-risk elderly patients: The treatment-risk paradox
    • 1:CAS:528:DC%2BD2cXjsVajsLs%3D 15100205
    • Ko DT, Mamdani M, Alter DA. Lipid-lowering therapy with statins in high-risk elderly patients: the treatment-risk paradox. JAMA. 2004;291:1864-70.
    • (2004) JAMA , vol.291 , pp. 1864-1870
    • Ko, D.T.1    Mamdani, M.2    Alter, D.A.3
  • 18
    • 77349087330 scopus 로고    scopus 로고
    • A data-generation process for data with specified risk differences or numbers needed to treat
    • 10.1080/03610910903528301
    • Austin PC. A data-generation process for data with specified risk differences or numbers needed to treat. Communications in Statistics - Simulation and Computation. 2010;39:563-77. doi: 10.1080/03610910903528301.
    • (2010) Communications in Statistics - Simulation and Computation , vol.39 , pp. 563-577
    • Austin, P.C.1
  • 19
    • 47749131861 scopus 로고    scopus 로고
    • The performance of two data-generation processes for data with specified marginal treatment odds ratios
    • Austin PC, Stafford J. The performance of two data-generation processes for data with specified marginal treatment odds ratios. Communications in Statistics - Simulation and Computation. 2008;37:1039-51.
    • (2008) Communications in Statistics - Simulation and Computation , vol.37 , pp. 1039-1051
    • Austin, P.C.1    Stafford, J.2
  • 20
    • 33846842327 scopus 로고    scopus 로고
    • A comparison of the ability of different propensity score models to balance measured variables between treated and untreated subjects: A Monte Carlo study
    • 16708349
    • Austin PC, Grootendorst P, Anderson GM. A comparison of the ability of different propensity score models to balance measured variables between treated and untreated subjects: a Monte Carlo study. Stat Med. 2007;26(4):734-53.
    • (2007) Stat Med , vol.26 , Issue.4 , pp. 734-753
    • Austin, P.C.1    Grootendorst, P.2    Anderson, G.M.3
  • 21
    • 48249118348 scopus 로고    scopus 로고
    • Impact of mis-specification of the treatment model on estimates from a marginal structural model
    • Lefebvre G, Delaney JA, Platt RW. Impact of mis-specification of the treatment model on estimates from a marginal structural model. Stastisics in Medicine. 2008;27(18):3629-42.
    • (2008) Stastisics in Medicine , vol.27 , Issue.18 , pp. 3629-3642
    • Lefebvre, G.1    Delaney, J.A.2    Platt, R.W.3
  • 22
    • 4444230264 scopus 로고    scopus 로고
    • Stratification and weighting via the propensity score in estimation of causal treatment effects: A comparative study
    • 15351954
    • Lunceford JK, Davidian M. Stratification and weighting via the propensity score in estimation of causal treatment effects: a comparative study. Stat Med. 2004;23(19):2937-60.
    • (2004) Stat Med , vol.23 , Issue.19 , pp. 2937-2960
    • Lunceford, J.K.1    Davidian, M.2
  • 23
    • 2442628111 scopus 로고    scopus 로고
    • Adjusted survival curves with inverse probability weights
    • 15158046
    • Cole SR, Hernan MA. Adjusted survival curves with inverse probability weights. Comput Methods Programs Biomed. 2004;75:45-9.
    • (2004) Comput Methods Programs Biomed , vol.75 , pp. 45-49
    • Cole, S.R.1    Hernan, M.A.2
  • 24
    • 51749124303 scopus 로고    scopus 로고
    • Constructing inverse probability weights for marginal structural models
    • 10.1093/aje/kwn164 2732954 18682488
    • Cole SR, Hernan MA. Constructing inverse probability weights for marginal structural models. Am J Epidemiol. 2008;168(6):656-64. doi: 10.1093/aje/kwn164.
    • (2008) Am J Epidemiol , vol.168 , Issue.6 , pp. 656-664
    • Cole, S.R.1    Hernan, M.A.2
  • 25
    • 84888862680 scopus 로고
    • Estimation of regression coefficients when some regressors are not always observed
    • Robins JM, Rotnitzky A, Zhao LP. Estimation of regression coefficients when some regressors are not always observed. J Am Stat Assoc. 1994;89(427):846-66.
    • (1994) J Am Stat Assoc , vol.89 , Issue.427 , pp. 846-866
    • Robins, J.M.1    Rotnitzky, A.2    Zhao, L.P.3
  • 26
    • 8744315994 scopus 로고    scopus 로고
    • Model selection, confounder control, and marginal structural models: Review and new applications
    • Joffe MM, Ten Have TR, Feldman HI, Kimmel SE. Model selection, confounder control, and marginal structural models: Review and new applications. Am Stat. 2004;58:272-9.
    • (2004) Am Stat , vol.58 , pp. 272-279
    • Joffe, M.M.1    Ten Have, T.R.2    Feldman, H.I.3    Kimmel, S.E.4
  • 27
    • 84892372742 scopus 로고
    • The robust inference for the proportional hazards model
    • 10.1080/01621459.1989.10478874
    • Lin DY, Wei LJ. The robust inference for the proportional hazards model. J Am Stat Assoc. 1989;84(408):1074-8. doi: 10.1080/01621459.1989.10478874.
    • (1989) J Am Stat Assoc , vol.84 , Issue.408 , pp. 1074-1078
    • Lin, D.Y.1    Wei, L.J.2
  • 28
    • 33645226210 scopus 로고    scopus 로고
    • A review of the application of propensity score methods yielded increasing use, advantages in specific settings, but not substantially different estimates compared with conventional multivariable methods
    • 1448214 16632131
    • Sturmer T, Joshi M, Glynn RJ, Avorn J, Rothman KJ, Schneeweiss S. A review of the application of propensity score methods yielded increasing use, advantages in specific settings, but not substantially different estimates compared with conventional multivariable methods. J Clin Epidemiol. 2006;59(5):437-47.
    • (2006) J Clin Epidemiol , vol.59 , Issue.5 , pp. 437-447
    • Sturmer, T.1    Joshi, M.2    Glynn, R.J.3    Avorn, J.4    Rothman, K.J.5    Schneeweiss, S.6
  • 29
    • 19144368778 scopus 로고    scopus 로고
    • The use of the propensity score for estimating treatment effects: Administrative versus clinical data
    • 15706581
    • Austin PC, Mamdani MM, Stukel TA, Anderson GM, Tu JV. The use of the propensity score for estimating treatment effects: administrative versus clinical data. Stat Med. 2005;24(10):1563-78.
    • (2005) Stat Med , vol.24 , Issue.10 , pp. 1563-1578
    • Austin, P.C.1    Mamdani, M.M.2    Stukel, T.A.3    Anderson, G.M.4    Tu, J.V.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.