메뉴 건너뛰기




Volumn 87, Issue , 2015, Pages 681-692

Corrosion-fatigue lifetime of Aluminium-Copper-Lithium alloy 2050 in chloride solution

Author keywords

Aluminium copper lithium alloy; Corrosion morphology; Fatigue endurance; Fatigue corrosion

Indexed keywords

ALUMINUM; ATMOSPHERIC CORROSION; CHLORINE COMPOUNDS; COPPER; CORROSION; FATIGUE OF MATERIALS; LITHIUM; LITHIUM ALLOYS; METALLURGY; METALS;

EID: 84944685303     PISSN: 02641275     EISSN: 18734197     Source Type: Journal    
DOI: 10.1016/j.matdes.2015.08.003     Document Type: Article
Times cited : (53)

References (44)
  • 1
    • 0034217290 scopus 로고    scopus 로고
    • Physical and mechanical properties of cast under vacuum aluminum alloy 2024 containing lithium additions
    • Meric C. Physical and mechanical properties of cast under vacuum aluminum alloy 2024 containing lithium additions. Mater. Res. Bull. 2000, 35:1479-1494.
    • (2000) Mater. Res. Bull. , vol.35 , pp. 1479-1494
    • Meric, C.1
  • 2
    • 84891053406 scopus 로고    scopus 로고
    • Recent developments in advanced aircraft aluminium alloys
    • Tolga D., Costas S. Recent developments in advanced aircraft aluminium alloys. Mater. Des. 2014, 56:862-871.
    • (2014) Mater. Des. , vol.56 , pp. 862-871
    • Tolga, D.1    Costas, S.2
  • 3
    • 0035484723 scopus 로고    scopus 로고
    • Localized corrosion susceptibility of Al-Li-Cu-Mg-Zn alloy AF/C458 due to interrupted quenching from solutionizing temperatures
    • Kertz J.E., Gouma P.I., Buchheit R.G. Localized corrosion susceptibility of Al-Li-Cu-Mg-Zn alloy AF/C458 due to interrupted quenching from solutionizing temperatures. Metall. Mater. Trans. A 2001, 33:2561-2573.
    • (2001) Metall. Mater. Trans. A , vol.33 , pp. 2561-2573
    • Kertz, J.E.1    Gouma, P.I.2    Buchheit, R.G.3
  • 4
    • 17644426682 scopus 로고    scopus 로고
    • Effect of aging on mechanical properties and localized corrosion behaviors of Al-Cu-Li alloy
    • Jiang N., Li J.F., Zheng Z.Q. Effect of aging on mechanical properties and localized corrosion behaviors of Al-Cu-Li alloy. Trans. Nonferrous Met. Soc. China 2005, 15:23-29.
    • (2005) Trans. Nonferrous Met. Soc. China , vol.15 , pp. 23-29
    • Jiang, N.1    Li, J.F.2    Zheng, Z.Q.3
  • 8
    • 0028378853 scopus 로고
    • 2CuLi) intermetallic compound and its role in localized corrosion of Al-2% Li-3% Cu Alloys
    • 2CuLi) intermetallic compound and its role in localized corrosion of Al-2% Li-3% Cu Alloys. Corrosion 1994, 50:120-130.
    • (1994) Corrosion , vol.50 , pp. 120-130
    • Buchheit, R.G.1    Moran, J.P.2    Stoner, G.E.3
  • 9
    • 84878348898 scopus 로고    scopus 로고
    • Characterization and understanding of the corrosion behaviour of the nugget in a 2050 aluminum alloy friction stir welding joint
    • Proton V., Alexis J., Andrieu A., Delfosse J., Laffont M.-C., Blanc C. Characterization and understanding of the corrosion behaviour of the nugget in a 2050 aluminum alloy friction stir welding joint. Corros. Sci. 2013, 73:130-142.
    • (2013) Corros. Sci. , vol.73 , pp. 130-142
    • Proton, V.1    Alexis, J.2    Andrieu, A.3    Delfosse, J.4    Laffont, M.-C.5    Blanc, C.6
  • 10
    • 0025471678 scopus 로고
    • Localized corrosion behavior of alloy 2090-the role of microstructure heterogeneity
    • Buchheit R.G., Moran J.P., Stoner G.E. Localized corrosion behavior of alloy 2090-the role of microstructure heterogeneity. Corrosion 1990, 46:610-617.
    • (1990) Corrosion , vol.46 , pp. 610-617
    • Buchheit, R.G.1    Moran, J.P.2    Stoner, G.E.3
  • 11
    • 77950297150 scopus 로고    scopus 로고
    • Relationship between microstructure and corrosion performance of AA2050-T8 aluminum alloy after excimer laser surface melting
    • Viejo F., Coy A.E., Garcia F.J., Liu Z., Skeldon P., Thompson G.E. Relationship between microstructure and corrosion performance of AA2050-T8 aluminum alloy after excimer laser surface melting. Corros. Sci. 2010, 52:2179-2187.
    • (2010) Corros. Sci. , vol.52 , pp. 2179-2187
    • Viejo, F.1    Coy, A.E.2    Garcia, F.J.3    Liu, Z.4    Skeldon, P.5    Thompson, G.E.6
  • 12
    • 77954035195 scopus 로고    scopus 로고
    • Coupled influence of microstructure and atmosphere environment on fatigue crack path in new generation Al alloys
    • Richard S., Gasqueres C., Sarrazin-Baudoux C., Petit J. Coupled influence of microstructure and atmosphere environment on fatigue crack path in new generation Al alloys. Eng. Fract. Mech. 2010, 77:1941-1952.
    • (2010) Eng. Fract. Mech. , vol.77 , pp. 1941-1952
    • Richard, S.1    Gasqueres, C.2    Sarrazin-Baudoux, C.3    Petit, J.4
  • 13
    • 0030289266 scopus 로고    scopus 로고
    • Transition from pitting to fatigue crack growth-modeling of corrosion fatigue crack nucleation in a 2024-T3 aluminum alloy
    • Chen G.S., Wan K.C., Gao M., Wei R.P., Flournoy T.H. Transition from pitting to fatigue crack growth-modeling of corrosion fatigue crack nucleation in a 2024-T3 aluminum alloy. Mater. Sci. Eng. A 1996, 219:126-132.
    • (1996) Mater. Sci. Eng. A , vol.219 , pp. 126-132
    • Chen, G.S.1    Wan, K.C.2    Gao, M.3    Wei, R.P.4    Flournoy, T.H.5
  • 14
    • 0032987242 scopus 로고    scopus 로고
    • Effect of pitting corrosion on fatigue crack initiation and fatigue life
    • Roklin S.I., Kim J.Y., Nagy H., Zoofan B. Effect of pitting corrosion on fatigue crack initiation and fatigue life. Eng. Fract. Mech. 1999, 62:425-444.
    • (1999) Eng. Fract. Mech. , vol.62 , pp. 425-444
    • Roklin, S.I.1    Kim, J.Y.2    Nagy, H.3    Zoofan, B.4
  • 15
    • 33947257908 scopus 로고    scopus 로고
    • Initiation and shape development of corrosion-nucleated fatigue cracking
    • Van der Walde K., Hillberry B.M. Initiation and shape development of corrosion-nucleated fatigue cracking. Int. J. Fatigue 2007, 29:1269-1281.
    • (2007) Int. J. Fatigue , vol.29 , pp. 1269-1281
    • Van der Walde, K.1    Hillberry, B.M.2
  • 16
    • 14944374275 scopus 로고    scopus 로고
    • Pantelakis SpG., Fatigue and damage tolerance behavior of corroded 2024 T351 aircraft aluminum alloy
    • Kermanidis A.T., Petroyiannis P.V. Pantelakis SpG., Fatigue and damage tolerance behavior of corroded 2024 T351 aircraft aluminum alloy. Theor. Appl. Fract. Mech. 2005, 43:121-132.
    • (2005) Theor. Appl. Fract. Mech. , vol.43 , pp. 121-132
    • Kermanidis, A.T.1    Petroyiannis, P.V.2
  • 19
    • 0037408152 scopus 로고    scopus 로고
    • Fatigue crack growth from corrosion damage in 7075-T6511 aluminum alloy under aircraft loading
    • Du Quesnay D.L., Underhill P.R., Britt H.J. Fatigue crack growth from corrosion damage in 7075-T6511 aluminum alloy under aircraft loading. Int. J. Fatigue 2003, 25:371-377.
    • (2003) Int. J. Fatigue , vol.25 , pp. 371-377
    • Du Quesnay, D.L.1    Underhill, P.R.2    Britt, H.J.3
  • 21
    • 84929428463 scopus 로고    scopus 로고
    • Corrosion pitting and environmentally assisted small crack growth
    • Turnbull A. Corrosion pitting and environmentally assisted small crack growth. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 2014, 470(2169).
    • (2014) Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. , vol.470 , Issue.2169
    • Turnbull, A.1
  • 22
    • 80052700207 scopus 로고    scopus 로고
    • Driving forces for localized corrosion to fatigue crack transition in Al-Zn-Mg-Cu
    • Burns J.T., Larsen J.M., Gangloff R.P. Driving forces for localized corrosion to fatigue crack transition in Al-Zn-Mg-Cu. Fatigue Fract. Engng. Mater. Struct. 2011, 34:745-773.
    • (2011) Fatigue Fract. Engng. Mater. Struct. , vol.34 , pp. 745-773
    • Burns, J.T.1    Larsen, J.M.2    Gangloff, R.P.3
  • 23
    • 72649089765 scopus 로고    scopus 로고
    • Effect of corrosion severity on fatigue evolution in Al-Zn-Mg-Cu
    • Burns J.T., Kim S., Gangloff R.P. Effect of corrosion severity on fatigue evolution in Al-Zn-Mg-Cu. Corros. Sci. 2010, 52:498-508.
    • (2010) Corros. Sci. , vol.52 , pp. 498-508
    • Burns, J.T.1    Kim, S.2    Gangloff, R.P.3
  • 24
    • 79953210763 scopus 로고    scopus 로고
    • Influence of post-welding heat treatment on the corrosion behavior of a 2050 T3 aluminum-copper-lithium alloy friction stir welding joint
    • Proton V., Alexis J., Andrieu E., Blanc C., Delfosse J., Lacroix L., Odemer G. Influence of post-welding heat treatment on the corrosion behavior of a 2050 T3 aluminum-copper-lithium alloy friction stir welding joint. J. Electrochem. Soc. 2011, 158:C139-C147.
    • (2011) J. Electrochem. Soc. , vol.158 , pp. C139-C147
    • Proton, V.1    Alexis, J.2    Andrieu, E.3    Blanc, C.4    Delfosse, J.5    Lacroix, L.6    Odemer, G.7
  • 25
    • 84901623796 scopus 로고    scopus 로고
    • Effect of varying conditions of exposure to an aggressive medium on the corrosion behavior of the 2050 Al-Cu-Li alloy
    • Guérin M., Andrieu E., Odemer G., Alexis J., Blanc C. Effect of varying conditions of exposure to an aggressive medium on the corrosion behavior of the 2050 Al-Cu-Li alloy. Corros. Sci. 2014, 85:455-470.
    • (2014) Corros. Sci. , vol.85 , pp. 455-470
    • Guérin, M.1    Andrieu, E.2    Odemer, G.3    Alexis, J.4    Blanc, C.5
  • 27
    • 84944708866 scopus 로고    scopus 로고
    • The relationship between grain boundaries/grain properties and their corrosion susceptibility in a 2050 aluminium alloy
    • Guérin M., Andrieu E., Odemer G., Alexis J., Blanc C. The relationship between grain boundaries/grain properties and their corrosion susceptibility in a 2050 aluminium alloy. submitted to Corrosion Science 2015.
    • (2015) submitted to Corrosion Science
    • Guérin, M.1    Andrieu, E.2    Odemer, G.3    Alexis, J.4    Blanc, C.5
  • 28
    • 0021439918 scopus 로고
    • Microstructure, toughness and stress corrosion cracking behavior of aluminum alloy 2020
    • Rinker J.G., Marek M. Microstructure, toughness and stress corrosion cracking behavior of aluminum alloy 2020. Mater. Sci. Eng. 1984, 64:203-221.
    • (1984) Mater. Sci. Eng. , vol.64 , pp. 203-221
    • Rinker, J.G.1    Marek, M.2
  • 32
    • 77955775284 scopus 로고    scopus 로고
    • Aluminum-copper-lithium alloy 2050 developed for medium to thick plate
    • Lequeu P., Smith K.P., Danielou A. Aluminum-copper-lithium alloy 2050 developed for medium to thick plate. J. Mater. Eng. Perform. 2009, 19:841-847.
    • (2009) J. Mater. Eng. Perform. , vol.19 , pp. 841-847
    • Lequeu, P.1    Smith, K.P.2    Danielou, A.3
  • 33
    • 34548166336 scopus 로고    scopus 로고
    • Environment-exposure-dependent fatigue crack growth kinetics for Al-Cu-Mg/Li
    • Ro Y., Agnew S.R., Bray G.H., Gangloff R.P. Environment-exposure-dependent fatigue crack growth kinetics for Al-Cu-Mg/Li. Mater. Sci. Eng. A 2007, 468-470:88-97.
    • (2007) Mater. Sci. Eng. A , pp. 88-97
    • Ro, Y.1    Agnew, S.R.2    Bray, G.H.3    Gangloff, R.P.4
  • 35
    • 0030243775 scopus 로고    scopus 로고
    • Environmental microstructure effects on fatigue crack facet orientation in an Al-Li-Cu-Zr alloy
    • Slavik D.C., Gangloff R.P. Environmental microstructure effects on fatigue crack facet orientation in an Al-Li-Cu-Zr alloy. Acta Metall. Mater. 1996, 44:3515-3534.
    • (1996) Acta Metall. Mater. , vol.44 , pp. 3515-3534
    • Slavik, D.C.1    Gangloff, R.P.2
  • 36
    • 0026385580 scopus 로고
    • 1 phase in the pre-exposure and hydrogen embrittlement of Al-Li-Cu alloys
    • 1 phase in the pre-exposure and hydrogen embrittlement of Al-Li-Cu alloys. Mater. Sci. Eng. A 1991, 148:197-209.
    • (1991) Mater. Sci. Eng. A , vol.148 , pp. 197-209
    • Meletis, E.I.1    Huang, W.2
  • 37
    • 0027553315 scopus 로고
    • 1 precipitates on the anisotropy of Al-Li- alloy 2090
    • 1 precipitates on the anisotropy of Al-Li- alloy 2090. Acta Metall. Mater. 1993, 41:941-948.
    • (1993) Acta Metall. Mater. , vol.41 , pp. 941-948
    • Kim, N.J.1    Lee, E.U.2
  • 38
    • 33748762743 scopus 로고    scopus 로고
    • Prior corrosion and fatigue of 2024-T3 aluminum alloy
    • Jones K., Hoeppner D.W. Prior corrosion and fatigue of 2024-T3 aluminum alloy. Corros. Sci. 2006, 48:3109-3122.
    • (2006) Corros. Sci. , vol.48 , pp. 3109-3122
    • Jones, K.1    Hoeppner, D.W.2
  • 40
    • 0032987242 scopus 로고    scopus 로고
    • Effect of pitting corrosion on fatigue crack initiation and fatigue life
    • Rokhlin S.I., Kim J., Nagy H., Zoofan B. Effect of pitting corrosion on fatigue crack initiation and fatigue life. Eng. Fract. Mech. 1999, 62:425-444.
    • (1999) Eng. Fract. Mech. , vol.62 , pp. 425-444
    • Rokhlin, S.I.1    Kim, J.2    Nagy, H.3    Zoofan, B.4
  • 41
    • 83555174480 scopus 로고    scopus 로고
    • Effect of prior corrosion state on the fatigue small cracking behaviour of 6151-T6 aluminum alloy
    • Li X.D., Wang X.S., Ren H.H., Chen Y.L., Mu Z.T. Effect of prior corrosion state on the fatigue small cracking behaviour of 6151-T6 aluminum alloy. Corros. Sci. 2012, 55:26-33.
    • (2012) Corros. Sci. , vol.55 , pp. 26-33
    • Li, X.D.1    Wang, X.S.2    Ren, H.H.3    Chen, Y.L.4    Mu, Z.T.5
  • 42
    • 60849089891 scopus 로고    scopus 로고
    • Fatigue crack formation and growth from localized corrosion in Al-Zn-Mg-Cu
    • Kim S., Burns J.T., Gangloff R.P. Fatigue crack formation and growth from localized corrosion in Al-Zn-Mg-Cu. Eng. Fract. Mech. 2009, 76:651-667.
    • (2009) Eng. Fract. Mech. , vol.76 , pp. 651-667
    • Kim, S.1    Burns, J.T.2    Gangloff, R.P.3
  • 43
    • 1542400598 scopus 로고    scopus 로고
    • Predicting fatigue life of pre-corroded 2024-T3 aluminum from breaking load tests
    • Gruenberg K.M., Craig B.A., Hillberry B.M. Predicting fatigue life of pre-corroded 2024-T3 aluminum from breaking load tests. Int. J. Fatigue 2004, 26:615-627.
    • (2004) Int. J. Fatigue , vol.26 , pp. 615-627
    • Gruenberg, K.M.1    Craig, B.A.2    Hillberry, B.M.3
  • 44
    • 0040046427 scopus 로고    scopus 로고
    • Dislocation-hydrogen interactions during stress corrosion cracking in fcc metals: experiments on single crystals and numerical simulations
    • Delafosse D., Chateau J.P., Chambreuil A., Magnin T. Dislocation-hydrogen interactions during stress corrosion cracking in fcc metals: experiments on single crystals and numerical simulations. Mater. Sci. Eng. A 1997, 234:889-892.
    • (1997) Mater. Sci. Eng. A , vol.234 , pp. 889-892
    • Delafosse, D.1    Chateau, J.P.2    Chambreuil, A.3    Magnin, T.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.