메뉴 건너뛰기




Volumn 75, Issue 2, 2016, Pages 637-646

Prediction of landslide displacement based on GA-LSSVM with multiple factors

Author keywords

Landslide displacement prediction; Least squares support vector machine; Multiple factors; Wavelet decomposition

Indexed keywords

FORECASTING; GENETIC ALGORITHMS; LANDSLIDES; SUPPORT VECTOR MACHINES;

EID: 84944523039     PISSN: 14359529     EISSN: None     Source Type: Journal    
DOI: 10.1007/s10064-015-0804-z     Document Type: Article
Times cited : (117)

References (25)
  • 1
    • 84891830383 scopus 로고    scopus 로고
    • Results uncertainty of support vector machine and hybrid of wavelet transform-support vector machine models for solid waste generation forecasting
    • Abbasi M, Abduli MA, Omidvar B et al (2014) Results uncertainty of support vector machine and hybrid of wavelet transform-support vector machine models for solid waste generation forecasting. Environ Prog Sustain 33(1):220–228
    • (2014) Environ Prog Sustain , vol.33 , Issue.1 , pp. 220-228
    • Abbasi, M.1    Abduli, M.A.2    Omidvar, B.3
  • 2
    • 79955623964 scopus 로고    scopus 로고
    • Wind farm power prediction based on wavelet decomposition and chaotic time series
    • An X, Jiang D, Liu C et al (2011) Wind farm power prediction based on wavelet decomposition and chaotic time series. Expert Syst Appl 38:11280–11285
    • (2011) Expert Syst Appl , vol.38 , pp. 11280-11285
    • An, X.1    Jiang, D.2    Liu, C.3
  • 3
    • 84906911087 scopus 로고    scopus 로고
    • Comparison between wind power prediction models based on wavelet decomposition with least-squares support vector machine (LS-SVM) and artificial neural network (ANN)
    • De Giorgi MG, Campilongo S, Ficarella A (2014) Comparison between wind power prediction models based on wavelet decomposition with least-squares support vector machine (LS-SVM) and artificial neural network (ANN). Energies 7:5251–5272
    • (2014) Energies , vol.7 , pp. 5251-5272
    • De Giorgi, M.G.1    Campilongo, S.2    Ficarella, A.3
  • 4
    • 84876740156 scopus 로고    scopus 로고
    • An improvement in RBF learning algorithm based on PSO for real time applications
    • Fathi V, Montazer GA (2013) An improvement in RBF learning algorithm based on PSO for real time applications. Neurocomputing 111:169–175
    • (2013) Neurocomputing , vol.111 , pp. 169-175
    • Fathi, V.1    Montazer, G.A.2
  • 5
    • 84891492327 scopus 로고    scopus 로고
    • A hybrid genetic programming artificial neural network approach for modeling of vibratory finishing process
    • Garg A, Tai K (2011) A hybrid genetic programming artificial neural network approach for modeling of vibratory finishing process. Int Conf Inf Intell Comput 18:14–19
    • (2011) Int Conf Inf Intell Comput , vol.18 , pp. 14-19
    • Garg, A.1    Tai, K.2
  • 6
    • 84907225803 scopus 로고    scopus 로고
    • Stepwise approach for the evolution of generalized genetic programming model in prediction of surface finish of the turning process
    • Garg A, Tai K (2014) Stepwise approach for the evolution of generalized genetic programming model in prediction of surface finish of the turning process. Adv Eng Softw 78:16–27
    • (2014) Adv Eng Softw , vol.78 , pp. 16-27
    • Garg, A.1    Tai, K.2
  • 7
    • 84906695274 scopus 로고    scopus 로고
    • Combined CI-MD approach in formulation of engineering moduli of single layer graphene sheet
    • Garg A, Vijayaraghavan V, Wong CH et al (2014) Combined CI-MD approach in formulation of engineering moduli of single layer graphene sheet. Simul Model Pract Theory 48:93–111
    • (2014) Simul Model Pract Theory , vol.48 , pp. 93-111
    • Garg, A.1    Vijayaraghavan, V.2    Wong, C.H.3
  • 8
    • 84880434977 scopus 로고    scopus 로고
    • Experimental analysis of the input variables’ relevance to forecast next day’s aggregated electric demand using neural networks
    • Hernandez L, Baladron C, Aguiar JM et al (2013) Experimental analysis of the input variables’ relevance to forecast next day’s aggregated electric demand using neural networks. Energies 6:2927–2948
    • (2013) Energies , vol.6 , pp. 2927-2948
    • Hernandez, L.1    Baladron, C.2    Aguiar, J.M.3
  • 9
    • 33748076461 scopus 로고    scopus 로고
    • A GA-based feature selection and parameters optimization for support vector machines
    • Huang CL, Wang CJ (2006) A GA-based feature selection and parameters optimization for support vector machines. Expert Syst Appl 31(2):231–240
    • (2006) Expert Syst Appl , vol.31 , Issue.2 , pp. 231-240
    • Huang, C.L.1    Wang, C.J.2
  • 10
    • 70349847368 scopus 로고    scopus 로고
    • Landslide susceptibility mapping using geological data, a DEM from ASTER images and an artificial neural network (ANN)
    • Kawabata D, Bandibas J (2009) Landslide susceptibility mapping using geological data, a DEM from ASTER images and an artificial neural network (ANN). Geomorphology 113:97–109
    • (2009) Geomorphology , vol.113 , pp. 97-109
    • Kawabata, D.1    Bandibas, J.2
  • 11
    • 84895783495 scopus 로고    scopus 로고
    • Application of GA-SVM method with parameter optimization for landslide development prediction
    • Li XZ, Kong JM (2014) Application of GA-SVM method with parameter optimization for landslide development prediction. Nat Hazard Earth Syst 14:525–533
    • (2014) Nat Hazard Earth Syst , vol.14 , pp. 525-533
    • Li, X.Z.1    Kong, J.M.2
  • 12
    • 76049113512 scopus 로고    scopus 로고
    • Landslide prediction based on wavelet analysis and cusp catastrophe
    • Li CD, Tang HM, Hu XL et al (2009) Landslide prediction based on wavelet analysis and cusp catastrophe. J Earth Sci China 20(6):971–977
    • (2009) J Earth Sci China , vol.20 , Issue.6 , pp. 971-977
    • Li, C.D.1    Tang, H.M.2    Hu, X.L.3
  • 13
    • 84901381557 scopus 로고    scopus 로고
    • Displacement prediction of Bazimen landslide with step-like deformation in the three gorges reservoir
    • Li DY, Wang Y, Chen LX et al (2013) Displacement prediction of Bazimen landslide with step-like deformation in the three gorges reservoir. Disaster Adv 6:185–191
    • (2013) Disaster Adv , vol.6 , pp. 185-191
    • Li, D.Y.1    Wang, Y.2    Chen, L.X.3
  • 14
    • 84874221132 scopus 로고    scopus 로고
    • Displacement prediction model of landslide based on a modified ensemble empirical mode decomposition and extreme learning machine
    • Lian C, Zeng ZG, Yao W (2013) Displacement prediction model of landslide based on a modified ensemble empirical mode decomposition and extreme learning machine. Nat Hazards 66:759–771
    • (2013) Nat Hazards , vol.66 , pp. 759-771
    • Lian, C.1    Zeng, Z.G.2    Yao, W.3
  • 15
    • 0024700097 scopus 로고
    • A theory for multiresolution signal decomposition and wavelet representation
    • Mallat S (1989) A theory for multiresolution signal decomposition and wavelet representation. IEEE Trans Pattern Anal 11:674–693
    • (1989) IEEE Trans Pattern Anal , vol.11 , pp. 674-693
    • Mallat, S.1
  • 16
    • 38149109867 scopus 로고    scopus 로고
    • Artificial neural networks and cluster analysis in landslide susceptibility zonation
    • Melchiorre C, Matteucci M, Azzoni A et al (2008) Artificial neural networks and cluster analysis in landslide susceptibility zonation. Geomorphology 94:379–400
    • (2008) Geomorphology , vol.94 , pp. 379-400
    • Melchiorre, C.1    Matteucci, M.2    Azzoni, A.3
  • 17
    • 40649084527 scopus 로고    scopus 로고
    • An assessment on the use of logistic regression and artificial neural networks with different sampling strategies for the preparation of landslide susceptibility maps
    • Nefeslioglu HA, Gokceoglu C, Sonmez H (2008) An assessment on the use of logistic regression and artificial neural networks with different sampling strategies for the preparation of landslide susceptibility maps. Eng Geol 97:171–191
    • (2008) Eng Geol , vol.97 , pp. 171-191
    • Nefeslioglu, H.A.1    Gokceoglu, C.2    Sonmez, H.3
  • 18
    • 70350074037 scopus 로고    scopus 로고
    • Landslide risk analysis using artificial neural network model focussing on different training sites
    • Pradhan B, Lee S (2009) Landslide risk analysis using artificial neural network model focussing on different training sites. Int J Phys Sci 4(1):1–15
    • (2009) Int J Phys Sci , vol.4 , Issue.1 , pp. 1-15
    • Pradhan, B.1    Lee, S.2
  • 19
    • 77952010906 scopus 로고    scopus 로고
    • A GIS-based back-propagation neural network model and its cross-application and validation for landslide susceptibility analyses
    • Pradhan B, Lee S, Buchroithner MF (2010) A GIS-based back-propagation neural network model and its cross-application and validation for landslide susceptibility analyses. Comput Environ Urban 34(3):216–235
    • (2010) Comput Environ Urban , vol.34 , Issue.3 , pp. 216-235
    • Pradhan, B.1    Lee, S.2    Buchroithner, M.F.3
  • 20
    • 0942289503 scopus 로고    scopus 로고
    • Gear fault detection using artificial neural networks and support vector machines with genetic algorithms
    • Samanta B (2004) Gear fault detection using artificial neural networks and support vector machines with genetic algorithms. Mech Syst Signal Process 18(3):625–644
    • (2004) Mech Syst Signal Process , vol.18 , Issue.3 , pp. 625-644
    • Samanta, B.1
  • 21
    • 79952930723 scopus 로고    scopus 로고
    • Utilization of a least square support vector machine (LSSVM) for slope stability analysis
    • Samui P, Kothari DP (2011) Utilization of a least square support vector machine (LSSVM) for slope stability analysis. Sci Iran 18(1):53–58
    • (2011) Sci Iran , vol.18 , Issue.1 , pp. 53-58
    • Samui, P.1    Kothari, D.P.2
  • 22
    • 77951976387 scopus 로고    scopus 로고
    • Susceptibility analysis of shallow landslides source areas using physically based models
    • Sorbino G, Sica C, Cascini L (2010) Susceptibility analysis of shallow landslides source areas using physically based models. Nat Hazards 53:313–332
    • (2010) Nat Hazards , vol.53 , pp. 313-332
    • Sorbino, G.1    Sica, C.2    Cascini, L.3
  • 23
    • 0032638628 scopus 로고    scopus 로고
    • Least squares support vector machines classifiers
    • Suykens JAK, Vandewalle J (1999) Least squares support vector machines classifiers. Neural Process Lett 9(3):293–300
    • (1999) Neural Process Lett , vol.9 , Issue.3 , pp. 293-300
    • Suykens, J.A.K.1    Vandewalle, J.2
  • 24
    • 79953100718 scopus 로고    scopus 로고
    • Support vector machine model for predicting sand liquefaction based on Grid-Search method
    • (in Chinese)
    • Zhang XD, Feng SY, Wang CJ (2011) Support vector machine model for predicting sand liquefaction based on Grid-Search method. Chin J Appl Mech 28(1):24–28 (in Chinese)
    • (2011) Chin J Appl Mech , vol.28 , Issue.1 , pp. 24-28
    • Zhang, X.D.1    Feng, S.Y.2    Wang, C.J.3
  • 25
    • 84908395640 scopus 로고    scopus 로고
    • Ash content prediction of coarse coal by image analysis and GA-SVM
    • Zhang Z, Yang J, Wang Y et al (2014) Ash content prediction of coarse coal by image analysis and GA-SVM. Powder Technol 268:429–435
    • (2014) Powder Technol , vol.268 , pp. 429-435
    • Zhang, Z.1    Yang, J.2    Wang, Y.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.