메뉴 건너뛰기




Volumn , Issue , 2015, Pages 2-13

Implantable biofuel cells operating in vivo: Providing sustainable power for bioelectronic devices: From biofuel cells to cyborgs

Author keywords

Biofuel cells; Catalytic electrodes; Enzymes; Implantable electronics; Pacemaker; Wireless information transfer

Indexed keywords

BIOLOGICAL FUEL CELLS; ELECTRON DEVICES; ENERGY HARVESTING; ENZYME ELECTRODES; ENZYMES; IMPLANTS (SURGICAL); MEDICAL APPLICATIONS; MICROELECTRONICS; PACEMAKERS; VOLTAGE REGULATORS; VOLTAGE SCALING;

EID: 84944234218     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/IWASI.2015.7184958     Document Type: Conference Paper
Times cited : (15)

References (109)
  • 5
    • 84891582878 scopus 로고    scopus 로고
    • Wiley-VCH: Weinheim Germany
    • Someya, T. (ed.) (2013) Stretchable Electronics. Wiley-VCH: Weinheim, Germany. 462 pp.
    • (2013) Stretchable Electronics , pp. 462
    • Someya, T.1
  • 7
    • 60549105821 scopus 로고    scopus 로고
    • Flexible thick-film electrochemical sensors: Impact of mechanical bending and stress on the electrochemical behavior
    • Cai, J, Cizek, K, Long, B, McAferty, K, Campbell, CG, Allee, DR, Vogt, BD, La Belle, J, Wang, J. (2009) Flexible thick-film electrochemical sensors: Impact of mechanical bending and stress on the electrochemical behavior. Sens Actuat B. 137:379-385.
    • (2009) Sens Actuat B , vol.137 , pp. 379-385
    • Cai, J.1    Cizek, K.2    Long, B.3    McAferty, K.4    Campbell, C.G.5    Allee, D.R.6    Vogt, B.D.7    La Belle, J.8    Wang, J.9
  • 12
  • 13
    • 84905009884 scopus 로고    scopus 로고
    • Safe use of repetitive transcranial magnetic stimulation in patients with implanted vagus nerve stimulators
    • Philip, NS, Carpenter, SL, Carpenter, LL. (2014) Safe use of repetitive transcranial magnetic stimulation in patients with implanted vagus nerve stimulators. Brain Stimulation. 7:608-612.
    • (2014) Brain Stimulation , vol.7 , pp. 608-612
    • Philip, N.S.1    Carpenter, S.L.2    Carpenter, L.L.3
  • 15
    • 78650218512 scopus 로고    scopus 로고
    • The pulse of inflammation: Heart rate variability, the cholinergic anti-inflammatory pathway and implications for therapy
    • Huston, JM, Tracey, KJ. (2011) The pulse of inflammation: heart rate variability, the cholinergic anti-inflammatory pathway and implications for therapy. J. Intern. Med. 269:45-53.
    • (2011) J. Intern. Med , vol.269 , pp. 45-53
    • Huston, J.M.1    Tracey, K.J.2
  • 16
    • 84878039682 scopus 로고    scopus 로고
    • The pump was a saviour for me. Patients experiences of insulin pump therapy
    • Garmo, A, Hornsten, A, Leksell, J. (2013) The pump was a saviour for me. Patients experiences of insulin pump therapy. Diabetic Medicine. 30:717-723.
    • (2013) Diabetic Medicine , vol.30 , pp. 717-723
    • Garmo, A.1    Hornsten, A.2    Leksell, J.3
  • 18
    • 84944214826 scopus 로고    scopus 로고
    • Eye amputated patients' perspective on life with an artificial eye
    • Rasmussen, MLR, Prause, JU, Toft, PB. (2010) Eye amputated patients' perspective on life with an artificial eye. Acta Ophthalmologia. 88:41-41.
    • (2011) Acta Ophthalmologia , vol.88 , pp. 41-41
    • Mlr, R.1    Prause, J.U.2    Toft, P.B.3
  • 19
    • 84857998698 scopus 로고    scopus 로고
    • Human powered MEMS-based energy harvest devices
    • Sue, CY, Tsai, NC. (2012) Human powered MEMS-based energy harvest devices. Applied Energy. 93:390-403.
    • (2012) Applied Energy , vol.93 , pp. 390-403
    • Sue, C.Y.1    Tsai, N.C.2
  • 20
    • 79952959813 scopus 로고    scopus 로고
    • Design and performance of an optimal inertial power harvester for humanpowered
    • Yun, J, Patel, SN, Reynolds, MS, Abowd, GD. (2011) Design and performance of an optimal inertial power harvester for humanpowered. IEEE Trans Mobile Computing. 10:669-683.
    • (2011) IEEE Trans Mobile Computing , vol.10 , pp. 669-683
    • Yun, J.1    Patel, S.N.2    Reynolds, M.S.3    Abowd, G.D.4
  • 22
    • 84884584983 scopus 로고    scopus 로고
    • Active and passive smart structures and integrated systems
    • Ghasemi Nejhad, MN (Ed.) 7977, art. # 797702
    • Reissman, T, MacCurdy RB, Garcia, E. (2011) Active and Passive Smart Structures and Integrated Systems, Ghasemi Nejhad, MN. (Ed.), Proceedings of SPIE, 7977, art. # 797702.
    • (2011) Proceedings of SPIE
    • Reissman, T.1    MacCurdy, R.B.2    Garcia, E.3
  • 23
    • 84907215671 scopus 로고    scopus 로고
    • Flexible piezoelectric energy harvesting from jaw movements
    • 23: art. # 105020
    • Delnavaz, A, Voix, J. (2014) Flexible piezoelectric energy harvesting from jaw movements. Smart Mater Structures. 23: art. #105020.
    • (2014) Smart Mater Structures
    • Delnavaz, A.1    Voix, J.2
  • 24
    • 61349140546 scopus 로고    scopus 로고
    • Harvesting human kinematical energy based on liquid metal magnetohydrodynamics
    • Jia, D, Liu, J, Zhou, Y. (2009) Harvesting human kinematical energy based on liquid metal magnetohydrodynamics. Phys Lett A. 373:1305-1309.
    • (2009) Phys Lett A , vol.373 , pp. 1305-1309
    • Jia, D.1    Liu, J.2    Zhou, Y.3
  • 25
    • 84902201421 scopus 로고    scopus 로고
    • Optimizing the output of a human-powered energy harvesting system with miniaturization and integrated control
    • Goudar, V, Ren, Z, Brochu, P, Potkonjak, M, Pei, QB. (2014) Optimizing the output of a human-powered energy harvesting system with miniaturization and integrated control. IEEE Sensors J. 14: 2084-2091.
    • (2014) IEEE Sensors J , vol.14 , pp. 2084-2091
    • Goudar, V.1    Ren, Z.2    Brochu, P.3    Potkonjak, M.4    Pei, Q.B.5
  • 26
    • 84864264339 scopus 로고    scopus 로고
    • An active piezoelectric energy extraction method for pressure energy harvesting
    • 21: art. # 085004
    • Deterre, M, Lefeuvre, E, Dufour-Gergam, E. (2012) An active piezoelectric energy extraction method for pressure energy harvesting. Smart Mater Structures. 21: art. # 085004.
    • (2012) Smart Mater Structures
    • Deterre, M.1    Lefeuvre, E.2    Dufour-Gergam, E.3
  • 27
    • 79955103117 scopus 로고    scopus 로고
    • Biomechanical energy harvesting from human motion: Theory, state of the art, design guidelines, and future directions
    • 8: art. # 22
    • Riemer, R, Shapiro, A. (2011) Biomechanical energy harvesting from human motion: theory, state of the art, design guidelines, and future directions. J Neuroengineering Rehabilitation. 8: art. #22.
    • (2011) J Neuroengineering Rehabilitation
    • Riemer, R.1    Shapiro, A.2
  • 28
    • 65249165597 scopus 로고    scopus 로고
    • Converting biomechanical energy into electricity by a muscle-movement-driven nanogenerator
    • Yang, R, Qin, Y, Li, C, G. Zhu, G, Wang, ZL. (2009) Converting biomechanical energy into electricity by a muscle-movement-driven nanogenerator. Nano Lett. 9:1201-1205.
    • (2009) Nano Lett , vol.9 , pp. 1201-1205
    • Yang, R.1    Qin, Y.2    Li, C.3    Zhu, G.G.4    Wang, Z.L.5
  • 29
    • 24644452464 scopus 로고    scopus 로고
    • Generating electricity while walking with loads
    • Rome, LC, Flynn, L, Goldman, EM, Yoo, TD. (2005) Generating electricity while walking with loads. Science. 309:1725-1728.
    • (2005) Science , vol.309 , pp. 1725-1728
    • Rome, L.C.1    Flynn, L.2    Goldman, E.M.3    Yoo, T.D.4
  • 30
    • 38949118719 scopus 로고    scopus 로고
    • Biomechanical energy harvesting: Generating electricity during walking with minimal user effort
    • Donelan, JM, Li, Q, Naing, V, Hoffer, JA, Weber, DJ, Kuo, AD. (2008) Biomechanical energy harvesting: Generating electricity during walking with minimal user effort. Science. 319:807-810.
    • (2008) Science , vol.319 , pp. 807-810
    • Donelan, J.M.1    Li, Q.2    Naing, V.3    Hoffer, J.A.4    Weber, D.J.5    Kuo, A.D.6
  • 33
    • 80055029421 scopus 로고    scopus 로고
    • PVDF microbelts for harvesting energy from respiration
    • Sun, C, Shi, J, Bayerl, DJ, Wang, X. (2011) PVDF microbelts for harvesting energy from respiration. Energy Environ Sci. 4:4508-4512.
    • (2011) Energy Environ Sci , vol.4 , pp. 4508-4512
    • Sun, C.1    Shi, J.2    Bayerl, D.J.3    Wang, X.4
  • 35
    • 77955548078 scopus 로고    scopus 로고
    • Hybrid nanogenerator for concurrently harvesting biomechanical and biochemical energy
    • Hansen, BJ, Liu, Y, Yang, R, Wang, ZL. (2010) Hybrid nanogenerator for concurrently harvesting biomechanical and biochemical energy. ACS Nano 4:3647-3652.
    • (2011) ACS Nano , vol.4 , pp. 3647-3652
    • Hansen, B.J.1    Liu, Y.2    Yang, R.3    Wang, Z.L.4
  • 36
    • 84864268679 scopus 로고    scopus 로고
    • From in vitro to in vivo-Biofuel cells are maturing
    • Schrder, U. (2012) From in vitro to in vivo-Biofuel cells are maturing. Angew Chem Int Ed. 51:7370-7372.
    • (2012) Angew Chem Int Ed , vol.51 , pp. 7370-7372
    • Schrder, U.1
  • 37
    • 84880991218 scopus 로고    scopus 로고
    • Biofuel cells for biomedical applications: Colonizing the animal kingdom
    • Falk, M, Narvez Villarrubia, CW, Babanova, S, Atanassov, P, Shleev, S. (2013) Biofuel cells for biomedical applications: Colonizing the animal kingdom. ChemPhysChem. 14:2045-2058.
    • (2013) ChemPhysChem , vol.14 , pp. 2045-2058
    • Falk, M.1    Villarrubia, N.2    Babanova, S.C.W.3    Atanassov, P.4    Shleev, S.5
  • 38
    • 84884538876 scopus 로고    scopus 로고
    • Implanted biofuel cells operating in vivo -methods, applications and perspectives -feature article
    • Katz, E, MacVittie, K. (2013) Implanted biofuel cells operating in vivo -methods, applications and perspectives -feature article. Energy Environ Sci. 6:2791-2803.
    • (2013) Energy Environ Sci , vol.6 , pp. 2791-2803
    • Katz, E.1    MacVittie, K.2
  • 39
    • 33846336459 scopus 로고    scopus 로고
    • Biofuel cells -Recent advances and applications
    • Davis, F, Higson, SPJ. (2007) Biofuel cells -Recent advances and applications. Biosens Bioelectron. 22:1224-1235.
    • (2007) Biosens Bioelectron , vol.22 , pp. 1224-1235
    • Davis, F.1    Spj, H.2
  • 40
    • 49049118534 scopus 로고    scopus 로고
    • Enzymes as working or inspirational electrocatalysts for fuel cells and electrolysis
    • Cracknell, JA, Vincent, KA, Armstrong, FA. (2008) Enzymes as working or inspirational electrocatalysts for fuel cells and electrolysis. Chem Rev. 108:2439-2461.
    • (2008) Chem Rev , vol.108 , pp. 2439-2461
    • Cracknell, J.A.1    Vincent, K.A.2    Armstrong, F.A.3
  • 41
    • 84944182084 scopus 로고    scopus 로고
    • Enzyme biofuel cells: Thermodynamics, kinetics and challenges in applicability
    • Luz, RAS, Pereira, AR, de Souza, JCP, Sales, FCPF, Crespilho, FN. (2014) Enzyme biofuel cells: Thermodynamics, kinetics and challenges in applicability. ChemElectroChem. 1:1751-1777.
    • (2014) ChemElectroChem , vol.1 , pp. 1751-1777
    • Ras, L.1    Pereira, A.R.2    De Souza Jcp3    Fcpf, S.4    Crespilho, F.N.5
  • 42
    • 76049119818 scopus 로고    scopus 로고
    • Enzymatic biofuel cells -Fabrication of enzyme electrodes
    • Yu, EH, Scott, K. (2010) Enzymatic biofuel cells -Fabrication of enzyme electrodes. Energies. 3:23-42.
    • (2011) Energies , vol.3 , pp. 23-42
    • Yu, E.H.1    Scott, K.2
  • 43
    • 84863317977 scopus 로고    scopus 로고
    • Biofuel cells: Enhanced enzymatic bioelectrocatalysis
    • Meredith, MT, Minteer, SD. (2012) Biofuel cells: Enhanced enzymatic bioelectrocatalysis. Ann Rev Anal Chem. 5:157-179.
    • (2012) Ann Rev Anal Chem , vol.5 , pp. 157-179
    • Meredith, M.T.1    Minteer, S.D.2
  • 45
    • 44349166894 scopus 로고    scopus 로고
    • Extended lifetime biofuel cells
    • Moehlenbrock, MJ, Minteer, SD. (2008) Extended lifetime biofuel cells. Chem Soc Rev. 37:1188-1196.
    • (2008) Chem Soc Rev , vol.37 , pp. 1188-1196
    • Moehlenbrock, M.J.1    Minteer, S.D.2
  • 46
    • 79960896249 scopus 로고    scopus 로고
    • Enzymatic fuel cells: Integrating flowthrough anode and air-breathing cathode into a membrane-less biofuel cell design
    • Rincn, RA, Lau, C, Luckarift, HR, Garcia, KE, Adkins, E, Johnson, GR, Atanassov, P. (2011) Enzymatic fuel cells: Integrating flowthrough anode and air-breathing cathode into a membrane-less biofuel cell design. Biosens Bioelectron. 27:132-136.
    • (2011) Biosens Bioelectron , vol.27 , pp. 132-136
    • Rincn, R.A.1    Lau, C.2    Luckarift, H.R.3    Garcia, K.E.4    Adkins, E.5    Johnson, G.R.6    Atanassov, P.7
  • 47
    • 81255196511 scopus 로고    scopus 로고
    • Bioelectrochemical interface engineering: Toward the fabrication of electrochemical biosensors, biofuel cells, and self-powered logic biosensors
    • Zhou, M, Dong, S. (2011) Bioelectrochemical interface engineering: Toward the fabrication of electrochemical biosensors, biofuel cells, and self-powered logic biosensors. Acc Chem Res. 44:1232-1243.
    • (2011) Acc Chem Res , vol.44 , pp. 1232-1243
    • Zhou, M.1    Dong, S.2
  • 49
    • 84863012036 scopus 로고    scopus 로고
    • Biofuel cells for self-powered electrochemical biosensing and logic biosensing: A review
    • Zhou, M, Wang, J. (2012) Biofuel cells for self-powered electrochemical biosensing and logic biosensing: a review. Electroanalysis. 24:197-209.
    • (2012) Electroanalysis , vol.24 , pp. 197-209
    • Zhou, M.1    Wang, J.2
  • 51
    • 84862165737 scopus 로고    scopus 로고
    • A glucose fuel cell for implantable brain-machine interfaces
    • 7: art. # e38436
    • Rapoport, BI, Kedzierski, JT, Sarpeshkar, R. (2012) A glucose fuel cell for implantable brain-machine interfaces. PLoS ONE. 7: art. # e38436.
    • (2012) PLoS ONE
    • Rapoport, B.I.1    Kedzierski, J.T.2    Sarpeshkar, R.3
  • 53
    • 0037032299 scopus 로고    scopus 로고
    • A miniature biofuel cell operating in a physiological buffer
    • Mano, N, Mao, F, Heller, A. (2002) A miniature biofuel cell operating in a physiological buffer. J Am Chem Soc. 124:12962-12963.
    • (2002) J Am Chem Soc , vol.124 , pp. 12962-12963
    • Mano, N.1    Mao, F.2    Heller, A.3
  • 55
    • 78650284921 scopus 로고    scopus 로고
    • Generating electricity from biofluid with a nanowire-based biofuel cell for self-powered nanodevices
    • Pan, C, Fang, Y, Wu, H, Ahmad, M, Luo, Z, Li, Q, Xie, J, Yan, X, Wu, L, Wang, ZL, Zhu, J. (2010) Generating electricity from biofluid with a nanowire-based biofuel cell for self-powered nanodevices. Adv Mater. 22: 5388-5392.
    • (2011) Adv Mater , vol.22 , pp. 5388-5392
    • Pan, C.1    Fang, Y.2    Wu, H.3    Ahmad, M.4    Luo, Z.5    Li, Q.6    Xie, J.7    Yan, X.8    Wu, L.9    Wang, Z.L.10    Zhu, J.11
  • 56
    • 84887569786 scopus 로고    scopus 로고
    • Towards glucose biofuel cells implanted in human body for powering artificial organs: Review
    • Cosnier, S., Le Goff, A, Holzinger, M. (2014) Towards glucose biofuel cells implanted in human body for powering artificial organs: Review. Electrochem. Commun. 38:19-23.
    • (2014) Electrochem. Commun , vol.38 , pp. 19-23
    • Cosnier, S.1    Le Goff, A.2    Holzinger, M.3
  • 62
    • 84872093852 scopus 로고    scopus 로고
    • An intravenous implantable glucose/dioxygen biofuel cell with modified flexible carbon fiber electrodes
    • Sales, FC, Iost, RM, Martins, MV, Almeida, MC, Crespilho, FN. (2013) An intravenous implantable glucose/dioxygen biofuel cell with modified flexible carbon fiber electrodes. Lab Chip. 13:468-474.
    • (2013) Lab Chip , vol.13 , pp. 468-474
    • Sales, F.C.1    Iost, R.M.2    Martins, M.V.3    Almeida, M.C.4    Crespilho, F.N.5
  • 63
    • 84884561261 scopus 로고    scopus 로고
    • Biofuel cell-based self-powered biogenerators for online continuous monitoring of neurochemicals in rat brain
    • Cheng, H, Yu, P, Lu, X, Lin, Y, Ohsaka, T, Mao, L. (2013) Biofuel cell-based self-powered biogenerators for online continuous monitoring of neurochemicals in rat brain. Analyst. 138:179-185.
    • (2013) Analyst , vol.138 , pp. 179-185
    • Cheng, H.1    Yu, P.2    Lu, X.3    Lin, Y.4    Ohsaka, T.5    Mao, L.6
  • 67
    • 7544227821 scopus 로고    scopus 로고
    • Enzymatic biofuel cells for implantable and microscale devices
    • Barton, SC, Gallaway, J, Atanassov, P. (2004) Enzymatic biofuel cells for implantable and microscale devices. Chem Rev. 104:4867-4886.
    • (2004) Chem Rev , vol.104 , pp. 4867-4886
    • Barton, S.C.1    Gallaway, J.2    Atanassov, P.3
  • 68
    • 0742304946 scopus 로고    scopus 로고
    • Miniature biofuel cells
    • Heller, A. (2004) Miniature biofuel cells. Phys Chem Chem Phys. 6:209-216.
    • (2004) Phys Chem Chem Phys , vol.6 , pp. 209-216
    • Heller, A.1
  • 70
    • 77649234772 scopus 로고    scopus 로고
    • Improved energy output levels from small-scale microbial fuel cells
    • Ieropoulos, I, Greenman, J, Melhuish, C. (2010) Improved energy output levels from small-scale microbial fuel cells. Bioelectrochemistry. 78:44-50.
    • (2011) Bioelectrochemistry , vol.78 , pp. 44-50
    • Ieropoulos, I.1    Greenman, J.2    Melhuish, C.3
  • 71
    • 55949104194 scopus 로고    scopus 로고
    • Microbial fuel cells based on carbon veil electrodes: Stack configuration and scalability
    • Ieropoulos, I, Greenman, J, Melhuish, C. (2008) Microbial fuel cells based on carbon veil electrodes: Stack configuration and scalability. Int J Energy Res. 32:1228-1240.
    • (2008) Int J Energy Res , vol.32 , pp. 1228-1240
    • Ieropoulos, I.1    Greenman, J.2    Melhuish, C.3
  • 72
    • 33646749524 scopus 로고    scopus 로고
    • Continuous electricity generation at high voltages and currents using stacked microbial fuel cells
    • Aelterman, P, Rabaey, K, Pham, HT, Boon, N, Verstraete, W. (2006) Continuous electricity generation at high voltages and currents using stacked microbial fuel cells. Environ Sci Technol. 40:3388-3394.
    • (2006) Environ Sci Technol , vol.40 , pp. 3388-3394
    • Aelterman, P.1    Rabaey, K.2    Pham, H.T.3    Boon, N.4    Verstraete, W.5
  • 73
    • 78650984998 scopus 로고    scopus 로고
    • Energy harvesting with microbial fuel cell and power management system
    • Meehan, A, Gao, H, Lewandowski, Z. (2011) Energy harvesting with microbial fuel cell and power management system. IEEE Trans Power Electronics. 26:176-181.
    • (2011) IEEE Trans Power Electronics , vol.26 , pp. 176-181
    • Meehan Gao, A.H.1    Lewandowski, Z.2
  • 74
    • 84876744505 scopus 로고    scopus 로고
    • G4 TV, USA
    • Preliminary video highlight, G4 TV, USA 2012: http://www.g4tv.com/videos/58223/how-to-harvest-electricity-fromlobsters/
    • (2012) Preliminary Video Highlight
  • 79
    • 84875841606 scopus 로고    scopus 로고
    • Pacemaker powered by implantable biofuel cell operating under conditions mimicking human blood circulation system -Battery not included
    • M. Southcott, M, MacVittie, K, Halmek, J, Halmkov, L, Jemison, WD, Lobel, R, Katz, E. (2013) Pacemaker powered by implantable biofuel cell operating under conditions mimicking human blood circulation system -Battery not included. Phys Chem Chem Phys. 15:6278-6283.
    • (2013) Phys Chem Chem Phys , vol.15 , pp. 6278-6283
    • Southcott, M.M.1    MacVittie, K.2    Halmek, J.3    Halmkov, L.4    Jemison, W.D.5    Lobel, R.6    Katz, E.7
  • 80
    • 75149162574 scopus 로고    scopus 로고
    • Remote monitoring of patients with implanted cardiac devices
    • Kusumoto, F, Goldschlager, N. (2010) Remote monitoring of patients with implanted cardiac devices. Clin Cardiology. 33:10-17.
    • (2011) Clin Cardiology , vol.33 , pp. 10-17
    • Kusumoto, F.1    Goldschlager, N.2
  • 81
  • 84
    • 84937924362 scopus 로고    scopus 로고
    • A wireless transmission system powered by an enzyme biofuel cell implanted in an orange
    • MacVittie, K, Conlon, T, Katz, E. (2014) A wireless transmission system powered by an enzyme biofuel cell implanted in an orange. Bioelectrochemistry. in press: http://dx.doi.org/10.1016/j.bioelechem.2014.10.005
    • (2014) Bioelectrochemistry. in Press
    • MacVittie, K.1    Conlon, T.2    Katz, E.3
  • 85
    • 84873635664 scopus 로고    scopus 로고
    • High volumetric power density, non-enzymatic, glucose fuel cells
    • art. # 1226
    • Oncescu, V, Erickson, D. (2013) High volumetric power density, non-enzymatic, glucose fuel cells. Sci Reports 3: art. # 1226.
    • (2013) Sci Reports 3
    • Oncescu, V.1    Erickson, D.2
  • 86
    • 77953154022 scopus 로고    scopus 로고
    • Raney-platinum film electrodes for potentially implantable glucose fuel cells. Part 1: Nickel-free glucose oxidation anodes
    • Kerzenmacher, S, Schroeder, M, Brmer, R, Zengerle, R, von Stetten, F. (2010) Raney-platinum film electrodes for potentially implantable glucose fuel cells. Part 1: Nickel-free glucose oxidation anodes. J Power Sources 195:6516-6523.
    • (2011) J Power Sources , vol.195 , pp. 6516-6523
    • Kerzenmacher, S.1    Schroeder, M.2    Brmer, R.3    Zengerle, R.4    Von Stetten, F.5
  • 87
    • 77953151601 scopus 로고    scopus 로고
    • Raney-platinum film electrodes for potentially implantable glucose fuel cells. Part 2: Glucose-tolerant oxygen reduction cathodes
    • Kerzenmacher, S, Krling, U, Schroeder, M, Brmer, R, Zengerle, R, von Stetten, F. (2010) Raney-platinum film electrodes for potentially implantable glucose fuel cells. Part 2: Glucose-tolerant oxygen reduction cathodes. J Power Sources 195:6524-6531.
    • (2011) J Power Sources , vol.195 , pp. 6524-6531
    • Kerzenmacher, S.1    Krling, U.2    Schroeder, M.3    Brmer, R.4    Zengerle, R.5    Von Stetten, F.6
  • 88
    • 84255182829 scopus 로고    scopus 로고
    • Pt-decorated nanoporous gold for glucose electrooxidation in neutral and alkaline solutions
    • Art. # 313
    • Yan, X, Ge, X, Cui, S. (2011) Pt-decorated nanoporous gold for glucose electrooxidation in neutral and alkaline solutions. Nanoscale Res Lett. 6: art. #313.
    • (2011) Nanoscale Res Lett , vol.6
    • Yan, X.1    Ge, X.2    Cui, S.3
  • 89
    • 84898648018 scopus 로고    scopus 로고
    • A membraneless single compartment abiotic glucose fuel cell
    • Slaughter, G, Sunday, J. (2014) A membraneless single compartment abiotic glucose fuel cell. J Power Sources. 261:332-336.
    • (2014) J Power Sources , vol.261 , pp. 332-336
    • Slaughter, G.1    Sunday, J.2
  • 90
    • 84892602449 scopus 로고    scopus 로고
    • Modification of abiotic-biotic interfaces with small molecules and nanomaterials for improved bioelectronics
    • Du, J, Catania, C, Bazan, GC. (2014) Modification of abiotic-biotic interfaces with small molecules and nanomaterials for improved bioelectronics. Chem Mater. 26:686-697.
    • (2014) Chem Mater , vol.26 , pp. 686-697
    • Du, J.1    Catania, C.2    Bazan, G.C.3
  • 91
    • 44649168099 scopus 로고    scopus 로고
    • Energy harvesting by implantable abiotically catalyzed glucose fuel cells
    • Kerzenmacher, S, Ducre, J, Zengerle, R, von Stetten, F. (2008) Energy harvesting by implantable abiotically catalyzed glucose fuel cells. J Power Sources. 182:1-17.
    • (2008) J Power Sources , vol.182 , pp. 1-17
    • Kerzenmacher, S.1    Ducre, J.2    Zengerle, R.3    Von Stetten, F.4
  • 92
    • 44649169583 scopus 로고    scopus 로고
    • An abiotically catalyzed glucose fuel cell for powering medical implants: Reconstructed manufacturing protocol and analysis of performance
    • Kerzenmacher, S, Ducre, J, Zengerle, R, von Stetten, F. (2008) An abiotically catalyzed glucose fuel cell for powering medical implants: Reconstructed manufacturing protocol and analysis of performance. J Power Sources. 182:66-75.
    • (2008) J Power Sources , vol.182 , pp. 66-75
    • Kerzenmacher, S.1    Ducre, J.2    Zengerle, R.3    Von Stetten, F.4
  • 93
    • 79954516601 scopus 로고    scopus 로고
    • A single layer glucose fuel cell intended as power supplying coating for medical implants
    • Kloke, A, Biller, B, Krling, U, Kerzenmacher, S, Zengerle, R, von Stetten, F. (2011) A single layer glucose fuel cell intended as power supplying coating for medical implants. Fuel Cells. 11:316-326.
    • (2011) Fuel Cells , vol.11 , pp. 316-326
    • Kloke, A.1    Biller, B.2    Krling, U.3    Kerzenmacher, S.4    Zengerle, R.5    Von Stetten, F.6
  • 94
    • 80052506502 scopus 로고    scopus 로고
    • A microfabricated low cost enzymefree glucose fuel cell for powering low-power implantable devices
    • Oncescu, V, Erickson, D. (2011) A microfabricated low cost enzymefree glucose fuel cell for powering low-power implantable devices. J Power Sources. 196:9169-9175.
    • (2011) J Power Sources , vol.196 , pp. 9169-9175
    • Oncescu, V.1    Erickson, D.2
  • 95
    • 78049365086 scopus 로고    scopus 로고
    • A potentially implantable glucose fuel cell with Raneyplatinum film electrodes for improved hydrolytic and oxidative stability
    • Kerzenmacher, S, Krling, U, Metz, T, Zengerle, R, von Stetten, F. (2011) A potentially implantable glucose fuel cell with Raneyplatinum film electrodes for improved hydrolytic and oxidative stability. J Power Sources 196:1264-1272.
    • (2011) J Power Sources , vol.196 , pp. 1264-1272
    • Kerzenmacher, S.1    Krling, U.2    Metz, T.3    Zengerle, R.4    Von Stetten, F.5
  • 96
    • 80051749782 scopus 로고    scopus 로고
    • Mesoporous silica as a membrane for ultra-thin implantable direct glucose fuel cells
    • Sharma, T, Hu, Y, Stoller, M, Feldman, M, Ruoff, RS, Ferrari, M, Zhang, X. (2011) Mesoporous silica as a membrane for ultra-thin implantable direct glucose fuel cells. Lab Chip. 11:2460-2465.
    • (2011) Lab Chip , vol.11 , pp. 2460-2465
    • Sharma, T.1    Hu, Y.2    Stoller, M.3    Feldman, M.4    Ruoff, R.S.5    Ferrari, M.6    Zhang, X.7
  • 97
    • 84940733026 scopus 로고    scopus 로고
    • Biofuel cells for the energy supply of distributed systems: State-of-the-Art and applications
    • Nrnberg, art. # 100
    • Kerzenmacher, S, Rubenwolf, S, Kloke, A, Zengerle, R, Gescher, J. (2010) Biofuel cells for the energy supply of distributed systems: State-of-the-Art and applications. Conf Proc Sensoren und Messsysteme, Nrnberg, art. #100, pp. 562-565.
    • (2011) Conf Proc Sensoren und Messsysteme , pp. 562-565
    • Kerzenmacher, S.1    Rubenwolf, S.2    Kloke, A.3    Zengerle, R.4    Gescher, J.5
  • 102
    • 84890667987 scopus 로고    scopus 로고
    • The chemistry of cyborgs-Interfacing technical devices with organisms
    • Giselbrecht, S, Rapp, BE, Niemeyer, CM. (2013) The chemistry of cyborgs-Interfacing technical devices with organisms. Angew Chem Int Ed. 52:13942-13957.
    • (2013) Angew Chem Int Ed , vol.52 , pp. 13942-13957
    • Giselbrecht, S.1    Rapp, B.E.2    Niemeyer, C.M.3
  • 103
    • 33746125751 scopus 로고    scopus 로고
    • Neuroprosthetics search of the sixth sense
    • Abbott, A. (2006) Neuroprosthetics: In search of the sixth sense. Nature. 442:125-127.
    • (2006) Nature , vol.442 , pp. 125-127
    • Abbott, A.1
  • 104
    • 0038565006 scopus 로고    scopus 로고
    • Cyborgs commun
    • Norman, D. (2001) Cyborgs. Commun. ACM. 44:36-37.
    • (2001) ACM , vol.44 , pp. 36-37
    • Norman, D.1
  • 105
    • 35048871846 scopus 로고    scopus 로고
    • University of Illinois Press
    • Warwick, K. (2004) I, Cyborg, University of Illinois Press.
    • (2004) I, Cyborg
    • Warwick, K.1
  • 106
    • 84944259817 scopus 로고    scopus 로고
    • Cambridge University Press, Cambridge
    • Rao, RPN. (2013) Brain-Computer Interfacing. Cambridge University Press, Cambridge.
    • (2013) Brain-Computer Interfacing
    • Rpn, R.1
  • 109
    • 85180507228 scopus 로고    scopus 로고
    • Implantable biofuel cells operating in vivo -Potential power sources for bioelectronic devices
    • Katz, E. (2015) Implantable biofuel cells operating in vivo -Potential power sources for bioelectronic devices. Bioelectronic Medicine. 2:1-12.
    • (2015) Bioelectronic Medicine , vol.2 , pp. 1-12
    • Katz, E.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.