-
5
-
-
84891582878
-
-
(ed), Wiley-VCH, Weinheim, Germany: 462
-
Someya T. (ed.) (2013) Stretchable Electronics. Wiley-VCH: Weinheim, Germany. 462 pp.
-
(2013)
Stretchable Electronics
-
-
Someya, T.1
-
7
-
-
60549105821
-
Flexible thick-film electrochemical sensors: Impact of mechanical bending and stress on the electrochemical behavior
-
COI: 1:CAS:528:DC%2BD1MXisFWitbw%3D, PID: 20160861
-
Cai J, et al. (2009) Flexible thick-film electrochemical sensors: Impact of mechanical bending and stress on the electrochemical behavior. Sens. Actuators B. Chem. 137:379–85. DOI: 10.1016/j.snb.2008.10.027
-
(2009)
Sens. Actuators B. Chem.
, vol.137
, pp. 379-385
-
-
Cai, J.1
-
8
-
-
84862903174
-
Electrophysiological properties of cochlear implantation in the gerbil using a flexible array
-
DeMason, C, et al. (2012) Electrophysiological properties of cochlear implantation in the gerbil using a flexible array. Ear Hear. 33:534–42. DOI: 10.1097/AUD.0b013e3182498c28
-
(2012)
Ear Hear.
, vol.33
, pp. 534-542
-
-
De Mason, C.1
-
9
-
-
84886560919
-
-
(eds), Wiley-Blackwell, West Sussex, UK: 678
-
Hayes DL, Asirvatham SJ, Friedman PA. (eds.) (2013) Cardiac Pacing, Defibrillation and Resynchronization: A Clinical Approach. Wiley-Blackwell: West Sussex, UK. 678 pp.
-
(2013)
Cardiac Pacing, Defibrillation and Resynchronization: A Clinical Approach
-
-
Hayes, D.L.1
Asirvatham, S.J.2
Friedman, P.A.3
-
12
-
-
83455229765
-
-
(ed), Springer, London: 200
-
Hakim NS. (ed.) (2009) Artificial Organs. Springer: London. 200 pp.
-
(2009)
Artificial Organs
-
-
Hakim, N.S.1
-
13
-
-
84905009884
-
Safe use of repetitive transcranial magnetic stimulation in patients with implanted vagus nerve stimulators
-
PID: 24794163
-
Philip NS, Carpenter SL, Carpenter LL. (2014) Safe use of repetitive transcranial magnetic stimulation in patients with implanted vagus nerve stimulators. Brain Stimul. 7:608–12. DOI: 10.1016/j.brs.2014.04.001
-
(2014)
Brain Stimul.
, vol.7
, pp. 608-612
-
-
Philip, N.S.1
Carpenter, S.L.2
Carpenter, L.L.3
-
14
-
-
33646188299
-
Subpectoral implantation of the vagus nerve stimulator
-
Bauman JA, Ridgway EB, Devinsky O, Doyle WK. (2006) Subpectoral implantation of the vagus nerve stimulator. Neurosurgery. 58:322–5. DOI: 10.1227/01.NEU.0000196442.47101.F2
-
(2006)
Neurosurgery
, vol.58
, pp. 322-325
-
-
Bauman, J.A.1
Ridgway, E.B.2
Devinsky, O.3
Doyle, W.K.4
-
15
-
-
78650218512
-
The pulse of inflammation: heart rate variability, the cholinergic anti-inflammatory pathway and implications for therapy
-
COI: 1:CAS:528:DC%2BC3MXhsFKms7o%3D, PID: 21158977
-
Huston JM, Tracey KJ. (2011) The pulse of inflammation: heart rate variability, the cholinergic anti-inflammatory pathway and implications for therapy. J. Intern. Med. 269:45–53. DOI: 10.1111/j.1365-2796.2010.02321.x
-
(2011)
J. Intern. Med.
, vol.269
, pp. 45-53
-
-
Huston, J.M.1
Tracey, K.J.2
-
16
-
-
84878039682
-
‘The pump was a saviour for me.’ Patients experiences of insulin pump therapy
-
COI: 1:STN:280:DC%2BC3sznt1KltA%3D%3D, PID: 23398606
-
Garmo A, Hornsten A, Leksell J. (2013) ‘The pump was a saviour for me.’ Patients experiences of insulin pump therapy. Diabet. Med. 30:717–23. DOI: 10.1111/dme.12155
-
(2013)
Diabet. Med.
, vol.30
, pp. 717-723
-
-
Garmo, A.1
Hornsten, A.2
Leksell, J.3
-
18
-
-
84944214826
-
Eye amputated patients’ perspective on life with an artificial eye
-
[abstract]
-
Rasmussen MLR, Prause JU, Toft PB. (2010) Eye amputated patients’ perspective on life with an artificial eye [abstract]. Acta. Ophthalmol. 88(Suppl s245):41.
-
(2010)
Acta. Ophthalmol.
, vol.88
, pp. 41
-
-
Rasmussen, M.L.R.1
Prause, J.U.2
Toft, P.B.3
-
19
-
-
84857998698
-
Human powered MEMS-based energy harvest devices
-
COI: 1:CAS:528:DC%2BC38XjsFKltbc%3D
-
Sue CY, Tsai NC. (2012) Human powered MEMS-based energy harvest devices. Appl. Energy. 93:390–403. DOI: 10.1016/j.apenergy.2011.12.037
-
(2012)
Appl. Energy.
, vol.93
, pp. 390-403
-
-
Sue, C.Y.1
Tsai, N.C.2
-
20
-
-
79952959813
-
Design and performance of an optimal inertial power harvester for human-powered
-
Yun J, Patel SN, Reynolds MS, Abowd GD. (2011) Design and performance of an optimal inertial power harvester for human-powered. IEEE Trans Mobile Comput. 10:669–83. DOI: 10.1109/TMC.2010.202
-
(2011)
IEEE Trans Mobile Comput.
, vol.10
, pp. 669-683
-
-
Yun, J.1
Patel, S.N.2
Reynolds, M.S.3
Abowd, G.D.4
-
21
-
-
79551686137
-
Energy generation for an ad hoc wireless sensor network-based monitoring system using animal head movement
-
Nadimi ES, Blanes-Vidal V, Jørgensen RN, Christensen S. (2011) Energy generation for an ad hoc wireless sensor network-based monitoring system using animal head movement. Comput. Electron. Agri. 75:238–42. DOI: 10.1016/j.compag.2010.11.008
-
(2011)
Comput. Electron. Agri.
, vol.75
, pp. 238-242
-
-
Nadimi, E.S.1
Blanes-Vidal, V.2
Jørgensen, R.N.3
Christensen, S.4
-
22
-
-
79958087800
-
Electrical power generation from insect flight
-
Reissman T, MacCurdy RB, Garcia E. (2011) Electrical power generation from insect flight. Proc. SPIE. 7977:797702. DOI: 10.1117/12.880702
-
(2011)
Proc. SPIE.
, vol.7977
, pp. 797702
-
-
Reissman, T.1
MacCurdy, R.B.2
Garcia, E.3
-
23
-
-
84907215671
-
Flexible piezoelectric energy harvesting from jaw movements
-
COI: 1:CAS:528:DC%2BC2cXitFGhsLrL
-
Delnavaz A, Voix J. (2014) Flexible piezoelectric energy harvesting from jaw movements. Smart Mater. Struct. 23:105020. DOI: 10.1088/0964-1726/23/10/105020
-
(2014)
Smart Mater. Struct.
, vol.23
, pp. 105020
-
-
Delnavaz, A.1
Voix, J.2
-
24
-
-
61349140546
-
Harvesting human kinematical energy based on liquid metal magnetohydrodynamics
-
COI: 1:CAS:528:DC%2BD1MXisl2qu70%3D
-
Jia D, Liu J, Zhou Y. (2009) Harvesting human kinematical energy based on liquid metal magnetohydrodynamics. Phys. Lett A. 373:1305–9. DOI: 10.1016/j.physleta.2009.02.028
-
(2009)
Phys. Lett A.
, vol.373
, pp. 1305-1309
-
-
Jia, D.1
Liu, J.2
Zhou, Y.3
-
25
-
-
84902201421
-
Optimizing the output of a human-powered energy harvesting system with miniaturization and integrated control
-
Goudar V, Ren Z, Brochu P, Potkonjak M, Pei QB. (2014) Optimizing the output of a human-powered energy harvesting system with miniaturization and integrated control. IEEE Sensors J. 14:2084–91. DOI: 10.1109/JSEN.2013.2290738
-
(2014)
IEEE Sensors J.
, vol.14
, pp. 2084-2091
-
-
Goudar, V.1
Ren, Z.2
Brochu, P.3
Potkonjak, M.4
Pei, Q.B.5
-
26
-
-
84864264339
-
An active piezoelectric energy extraction method for pressure energy harvesting
-
COI: 1:CAS:528:DC%2BC38Xht1Ort73N
-
Deterre M, Lefeuvre E, Dufour-Gergam E. (2012) An active piezoelectric energy extraction method for pressure energy harvesting. Smart Mater. Struct. 21:085004. DOI: 10.1088/0964-1726/21/8/085004
-
(2012)
Smart Mater. Struct.
, vol.21
, pp. 085004
-
-
Deterre, M.1
Lefeuvre, E.2
Dufour-Gergam, E.3
-
27
-
-
79955103117
-
Biomechanical energy harvesting from human motion: theory, state of the art, design guidelines, and future directions
-
PID: 21521509
-
Riemer R, Shapiro A. (2011) Biomechanical energy harvesting from human motion: theory, state of the art, design guidelines, and future directions. J. Neuroeng. Rehabil. 8:22. DOI: 10.1186/1743-0003-8-22
-
(2011)
J. Neuroeng. Rehabil.
, vol.8
, pp. 22
-
-
Riemer, R.1
Shapiro, A.2
-
28
-
-
65249165597
-
Converting biomechanical energy into electricity by a muscle-movement-driven nanogenerator
-
COI: 1:CAS:528:DC%2BD1MXhs1Smu70%3D, PID: 19203203
-
Yang R, Qin Y, Li C, Zhu G, Wang ZL. (2009) Converting biomechanical energy into electricity by a muscle-movement-driven nanogenerator. Nano Lett. 9:1201–5. DOI: 10.1021/nl803904b
-
(2009)
Nano Lett.
, vol.9
, pp. 1201-1205
-
-
Yang, R.1
Qin, Y.2
Li, C.3
Zhu, G.4
Wang, Z.L.5
-
29
-
-
24644452464
-
Generating electricity while walking with loads
-
COI: 1:CAS:528:DC%2BD2MXpvFCis7w%3D, PID: 16151012
-
Rome LC, Flynn L, Goldman EM, Yoo TD. (2005) Generating electricity while walking with loads. Science. 309:1725–8. DOI: 10.1126/science.1111063
-
(2005)
Science
, vol.309
, pp. 1725-1728
-
-
Rome, L.C.1
Flynn, L.2
Goldman, E.M.3
Yoo, T.D.4
-
30
-
-
38949118719
-
Biomechanical energy harvesting: Generating electricity during walking with minimal user effort
-
COI: 1:CAS:528:DC%2BD1cXhsFGhs7o%3D, PID: 18258914
-
Donelan JM, et al. (2008) Biomechanical energy harvesting: Generating electricity during walking with minimal user effort. Science. 319:807–10. DOI: 10.1126/science.1149860
-
(2008)
Science
, vol.319
, pp. 807-810
-
-
Donelan, J.M.1
-
31
-
-
77954275027
-
Muscle-driven in vivo nanogenerator
-
COI: 1:CAS:528:DC%2BC3cXosVGqsbg%3D, PID: 20446305
-
Li Z, Zhu G, Yang R, Wang AC, Wang ZL. (2010) Muscle-driven in vivo nanogenerator. Adv. Mater. 22:2534–7. DOI: 10.1002/adma.200904355
-
(2010)
Adv. Mater.
, vol.22
, pp. 2534-2537
-
-
Li, Z.1
Zhu, G.2
Yang, R.3
Wang, A.C.4
Wang, Z.L.5
-
32
-
-
84871632664
-
Energy harvesting from the beating heart by a mass imbalance oscillation generator
-
COI: 1:STN:280:DC%2BC38fgvVSjsQ%3D%3D, PID: 22805983
-
Zurbuchen A, et al. (2013) Energy harvesting from the beating heart by a mass imbalance oscillation generator. Ann. Biomed. Eng. 41:131–41. DOI: 10.1007/s10439-012-0623-3
-
(2013)
Ann. Biomed. Eng.
, vol.41
, pp. 131-141
-
-
Zurbuchen, A.1
-
33
-
-
80055029421
-
PVDF microbelts for harvesting energy from respiration
-
COI: 1:CAS:528:DC%2BC3MXhsVyrtb%2FK
-
Sun C, Shi J, Bayerl DJ, Wang X. (2011) PVDF microbelts for harvesting energy from respiration. Energy Environ. Sci. 4:4508–12. DOI: 10.1039/c1ee02241e
-
(2011)
Energy Environ. Sci.
, vol.4
, pp. 4508-4512
-
-
Sun, C.1
Shi, J.2
Bayerl, D.J.3
Wang, X.4
-
34
-
-
84870953624
-
Energy extraction from the biologic battery in the inner ear
-
COI: 1:CAS:528:DC%2BC38Xhs1els7fM
-
Mercier PP, Lysaght AC, Bandyopadhyay S, Chandrakasan AP, Stankovic KM. (2012) Energy extraction from the biologic battery in the inner ear. Nature Biotechnol. 30:1240–5. DOI: 10.1038/nbt.2394
-
(2012)
Nature Biotechnol.
, vol.30
, pp. 1240-1245
-
-
Mercier, P.P.1
Lysaght, A.C.2
Bandyopadhyay, S.3
Chandrakasan, A.P.4
Stankovic, K.M.5
-
35
-
-
77955548078
-
Hybrid nanogenerator for concurrently harvesting biomechanical and biochemical energy
-
COI: 1:CAS:528:DC%2BC3cXms1Sjurk%3D, PID: 20507155
-
Hansen BJ, Liu Y, Yang R, Wang ZL. (2010) Hybrid nanogenerator for concurrently harvesting biomechanical and biochemical energy. ACS Nano. 4:3647–52. DOI: 10.1021/nn100845b
-
(2010)
ACS Nano.
, vol.4
, pp. 3647-3652
-
-
Hansen, B.J.1
Liu, Y.2
Yang, R.3
Wang, Z.L.4
-
36
-
-
84864268679
-
From in vitro to in vivo—biofuel cells are maturing
-
COI: 1:CAS:528:DC%2BC38XotVelurs%3D
-
Schröder U. (2012) From in vitro to in vivo—biofuel cells are maturing. Angew. Chem. Int. Ed. 51:7370–2. DOI: 10.1002/anie.201203259
-
(2012)
Angew. Chem. Int. Ed.
, vol.51
, pp. 7370-7372
-
-
Schröder, U.1
-
37
-
-
84880991218
-
Biofuel cells for biomedical applications: colonizing the animal kingdom
-
COI: 1:CAS:528:DC%2BC3sXjsVWnsbw%3D, PID: 23460490
-
Falk M, Narváez Villarrubia CW, Babanova S, Atanassov P, Shleev S. (2013) Biofuel cells for biomedical applications: colonizing the animal kingdom. Chemphyschem. 14:2045–58. DOI: 10.1002/cphc.201300044
-
(2013)
Chemphyschem.
, vol.14
, pp. 2045-2058
-
-
Falk, M.1
Narváez Villarrubia, C.W.2
Babanova, S.3
Atanassov, P.4
Shleev, S.5
-
38
-
-
84884538876
-
Implanted biofuel cells operating in vivo—methods, applications and perspectives—feature article
-
COI: 1:CAS:528:DC%2BC3sXhsV2it7bI
-
Katz E, MacVittie K. (2013) Implanted biofuel cells operating in vivo—methods, applications and perspectives—feature article. Energy Environ. Sci. 6:2791–803. DOI: 10.1039/c3ee42126k
-
(2013)
Energy Environ. Sci.
, vol.6
, pp. 2791-2803
-
-
Katz, E.1
MacVittie, K.2
-
39
-
-
33846336459
-
Biofuel cells—recent advances and applications
-
COI: 1:CAS:528:DC%2BD2sXpvVOnsQ%3D%3D, PID: 16781864
-
Davis F, Higson SPJ. (2007) Biofuel cells—recent advances and applications. Biosens. Bioelectron. 22:1224–35. DOI: 10.1016/j.bios.2006.04.029
-
(2007)
Biosens. Bioelectron.
, vol.22
, pp. 1224-1235
-
-
Davis, F.1
Higson, S.P.J.2
-
40
-
-
49049118534
-
Enzymes as working or inspirational electrocatalysts for fuel cells and electrolysis
-
COI: 1:CAS:528:DC%2BD1cXotlantLs%3D, PID: 18620369
-
Cracknell JA, Vincent KA, Armstrong FA. (2008) Enzymes as working or inspirational electrocatalysts for fuel cells and electrolysis. Chem. Rev. 108:2439–61. DOI: 10.1021/cr0680639
-
(2008)
Chem. Rev.
, vol.108
, pp. 2439-2461
-
-
Cracknell, J.A.1
Vincent, K.A.2
Armstrong, F.A.3
-
41
-
-
84944182084
-
Enzyme biofuel cells: thermodynamics, kinetics and challenges in applicability
-
COI: 1:CAS:528:DC%2BC2cXhvVylsb3L
-
Luz RAS, Pereira AR, de Souza JCP, Sales FCPF, Crespilho FN. (2014) Enzyme biofuel cells: thermodynamics, kinetics and challenges in applicability. Chemelectrochem. 1:1751–77. DOI: 10.1002/celc.201402141
-
(2014)
Chemelectrochem.
, vol.1
, pp. 1751-1777
-
-
Luz, R.A.S.1
Pereira, A.R.2
de Souza, J.C.P.3
Sales, F.C.P.F.4
Crespilho, F.N.5
-
42
-
-
76049119818
-
Enzymatic biofuel cells—fabrication of enzyme electrodes
-
COI: 1:CAS:528:DC%2BC3cXhtlSrtrY%3D
-
Yu EH, Scott K. (2010) Enzymatic biofuel cells—fabrication of enzyme electrodes. Energies. 3:23–42. DOI: 10.3390/en3010023
-
(2010)
Energies
, vol.3
, pp. 23-42
-
-
Yu, E.H.1
Scott, K.2
-
43
-
-
84863317977
-
Biofuel cells: enhanced enzymatic bioelectrocatalysis
-
COI: 1:CAS:528:DC%2BC38Xht1GmtLjM
-
Meredith MT, Minteer SD. (2012) Biofuel cells: enhanced enzymatic bioelectrocatalysis. Ann. Rev. Anal. Chem. (Palo Alto Calif.). 5:157–79. DOI: 10.1146/annurev-anchem-062011-143049
-
(2012)
Ann. Rev. Anal. Chem. (Palo Alto Calif.)
, vol.5
, pp. 157-179
-
-
Meredith, M.T.1
Minteer, S.D.2
-
44
-
-
84869085132
-
Enzymatic fuel cells: Recent progress
-
COI: 1:CAS:528:DC%2BC38Xhs1Ghu7bO
-
Leech D, Kavanagh P, Schuhmann W. (2012) Enzymatic fuel cells: Recent progress. Electrochim. Acta. 84:223–34. DOI: 10.1016/j.electacta.2012.02.087
-
(2012)
Electrochim. Acta.
, vol.84
, pp. 223-234
-
-
Leech, D.1
Kavanagh, P.2
Schuhmann, W.3
-
45
-
-
44349166894
-
Extended lifetime biofuel cells
-
COI: 1:CAS:528:DC%2BD1cXmtlSisL0%3D, PID: 18497931
-
Moehlenbrock MJ, Minteer, SD. (2008) Extended lifetime biofuel cells. Chem. Soc. Rev. 37:1188–96. DOI: 10.1039/b708013c
-
(2008)
Chem. Soc. Rev.
, vol.37
, pp. 1188-1196
-
-
Moehlenbrock, M.J.1
Minteer, S.D.2
-
46
-
-
79960896249
-
Enzymatic fuel cells: integrating flow-through anode and air-breathing cathode into a membrane-less biofuel cell design
-
COI: 1:CAS:528:DC%2BC3MXpvFWnsL0%3D, PID: 21775124
-
Rincón RA, et al. (2011) Enzymatic fuel cells: integrating flow-through anode and air-breathing cathode into a membrane-less biofuel cell design. Biosens. Bioelectron. 27:132–6. DOI: 10.1016/j.bios.2011.06.029
-
(2011)
Biosens. Bioelectron.
, vol.27
, pp. 132-136
-
-
Rincón, R.A.1
-
47
-
-
81255196511
-
Bioelectrochemical interface engineering: toward the fabrication of electrochemical biosensors, biofuel cells, and self-powered logic biosensors
-
COI: 1:CAS:528:DC%2BC3MXpslWqsbY%3D, PID: 21812435
-
Zhou M, Dong S. (2011) Bioelectrochemical interface engineering: toward the fabrication of electrochemical biosensors, biofuel cells, and self-powered logic biosensors. Acc. Chem. Res. 44:1232–43. DOI: 10.1021/ar200096g
-
(2011)
Acc. Chem. Res.
, vol.44
, pp. 1232-1243
-
-
Zhou, M.1
Dong, S.2
-
48
-
-
84862810818
-
Small-size biofuel cell on paper
-
COI: 1:CAS:528:DC%2BC38Xjslemur0%3D, PID: 22417872
-
Zhang L, et al. (2012) Small-size biofuel cell on paper. Biosens. Bioelectron. 35:155–9. DOI: 10.1016/j.bios.2012.02.035
-
(2012)
Biosens. Bioelectron.
, vol.35
, pp. 155-159
-
-
Zhang, L.1
-
49
-
-
84863012036
-
Biofuel cells for self-powered electrochemical biosensing and logic biosensing: a review
-
COI: 1:CAS:528:DC%2BC38Xksl2ktg%3D%3D
-
Zhou M, Wang J. (2012) Biofuel cells for self-powered electrochemical biosensing and logic biosensing: a review. Electroanalysis. 24:197–209. DOI: 10.1002/elan.201100631
-
(2012)
Electroanalysis
, vol.24
, pp. 197-209
-
-
Zhou, M.1
Wang, J.2
-
50
-
-
0014722165
-
A tissue implantable fuel cell power supply
-
PID: 5454167, COI: 1:CAS:528:DyaE38XhsFygsro%3D
-
Drake RF, Kusserow BK, Messinger S, Matsuda S. (1970) A tissue implantable fuel cell power supply. Trans. Am. Soc. Artif. Intern. Organs. 16:199–205.
-
(1970)
Trans. Am. Soc. Artif. Intern. Organs.
, vol.16
, pp. 199-205
-
-
Drake, R.F.1
Kusserow, B.K.2
Messinger, S.3
Matsuda, S.4
-
51
-
-
84862165737
-
A glucose fuel cell for implantable brain-machine interfaces
-
COI: 1:CAS:528:DC%2BC38XovFyqtr0%3D, PID: 22719888
-
Rapoport BI, Kedzierski JT, Sarpeshkar R. (2012) A glucose fuel cell for implantable brain-machine interfaces. PLoS ONE. 7:e38436. DOI: 10.1371/journal.pone.0038436
-
(2012)
PLoS ONE
, vol.7
-
-
Rapoport, B.I.1
Kedzierski, J.T.2
Sarpeshkar, R.3
-
52
-
-
33749858044
-
Harnessing the body’s own energy and communication resources
-
Sun MG, et al. (2006) Harnessing the body’s own energy and communication resources. IEEE Eng. Med. Biol. Magazine. 25:39–46.
-
(2006)
IEEE Eng. Med. Biol. Magazine
, vol.25
, pp. 39-46
-
-
Sun, M.G.1
-
53
-
-
0037032299
-
A miniature biofuel cell operating in a physiological buffer
-
COI: 1:CAS:528:DC%2BD38XnvVShu74%3D, PID: 12405819
-
Mano N, Mao F, Heller A. (2002) A miniature biofuel cell operating in a physiological buffer. J. Am. Chem. Soc. 124:12962–3. DOI: 10.1021/ja028514g
-
(2002)
J. Am. Chem. Soc.
, vol.124
, pp. 12962-12963
-
-
Mano, N.1
Mao, F.2
Heller, A.3
-
54
-
-
76649123641
-
A direct electron transfer-based glucose/oxygen biofuel cell operating in human serum
-
COI: 1:CAS:528:DC%2BC3cXhvFaqtLs%3D
-
Coman V, et al. (2010) A direct electron transfer-based glucose/oxygen biofuel cell operating in human serum. Fuel Cells. 10:9–16.
-
(2010)
Fuel Cells.
, vol.10
, pp. 9-16
-
-
Coman, V.1
-
55
-
-
78650284921
-
Generating electricity from biofluid with a nanowire-based biofuel cell for self-powered nanodevices
-
COI: 1:CAS:528:DC%2BC3cXhsFCkt7rL, PID: 20972979
-
Pan C, et al (2010) Generating electricity from biofluid with a nanowire-based biofuel cell for self-powered nanodevices. Adv. Mater. 22:5388–92. DOI: 10.1002/adma.201002519
-
(2010)
Adv. Mater.
, vol.22
, pp. 5388-5392
-
-
Pan, C.1
-
56
-
-
84887569786
-
Towards glucose biofuel cells implanted in human body for powering artificial organs: Review
-
COI: 1:CAS:528:DC%2BC3sXhvFOrsb3E
-
Cosnier S., Le Goff A, Holzinger M. (2014) Towards glucose biofuel cells implanted in human body for powering artificial organs: Review. Electrochem. Commun. 38:19–23. DOI: 10.1016/j.elecom.2013.09.021
-
(2014)
Electrochem. Commun.
, vol.38
, pp. 19-23
-
-
Cosnier, S.1
Le Goff, A.2
Holzinger, M.3
-
57
-
-
84856288432
-
An implantable biofuel cell for a live insect
-
COI: 1:CAS:528:DC%2BC38XivVertw%3D%3D, PID: 22239249
-
Rasmussen M, Ritzmann RE, Lee I, Pollack AJ, Scherson D. (2012) An implantable biofuel cell for a live insect. J. Am. Chem. Soc. 134:1458–60. DOI: 10.1021/ja210794c
-
(2012)
J. Am. Chem. Soc.
, vol.134
, pp. 1458-1460
-
-
Rasmussen, M.1
Ritzmann, R.E.2
Lee, I.3
Pollack, A.J.4
Scherson, D.5
-
58
-
-
84858683374
-
Implanted biofuel cell operating in a living snail
-
COI: 1:CAS:528:DC%2BC38XjsFehsbo%3D, PID: 22401501
-
Halámková L, et al. (2012) Implanted biofuel cell operating in a living snail. J. Am. Chem. Soc. 134:5040–3. DOI: 10.1021/ja211714w
-
(2012)
J. Am. Chem. Soc.
, vol.134
, pp. 5040-5043
-
-
Halámková, L.1
-
59
-
-
84870042797
-
Living battery—biofuel cells operating in vivo in clams
-
COI: 1:CAS:528:DC%2BC38Xhtlyqs7fN
-
Szczupak A, et al. (2012) Living battery—biofuel cells operating in vivo in clams. Energy Environ. Sci. 5:8891–5. DOI: 10.1039/c2ee21626d
-
(2012)
Energy Environ. Sci.
, vol.5
, pp. 8891-8895
-
-
Szczupak, A.1
-
60
-
-
84871307662
-
From “cyborg” lobsters to a pacemaker powered by implantable biofuel cells
-
COI: 1:CAS:528:DC%2BC38XhvVKqtLbN
-
MacVittie K, et al. (2013) From “cyborg” lobsters to a pacemaker powered by implantable biofuel cells. Energy Environ. Sci. 6:81–6. DOI: 10.1039/C2EE23209J
-
(2013)
Energy Environ. Sci.
, vol.6
, pp. 81-86
-
-
MacVittie, K.1
-
61
-
-
77956420559
-
A glucose biofuel cell implanted in rats
-
COI: 1:CAS:528:DC%2BC3cXmtFGktr8%3D, PID: 20454563
-
Cinquin P, et al. (2010) A glucose biofuel cell implanted in rats. PLoS ONE. 5:e10476. DOI: 10.1371/journal.pone.0010476
-
(2010)
PLoS ONE
, vol.5
-
-
Cinquin, P.1
-
62
-
-
84872093852
-
An intravenous implantable glucose/dioxygen biofuel cell with modified flexible carbon fiber electrodes
-
COI: 1:CAS:528:DC%2BC3sXjtlyhsg%3D%3D, PID: 23242477
-
Sales FC, Iost RM, Martins MV, Almeida MC, Crespilho FN. (2013) An intravenous implantable glucose/dioxygen biofuel cell with modified flexible carbon fiber electrodes. Lab Chip. 13:468–74. DOI: 10.1039/C2LC41007A
-
(2013)
Lab Chip.
, vol.13
, pp. 468-474
-
-
Sales, F.C.1
Iost, R.M.2
Martins, M.V.3
Almeida, M.C.4
Crespilho, F.N.5
-
63
-
-
84884561261
-
Biofuel cell-based self-powered biogenerators for online continuous monitoring of neurochemicals in rat brain
-
COI: 1:CAS:528:DC%2BC38Xhslequ7nF, PID: 23120750
-
Cheng H, et al. (2013) Biofuel cell-based self-powered biogenerators for online continuous monitoring of neurochemicals in rat brain. Analyst. 138:179–85. DOI: 10.1039/C2AN36385B
-
(2013)
Analyst
, vol.138
, pp. 179-185
-
-
Cheng, H.1
-
64
-
-
84875766734
-
Single glucose biofuel cells implanted in rats power electronic devices
-
COI: 1:CAS:528:DC%2BC3sXhtVSktb%2FO
-
Zebda A, et al. (2013) Single glucose biofuel cells implanted in rats power electronic devices. Sci. Reports. 3:1516. DOI: 10.1038/srep01516
-
(2013)
Sci. Reports
, vol.3
, pp. 1516
-
-
Zebda, A.1
-
65
-
-
84880358743
-
Biofuel cell operating in vivo in rat
-
COI: 1:CAS:528:DC%2BC3sXnvVOhs78%3D
-
Castorena-Gonzalez JA, et al. (2013) Biofuel cell operating in vivo in rat. Electroanalysis. 25:1579–84. DOI: 10.1002/elan.201300136
-
(2013)
Electroanalysis
, vol.25
, pp. 1579-1584
-
-
Castorena-Gonzalez, J.A.1
-
66
-
-
82555193617
-
Enzymatic biofuel cells designed for direct power generation from biofluids in living organisms
-
COI: 1:CAS:528:DC%2BC3MXhsFKlurjM
-
Miyake T, et al. (2011) Enzymatic biofuel cells designed for direct power generation from biofluids in living organisms. Energy Environ. Sci. 4:5008–12. DOI: 10.1039/c1ee02200h
-
(2011)
Energy Environ. Sci.
, vol.4
, pp. 5008-5012
-
-
Miyake, T.1
-
67
-
-
7544227821
-
Enzymatic biofuel cells for implantable and microscale devices
-
COI: 1:CAS:528:DC%2BD2cXnsleju74%3D, PID: 15669171
-
Barton SC, Gallaway J, Atanassov P. (2004) Enzymatic biofuel cells for implantable and microscale devices. Chem. Rev. 104:4867–86. DOI: 10.1021/cr020719k
-
(2004)
Chem. Rev.
, vol.104
, pp. 4867-4886
-
-
Barton, S.C.1
Gallaway, J.2
Atanassov, P.3
-
68
-
-
0742304946
-
Miniature biofuel cells
-
COI: 1:CAS:528:DC%2BD2cXhs1ehsg%3D%3D
-
Heller A. (2004) Miniature biofuel cells. Phys. Chem. Chem. Phys. 6:209–16. DOI: 10.1039/b313149a
-
(2004)
Phys. Chem. Chem. Phys.
, vol.6
, pp. 209-216
-
-
Heller, A.1
-
69
-
-
0037458839
-
A miniature biofuel cell operating at 0.78 V
-
Mano N, Mao F, Shin W, Chen T, Heller A. (2003) A miniature biofuel cell operating at 0.78 V. Chem. Commun. 518–9.
-
(2003)
Chem. Commun.
, pp. 518-519
-
-
Mano, N.1
Mao, F.2
Shin, W.3
Chen, T.4
Heller, A.5
-
70
-
-
77649234772
-
Improved energy output levels from small-scale microbial fuel cells
-
COI: 1:CAS:528:DC%2BC3cXjtVWiuro%3D, PID: 19540172
-
Ieropoulos I, Greenman J, Melhuish C. (2010) Improved energy output levels from small-scale microbial fuel cells. Bioelectrochemistry. 78:44–50. DOI: 10.1016/j.bioelechem.2009.05.009
-
(2010)
Bioelectrochemistry
, vol.78
, pp. 44-50
-
-
Ieropoulos, I.1
Greenman, J.2
Melhuish, C.3
-
71
-
-
55949104194
-
Microbial fuel cells based on carbon veil electrodes: Stack configuration and scalability
-
COI: 1:CAS:528:DC%2BD1cXhtlClu7fL
-
Ieropoulos I, Greenman J, Melhuish C. (2008) Microbial fuel cells based on carbon veil electrodes: Stack configuration and scalability. Int. J. Energy Res. 32:1228–40. DOI: 10.1002/er.1419
-
(2008)
Int. J. Energy Res.
, vol.32
, pp. 1228-1240
-
-
Ieropoulos, I.1
Greenman, J.2
Melhuish, C.3
-
72
-
-
33646749524
-
Continuous electricity generation at high voltages and currents using stacked microbial fuel cells
-
COI: 1:CAS:528:DC%2BD28XjtlSit7c%3D, PID: 16749711
-
Aelterman P, Rabaey K, Pham HT, Boon N, Verstraete W. (2006) Continuous electricity generation at high voltages and currents using stacked microbial fuel cells. Environ. Sci. Technol. 40:3388–94. DOI: 10.1021/es0525511
-
(2006)
Environ. Sci. Technol.
, vol.40
, pp. 3388-3394
-
-
Aelterman, P.1
Rabaey, K.2
Pham, H.T.3
Boon, N.4
Verstraete, W.5
-
73
-
-
78650984998
-
Energy harvesting with microbial fuel cell and power management system
-
Meehan A, Ga, H, Lewandowski Z. (2011) Energy harvesting with microbial fuel cell and power management system. IEEE Trans. Power Electronics. 26:176–81. DOI: 10.1109/TPEL.2010.2054114
-
(2011)
IEEE Trans. Power Electronics
, vol.26
, pp. 176-181
-
-
Meehan, A.1
Ga, H.2
Lewandowski, Z.3
-
74
-
-
85186929797
-
-
Los Angeles: G4 Media Inc.; 2012 Apr 18. Available from
-
How To Harvest Electricity From Lobsters [online video]. Los Angeles: G4 Media Inc.; 2012 Apr 18. Available from: https://doi.org/www.g4tv.com/videos/58223/how-to-harvest-electricity-from-lobsters/
-
How To Harvest Electricity From Lobsters [online video].
-
-
-
75
-
-
60349113674
-
BioCapacitor—a novel category of biosensor
-
COI: 1:CAS:528:DC%2BD1MXit1Olsb0%3D, PID: 19013784
-
Hanashi T, et al. (2009) BioCapacitor—a novel category of biosensor. Biosens. Bioelectron. 24:1837–42. DOI: 10.1016/j.bios.2008.09.014
-
(2009)
Biosens. Bioelectron.
, vol.24
, pp. 1837-1842
-
-
Hanashi, T.1
-
76
-
-
84857420677
-
BioRadioTransmitter: a self-powered wireless glucose-sensing system
-
PID: 22027294
-
Hanashi T, Yamazaki T, Tsugawa W, Ikebukuro K, Sode K. (2011) BioRadioTransmitter: a self-powered wireless glucose-sensing system. J. Diabetes Sci. Technol. 5:1030–5. DOI: 10.1177/193229681100500502
-
(2011)
J. Diabetes Sci. Technol.
, vol.5
, pp. 1030-1035
-
-
Hanashi, T.1
Yamazaki, T.2
Tsugawa, W.3
Ikebukuro, K.4
Sode, K.5
-
77
-
-
84907904030
-
Self-powered wireless carbohydrate/oxygen sensitive biodevice based on radio signal transmission
-
COI: 1:CAS:528:DC%2BC2cXhvVOisr7I
-
Falk M, et al. (2014) Self-powered wireless carbohydrate/oxygen sensitive biodevice based on radio signal transmission. PlosOne. 9:e109104. DOI: 10.1371/journal.pone.0109104
-
(2014)
PlosOne
, vol.9
-
-
Falk, M.1
-
79
-
-
84875841606
-
Pacemaker powered by implantable biofuel cell operating under conditions mimicking human blood circulation system—battery not included
-
COI: 1:CAS:528:DC%2BC3sXlt1aiurc%3D, PID: 23519144
-
Southcott M, et al. (2013) Pacemaker powered by implantable biofuel cell operating under conditions mimicking human blood circulation system—battery not included. Phys. Chem. Chem. Phys. 15:6278–83. DOI: 10.1039/c3cp50929j
-
(2013)
Phys. Chem. Chem. Phys.
, vol.15
, pp. 6278-6283
-
-
Southcott, M.1
-
80
-
-
75149162574
-
Remote monitoring of patients with implanted cardiac devices
-
Kusumoto F, Goldschlager N. (2010) Remote monitoring of patients with implanted cardiac devices. Clin. Cardiology. 33:10–7. DOI: 10.1002/clc.20688
-
(2010)
Clin. Cardiology.
, vol.33
, pp. 10-17
-
-
Kusumoto, F.1
Goldschlager, N.2
-
81
-
-
57949090117
-
Microfluidic fuel cells: a review
-
COI: 1:CAS:528:DC%2BD1cXhsFCjtr7E
-
Kjeang E, Djilali N, Sinton D. (2009) Microfluidic fuel cells: a review. J. Power Sources. 186:353–69. DOI: 10.1016/j.jpowsour.2008.10.011
-
(2009)
J. Power Sources.
, vol.186
, pp. 353-369
-
-
Kjeang, E.1
Djilali, N.2
Sinton, D.3
-
82
-
-
84880545808
-
Electrochemical tattoo biosensors for real-time noninvasive lactate monitoring in human perspiration
-
COI: 1:CAS:528:DC%2BC3sXhtVChu73I, PID: 23815621
-
Jia W, et al. (2013) Electrochemical tattoo biosensors for real-time noninvasive lactate monitoring in human perspiration. Anal. Chem. 85:6553–60. DOI: 10.1021/ac401573r
-
(2013)
Anal. Chem.
, vol.85
, pp. 6553-6560
-
-
Jia, W.1
-
83
-
-
84880168760
-
Epidermal biofuel cells: Energy harvesting from human perspiration
-
COI: 1:CAS:528:DC%2BC3sXovVWjtL0%3D
-
Jia WZ, Valdes-Ramirez G, Bandodkar AJ, Windmiller JR, Wang J. (2013) Epidermal biofuel cells: Energy harvesting from human perspiration. Angew. Chem. Int. Ed. 52:7233–6. DOI: 10.1002/anie.201302922
-
(2013)
Angew. Chem. Int. Ed.
, vol.52
, pp. 7233-7236
-
-
Jia, W.Z.1
Valdes-Ramirez, G.2
Bandodkar, A.J.3
Windmiller, J.R.4
Wang, J.5
-
84
-
-
85186905057
-
A wireless transmission system powered by an enzyme biofuel cell implanted in an orange
-
2014, Nov 5 [Epub ahead of print]
-
MacVittie K, Conlon T, Katz E. (2014) A wireless transmission system powered by an enzyme biofuel cell implanted in an orange. Bioelectrochemistry. 2014, Nov 5 [Epub ahead of print].
-
(2014)
Bioelectrochemistry.
-
-
Macvittie, K.1
Conlon, T.2
Katz, E.3
-
85
-
-
84873635664
-
High volumetric power density, non-enzymatic, glucose fuel cells
-
COI: 1:CAS:528:DC%2BC3sXpvFWjs7k%3D
-
Oncescu V, Erickson D. (2013) High volumetric power density, non-enzymatic, glucose fuel cells. Sci. Reports 3:1226. DOI: 10.1038/srep01226
-
(2013)
Sci. Reports
, vol.3
, pp. 1226
-
-
Oncescu, V.1
Erickson, D.2
-
86
-
-
77953154022
-
Raney-platinum film electrodes for potentially implantable glucose fuel cells. Part 1: Nickel-free glucose oxidation anodes
-
COI: 1:CAS:528:DC%2BC3cXmvFyjsL8%3D
-
Kerzenmacher S, Schroeder M, Brämer R, Zengerle R, von Stetten F. (2010) Raney-platinum film electrodes for potentially implantable glucose fuel cells. Part 1: Nickel-free glucose oxidation anodes. J. Power Sources. 195:6516–23. DOI: 10.1016/j.jpowsour.2010.04.039
-
(2010)
J. Power Sources.
, vol.195
, pp. 6516-6523
-
-
Kerzenmacher, S.1
Schroeder, M.2
Brämer, R.3
Zengerle, R.4
von Stetten, F.5
-
87
-
-
77953151601
-
Raney-platinum film electrodes for potentially implantable glucose fuel cells. Part 2: Glucose-tolerant oxygen reduction cathodes
-
COI: 1:CAS:528:DC%2BC3cXmvFyjsLw%3D
-
Kerzenmacher S, et al. (2010) Raney-platinum film electrodes for potentially implantable glucose fuel cells. Part 2: Glucose-tolerant oxygen reduction cathodes. J. Power Sources. 195:6524–31. DOI: 10.1016/j.jpowsour.2010.04.049
-
(2010)
J. Power Sources.
, vol.195
, pp. 6524-6531
-
-
Kerzenmacher, S.1
-
88
-
-
84255182829
-
Pt-decorated nanoporous gold for glucose electrooxidation in neutral and alkaline solutions
-
COI: 1:CAS:528:DC%2BC3MXhtl2mtr3E, PID: 21711835
-
Yan X, Ge X, Cui S. (2011) Pt-decorated nanoporous gold for glucose electrooxidation in neutral and alkaline solutions. Nanoscale Res. Lett. 6:313. DOI: 10.1186/1556-276X-6-313
-
(2011)
Nanoscale Res. Lett.
, vol.6
, pp. 313
-
-
Yan, X.1
Ge, X.2
Cui, S.3
-
89
-
-
84898648018
-
A membraneless single compartment abiotic glucose fuel cell
-
COI: 1:CAS:528:DC%2BC2cXnsl2lsbw%3D
-
Slaughter G, Sunday J. (2014) A membraneless single compartment abiotic glucose fuel cell. J. Power Sources. 261:332–6. DOI: 10.1016/j.jpowsour.2014.03.090
-
(2014)
J. Power Sources.
, vol.261
, pp. 332-336
-
-
Slaughter, G.1
Sunday, J.2
-
90
-
-
84892602449
-
Modification of abiotic-biotic interfaces with small molecules and nanomaterials for improved bioelectronics
-
COI: 1:CAS:528:DC%2BC3sXhsVSit7rM
-
Du J, Catania C, Bazan GC. (2014) Modification of abiotic-biotic interfaces with small molecules and nanomaterials for improved bioelectronics. Chem. Mater. 26:686–97. DOI: 10.1021/cm401912j
-
(2014)
Chem. Mater.
, vol.26
, pp. 686-697
-
-
Du, J.1
Catania, C.2
Bazan, G.C.3
-
91
-
-
44649168099
-
Energy harvesting by implantable abiotically catalyzed glucose fuel cells
-
COI: 1:CAS:528:DC%2BD1cXmvVChs78%3D
-
Kerzenmacher S, Ducrée J, Zengerle R, von Stetten F. (2008) Energy harvesting by implantable abiotically catalyzed glucose fuel cells. J. Power Sources. 182:1–17. DOI: 10.1016/j.jpowsour.2008.03.031
-
(2008)
J. Power Sources
, vol.182
, pp. 1-17
-
-
Kerzenmacher, S.1
Ducrée, J.2
Zengerle, R.3
von Stetten, F.4
-
92
-
-
44649169583
-
An abiotically catalyzed glucose fuel cell for powering medical implants: Reconstructed manufacturing protocol and analysis of performance
-
COI: 1:CAS:528:DC%2BD1cXmvVCgt7c%3D
-
Kerzenmacher S, Ducrée J, Zengerle R, von Stetten F. (2008) An abiotically catalyzed glucose fuel cell for powering medical implants: Reconstructed manufacturing protocol and analysis of performance. J. Power Sources. 182:66–75. DOI: 10.1016/j.jpowsour.2008.03.049
-
(2008)
J. Power Sources.
, vol.182
, pp. 66-75
-
-
Kerzenmacher, S.1
Ducrée, J.2
Zengerle, R.3
von Stetten, F.4
-
93
-
-
79954516601
-
A single layer glucose fuel cell intended as power supplying coating for medical implants
-
COI: 1:CAS:528:DC%2BC3MXkslKmsbw%3D
-
Kloke A, et al. (2011) A single layer glucose fuel cell intended as power supplying coating for medical implants. Fuel Cells. 11:316–26. DOI: 10.1002/fuce.201000114
-
(2011)
Fuel Cells
, vol.11
, pp. 316-326
-
-
Kloke, A.1
-
94
-
-
80052506502
-
A microfabricated low cost enzyme-free glucose fuel cell for powering low-power implantable devices
-
COI: 1:CAS:528:DC%2BC3MXhtFWktr7O
-
Oncescu V, Erickson D. (2011) A microfabricated low cost enzyme-free glucose fuel cell for powering low-power implantable devices. J. Power Sources. 196:9169–75. DOI: 10.1016/j.jpowsour.2011.06.100
-
(2011)
J. Power Sources
, vol.196
, pp. 9169-9175
-
-
Oncescu, V.1
Erickson, D.2
-
95
-
-
78049365086
-
A potentially implantable glucose fuel cell with Raney-platinum film electrodes for improved hydrolytic and oxidative stability
-
COI: 1:CAS:528:DC%2BC3cXhtlGnurzP
-
Kerzenmacher S, Kräling U, Metz T, Zengerle R, von Stetten F. (2011) A potentially implantable glucose fuel cell with Raney-platinum film electrodes for improved hydrolytic and oxidative stability. J. Power Sources 196:1264–72. DOI: 10.1016/j.jpowsour.2010.08.019
-
(2011)
J. Power Sources
, vol.196
, pp. 1264-1272
-
-
Kerzenmacher, S.1
Kräling, U.2
Metz, T.3
Zengerle, R.4
von Stetten, F.5
-
96
-
-
80051749782
-
Mesoporous silica as a membrane for ultra-thin implantable direct glucose fuel cells
-
COI: 1:CAS:528:DC%2BC3MXotFSlt7g%3D, PID: 21637881
-
Sharma T, et al. (2011) Mesoporous silica as a membrane for ultra-thin implantable direct glucose fuel cells. Lab Chip. 11:2460–5. DOI: 10.1039/c1lc20119k
-
(2011)
Lab Chip.
, vol.11
, pp. 2460-2465
-
-
Sharma, T.1
-
97
-
-
84940733026
-
-
2010 May 18–19; Nürnberg, Germany, Paper 100
-
Kerzenmacher S, Rubenwolf S, Kloke A, Zengerle R, Gescher J. (2010) Biofuel cells for the energy supply of distributed systems: State-of-the-Art and applications. In: Sensoren und Messsysteme 2010; 2010 May 18–19; Nürnberg, Germany. p. 562–5. Paper 100.
-
(2010)
Biofuel cells for the energy supply of distributed systems: State-of-the-Art and applications
, pp. 562-565
-
-
Kerzenmacher, S.1
Rubenwolf, S.2
Kloke, A.3
Zengerle, R.4
Gescher, J.5
-
98
-
-
78049375480
-
An efficient low-power DC-DC converter enables operation of a cardiac pacemaker by an integrated glucose fuel cell
-
2008 Nov 9–12; Sendai, Japan
-
Kerzenmacher S, et al. (2008) An efficient low-power DC-DC converter enables operation of a cardiac pacemaker by an integrated glucose fuel cell. In: [Proceedings of] PowerMEMS 2008 + microEMS2008; 2008 Nov 9–12; Sendai, Japan. p. 189–92.
-
(2008)
Proceedings Of] Powermems 2008 + Microems2008
, pp. 189-192
-
-
Kerzenmacher, S.1
-
99
-
-
84927005943
-
-
(ed), Cambridge University Press, Cambridge: 167
-
Marks WJ Jr. (ed.). (2010) Deep Brain Stimulation Management. Cambridge University Press, Cambridge. 167 pp.
-
(2010)
Deep Brain Stimulation Management
-
-
Marks, W.1
-
102
-
-
84890667987
-
The chemistry of cyborgs—interfacing technical devices with organisms
-
COI: 1:CAS:528:DC%2BC3sXhvVOhsLfF
-
Giselbrecht S, Rapp BE, Niemeyer CM. (2013) The chemistry of cyborgs—interfacing technical devices with organisms. Angew. Chem. Int. Ed. 52:13942–57. DOI: 10.1002/anie.201307495
-
(2013)
Angew. Chem. Int. Ed.
, vol.52
, pp. 13942-13957
-
-
Giselbrecht, S.1
Rapp, B.E.2
Niemeyer, C.M.3
-
103
-
-
0003633755
-
-
8, National Academies Press, Washington (DC
-
Committee for the Update of the Guide for the Care and Use of Laboratory Animals, Institute for Laboratory Animal Research, Division on Earth and Life Studies, National Research Council of the National Academies. (2011) Guide for the Care and Use of Laboratory Animals. 8th edition. Washington (DC): National Academies Press.
-
(2011)
Guide for the Care and Use of Laboratory Animals
-
-
|