메뉴 건너뛰기




Volumn 2, Issue 1, 2015, Pages 1-12

Implantable Biofuel Cells Operating In Vivo—Potential Power Sources for Bioelectronic Devices

Author keywords

Biocatalytic Electrodes; Charge Pump; Implantable Biofuel Cells; Implantable Biomedical Devices; Variable Load Resistance

Indexed keywords

BIOFUELS; BIOLOGICAL FUEL CELLS; ELECTRIC LOADS; ENERGY HARVESTING; ENZYME ACTIVITY; IMPLANTS (SURGICAL); VOLTAGE REGULATORS;

EID: 85180507228     PISSN: None     EISSN: 23328886     Source Type: Journal    
DOI: 10.15424/bioelectronmed.2014.00011     Document Type: Review
Times cited : (42)

References (103)
  • 5
    • 84891582878 scopus 로고    scopus 로고
    • (ed), Wiley-VCH, Weinheim, Germany: 462
    • Someya T. (ed.) (2013) Stretchable Electronics. Wiley-VCH: Weinheim, Germany. 462 pp.
    • (2013) Stretchable Electronics
    • Someya, T.1
  • 7
    • 60549105821 scopus 로고    scopus 로고
    • Flexible thick-film electrochemical sensors: Impact of mechanical bending and stress on the electrochemical behavior
    • COI: 1:CAS:528:DC%2BD1MXisFWitbw%3D, PID: 20160861
    • Cai J, et al. (2009) Flexible thick-film electrochemical sensors: Impact of mechanical bending and stress on the electrochemical behavior. Sens. Actuators B. Chem. 137:379–85. DOI: 10.1016/j.snb.2008.10.027
    • (2009) Sens. Actuators B. Chem. , vol.137 , pp. 379-385
    • Cai, J.1
  • 8
    • 84862903174 scopus 로고    scopus 로고
    • Electrophysiological properties of cochlear implantation in the gerbil using a flexible array
    • DeMason, C, et al. (2012) Electrophysiological properties of cochlear implantation in the gerbil using a flexible array. Ear Hear. 33:534–42. DOI: 10.1097/AUD.0b013e3182498c28
    • (2012) Ear Hear. , vol.33 , pp. 534-542
    • De Mason, C.1
  • 12
  • 13
    • 84905009884 scopus 로고    scopus 로고
    • Safe use of repetitive transcranial magnetic stimulation in patients with implanted vagus nerve stimulators
    • PID: 24794163
    • Philip NS, Carpenter SL, Carpenter LL. (2014) Safe use of repetitive transcranial magnetic stimulation in patients with implanted vagus nerve stimulators. Brain Stimul. 7:608–12. DOI: 10.1016/j.brs.2014.04.001
    • (2014) Brain Stimul. , vol.7 , pp. 608-612
    • Philip, N.S.1    Carpenter, S.L.2    Carpenter, L.L.3
  • 14
    • 33646188299 scopus 로고    scopus 로고
    • Subpectoral implantation of the vagus nerve stimulator
    • Bauman JA, Ridgway EB, Devinsky O, Doyle WK. (2006) Subpectoral implantation of the vagus nerve stimulator. Neurosurgery. 58:322–5. DOI: 10.1227/01.NEU.0000196442.47101.F2
    • (2006) Neurosurgery , vol.58 , pp. 322-325
    • Bauman, J.A.1    Ridgway, E.B.2    Devinsky, O.3    Doyle, W.K.4
  • 15
    • 78650218512 scopus 로고    scopus 로고
    • The pulse of inflammation: heart rate variability, the cholinergic anti-inflammatory pathway and implications for therapy
    • COI: 1:CAS:528:DC%2BC3MXhsFKms7o%3D, PID: 21158977
    • Huston JM, Tracey KJ. (2011) The pulse of inflammation: heart rate variability, the cholinergic anti-inflammatory pathway and implications for therapy. J. Intern. Med. 269:45–53. DOI: 10.1111/j.1365-2796.2010.02321.x
    • (2011) J. Intern. Med. , vol.269 , pp. 45-53
    • Huston, J.M.1    Tracey, K.J.2
  • 16
    • 84878039682 scopus 로고    scopus 로고
    • ‘The pump was a saviour for me.’ Patients experiences of insulin pump therapy
    • COI: 1:STN:280:DC%2BC3sznt1KltA%3D%3D, PID: 23398606
    • Garmo A, Hornsten A, Leksell J. (2013) ‘The pump was a saviour for me.’ Patients experiences of insulin pump therapy. Diabet. Med. 30:717–23. DOI: 10.1111/dme.12155
    • (2013) Diabet. Med. , vol.30 , pp. 717-723
    • Garmo, A.1    Hornsten, A.2    Leksell, J.3
  • 18
    • 84944214826 scopus 로고    scopus 로고
    • Eye amputated patients’ perspective on life with an artificial eye
    • [abstract]
    • Rasmussen MLR, Prause JU, Toft PB. (2010) Eye amputated patients’ perspective on life with an artificial eye [abstract]. Acta. Ophthalmol. 88(Suppl s245):41.
    • (2010) Acta. Ophthalmol. , vol.88 , pp. 41
    • Rasmussen, M.L.R.1    Prause, J.U.2    Toft, P.B.3
  • 19
    • 84857998698 scopus 로고    scopus 로고
    • Human powered MEMS-based energy harvest devices
    • COI: 1:CAS:528:DC%2BC38XjsFKltbc%3D
    • Sue CY, Tsai NC. (2012) Human powered MEMS-based energy harvest devices. Appl. Energy. 93:390–403. DOI: 10.1016/j.apenergy.2011.12.037
    • (2012) Appl. Energy. , vol.93 , pp. 390-403
    • Sue, C.Y.1    Tsai, N.C.2
  • 20
    • 79952959813 scopus 로고    scopus 로고
    • Design and performance of an optimal inertial power harvester for human-powered
    • Yun J, Patel SN, Reynolds MS, Abowd GD. (2011) Design and performance of an optimal inertial power harvester for human-powered. IEEE Trans Mobile Comput. 10:669–83. DOI: 10.1109/TMC.2010.202
    • (2011) IEEE Trans Mobile Comput. , vol.10 , pp. 669-683
    • Yun, J.1    Patel, S.N.2    Reynolds, M.S.3    Abowd, G.D.4
  • 21
    • 79551686137 scopus 로고    scopus 로고
    • Energy generation for an ad hoc wireless sensor network-based monitoring system using animal head movement
    • Nadimi ES, Blanes-Vidal V, Jørgensen RN, Christensen S. (2011) Energy generation for an ad hoc wireless sensor network-based monitoring system using animal head movement. Comput. Electron. Agri. 75:238–42. DOI: 10.1016/j.compag.2010.11.008
    • (2011) Comput. Electron. Agri. , vol.75 , pp. 238-242
    • Nadimi, E.S.1    Blanes-Vidal, V.2    Jørgensen, R.N.3    Christensen, S.4
  • 22
    • 79958087800 scopus 로고    scopus 로고
    • Electrical power generation from insect flight
    • Reissman T, MacCurdy RB, Garcia E. (2011) Electrical power generation from insect flight. Proc. SPIE. 7977:797702. DOI: 10.1117/12.880702
    • (2011) Proc. SPIE. , vol.7977 , pp. 797702
    • Reissman, T.1    MacCurdy, R.B.2    Garcia, E.3
  • 23
    • 84907215671 scopus 로고    scopus 로고
    • Flexible piezoelectric energy harvesting from jaw movements
    • COI: 1:CAS:528:DC%2BC2cXitFGhsLrL
    • Delnavaz A, Voix J. (2014) Flexible piezoelectric energy harvesting from jaw movements. Smart Mater. Struct. 23:105020. DOI: 10.1088/0964-1726/23/10/105020
    • (2014) Smart Mater. Struct. , vol.23 , pp. 105020
    • Delnavaz, A.1    Voix, J.2
  • 24
    • 61349140546 scopus 로고    scopus 로고
    • Harvesting human kinematical energy based on liquid metal magnetohydrodynamics
    • COI: 1:CAS:528:DC%2BD1MXisl2qu70%3D
    • Jia D, Liu J, Zhou Y. (2009) Harvesting human kinematical energy based on liquid metal magnetohydrodynamics. Phys. Lett A. 373:1305–9. DOI: 10.1016/j.physleta.2009.02.028
    • (2009) Phys. Lett A. , vol.373 , pp. 1305-1309
    • Jia, D.1    Liu, J.2    Zhou, Y.3
  • 25
    • 84902201421 scopus 로고    scopus 로고
    • Optimizing the output of a human-powered energy harvesting system with miniaturization and integrated control
    • Goudar V, Ren Z, Brochu P, Potkonjak M, Pei QB. (2014) Optimizing the output of a human-powered energy harvesting system with miniaturization and integrated control. IEEE Sensors J. 14:2084–91. DOI: 10.1109/JSEN.2013.2290738
    • (2014) IEEE Sensors J. , vol.14 , pp. 2084-2091
    • Goudar, V.1    Ren, Z.2    Brochu, P.3    Potkonjak, M.4    Pei, Q.B.5
  • 26
    • 84864264339 scopus 로고    scopus 로고
    • An active piezoelectric energy extraction method for pressure energy harvesting
    • COI: 1:CAS:528:DC%2BC38Xht1Ort73N
    • Deterre M, Lefeuvre E, Dufour-Gergam E. (2012) An active piezoelectric energy extraction method for pressure energy harvesting. Smart Mater. Struct. 21:085004. DOI: 10.1088/0964-1726/21/8/085004
    • (2012) Smart Mater. Struct. , vol.21 , pp. 085004
    • Deterre, M.1    Lefeuvre, E.2    Dufour-Gergam, E.3
  • 27
    • 79955103117 scopus 로고    scopus 로고
    • Biomechanical energy harvesting from human motion: theory, state of the art, design guidelines, and future directions
    • PID: 21521509
    • Riemer R, Shapiro A. (2011) Biomechanical energy harvesting from human motion: theory, state of the art, design guidelines, and future directions. J. Neuroeng. Rehabil. 8:22. DOI: 10.1186/1743-0003-8-22
    • (2011) J. Neuroeng. Rehabil. , vol.8 , pp. 22
    • Riemer, R.1    Shapiro, A.2
  • 28
    • 65249165597 scopus 로고    scopus 로고
    • Converting biomechanical energy into electricity by a muscle-movement-driven nanogenerator
    • COI: 1:CAS:528:DC%2BD1MXhs1Smu70%3D, PID: 19203203
    • Yang R, Qin Y, Li C, Zhu G, Wang ZL. (2009) Converting biomechanical energy into electricity by a muscle-movement-driven nanogenerator. Nano Lett. 9:1201–5. DOI: 10.1021/nl803904b
    • (2009) Nano Lett. , vol.9 , pp. 1201-1205
    • Yang, R.1    Qin, Y.2    Li, C.3    Zhu, G.4    Wang, Z.L.5
  • 29
    • 24644452464 scopus 로고    scopus 로고
    • Generating electricity while walking with loads
    • COI: 1:CAS:528:DC%2BD2MXpvFCis7w%3D, PID: 16151012
    • Rome LC, Flynn L, Goldman EM, Yoo TD. (2005) Generating electricity while walking with loads. Science. 309:1725–8. DOI: 10.1126/science.1111063
    • (2005) Science , vol.309 , pp. 1725-1728
    • Rome, L.C.1    Flynn, L.2    Goldman, E.M.3    Yoo, T.D.4
  • 30
    • 38949118719 scopus 로고    scopus 로고
    • Biomechanical energy harvesting: Generating electricity during walking with minimal user effort
    • COI: 1:CAS:528:DC%2BD1cXhsFGhs7o%3D, PID: 18258914
    • Donelan JM, et al. (2008) Biomechanical energy harvesting: Generating electricity during walking with minimal user effort. Science. 319:807–10. DOI: 10.1126/science.1149860
    • (2008) Science , vol.319 , pp. 807-810
    • Donelan, J.M.1
  • 31
    • 77954275027 scopus 로고    scopus 로고
    • Muscle-driven in vivo nanogenerator
    • COI: 1:CAS:528:DC%2BC3cXosVGqsbg%3D, PID: 20446305
    • Li Z, Zhu G, Yang R, Wang AC, Wang ZL. (2010) Muscle-driven in vivo nanogenerator. Adv. Mater. 22:2534–7. DOI: 10.1002/adma.200904355
    • (2010) Adv. Mater. , vol.22 , pp. 2534-2537
    • Li, Z.1    Zhu, G.2    Yang, R.3    Wang, A.C.4    Wang, Z.L.5
  • 32
    • 84871632664 scopus 로고    scopus 로고
    • Energy harvesting from the beating heart by a mass imbalance oscillation generator
    • COI: 1:STN:280:DC%2BC38fgvVSjsQ%3D%3D, PID: 22805983
    • Zurbuchen A, et al. (2013) Energy harvesting from the beating heart by a mass imbalance oscillation generator. Ann. Biomed. Eng. 41:131–41. DOI: 10.1007/s10439-012-0623-3
    • (2013) Ann. Biomed. Eng. , vol.41 , pp. 131-141
    • Zurbuchen, A.1
  • 33
    • 80055029421 scopus 로고    scopus 로고
    • PVDF microbelts for harvesting energy from respiration
    • COI: 1:CAS:528:DC%2BC3MXhsVyrtb%2FK
    • Sun C, Shi J, Bayerl DJ, Wang X. (2011) PVDF microbelts for harvesting energy from respiration. Energy Environ. Sci. 4:4508–12. DOI: 10.1039/c1ee02241e
    • (2011) Energy Environ. Sci. , vol.4 , pp. 4508-4512
    • Sun, C.1    Shi, J.2    Bayerl, D.J.3    Wang, X.4
  • 35
    • 77955548078 scopus 로고    scopus 로고
    • Hybrid nanogenerator for concurrently harvesting biomechanical and biochemical energy
    • COI: 1:CAS:528:DC%2BC3cXms1Sjurk%3D, PID: 20507155
    • Hansen BJ, Liu Y, Yang R, Wang ZL. (2010) Hybrid nanogenerator for concurrently harvesting biomechanical and biochemical energy. ACS Nano. 4:3647–52. DOI: 10.1021/nn100845b
    • (2010) ACS Nano. , vol.4 , pp. 3647-3652
    • Hansen, B.J.1    Liu, Y.2    Yang, R.3    Wang, Z.L.4
  • 36
    • 84864268679 scopus 로고    scopus 로고
    • From in vitro to in vivo—biofuel cells are maturing
    • COI: 1:CAS:528:DC%2BC38XotVelurs%3D
    • Schröder U. (2012) From in vitro to in vivo—biofuel cells are maturing. Angew. Chem. Int. Ed. 51:7370–2. DOI: 10.1002/anie.201203259
    • (2012) Angew. Chem. Int. Ed. , vol.51 , pp. 7370-7372
    • Schröder, U.1
  • 37
    • 84880991218 scopus 로고    scopus 로고
    • Biofuel cells for biomedical applications: colonizing the animal kingdom
    • COI: 1:CAS:528:DC%2BC3sXjsVWnsbw%3D, PID: 23460490
    • Falk M, Narváez Villarrubia CW, Babanova S, Atanassov P, Shleev S. (2013) Biofuel cells for biomedical applications: colonizing the animal kingdom. Chemphyschem. 14:2045–58. DOI: 10.1002/cphc.201300044
    • (2013) Chemphyschem. , vol.14 , pp. 2045-2058
    • Falk, M.1    Narváez Villarrubia, C.W.2    Babanova, S.3    Atanassov, P.4    Shleev, S.5
  • 38
    • 84884538876 scopus 로고    scopus 로고
    • Implanted biofuel cells operating in vivo—methods, applications and perspectives—feature article
    • COI: 1:CAS:528:DC%2BC3sXhsV2it7bI
    • Katz E, MacVittie K. (2013) Implanted biofuel cells operating in vivo—methods, applications and perspectives—feature article. Energy Environ. Sci. 6:2791–803. DOI: 10.1039/c3ee42126k
    • (2013) Energy Environ. Sci. , vol.6 , pp. 2791-2803
    • Katz, E.1    MacVittie, K.2
  • 39
    • 33846336459 scopus 로고    scopus 로고
    • Biofuel cells—recent advances and applications
    • COI: 1:CAS:528:DC%2BD2sXpvVOnsQ%3D%3D, PID: 16781864
    • Davis F, Higson SPJ. (2007) Biofuel cells—recent advances and applications. Biosens. Bioelectron. 22:1224–35. DOI: 10.1016/j.bios.2006.04.029
    • (2007) Biosens. Bioelectron. , vol.22 , pp. 1224-1235
    • Davis, F.1    Higson, S.P.J.2
  • 40
    • 49049118534 scopus 로고    scopus 로고
    • Enzymes as working or inspirational electrocatalysts for fuel cells and electrolysis
    • COI: 1:CAS:528:DC%2BD1cXotlantLs%3D, PID: 18620369
    • Cracknell JA, Vincent KA, Armstrong FA. (2008) Enzymes as working or inspirational electrocatalysts for fuel cells and electrolysis. Chem. Rev. 108:2439–61. DOI: 10.1021/cr0680639
    • (2008) Chem. Rev. , vol.108 , pp. 2439-2461
    • Cracknell, J.A.1    Vincent, K.A.2    Armstrong, F.A.3
  • 41
    • 84944182084 scopus 로고    scopus 로고
    • Enzyme biofuel cells: thermodynamics, kinetics and challenges in applicability
    • COI: 1:CAS:528:DC%2BC2cXhvVylsb3L
    • Luz RAS, Pereira AR, de Souza JCP, Sales FCPF, Crespilho FN. (2014) Enzyme biofuel cells: thermodynamics, kinetics and challenges in applicability. Chemelectrochem. 1:1751–77. DOI: 10.1002/celc.201402141
    • (2014) Chemelectrochem. , vol.1 , pp. 1751-1777
    • Luz, R.A.S.1    Pereira, A.R.2    de Souza, J.C.P.3    Sales, F.C.P.F.4    Crespilho, F.N.5
  • 42
    • 76049119818 scopus 로고    scopus 로고
    • Enzymatic biofuel cells—fabrication of enzyme electrodes
    • COI: 1:CAS:528:DC%2BC3cXhtlSrtrY%3D
    • Yu EH, Scott K. (2010) Enzymatic biofuel cells—fabrication of enzyme electrodes. Energies. 3:23–42. DOI: 10.3390/en3010023
    • (2010) Energies , vol.3 , pp. 23-42
    • Yu, E.H.1    Scott, K.2
  • 43
    • 84863317977 scopus 로고    scopus 로고
    • Biofuel cells: enhanced enzymatic bioelectrocatalysis
    • COI: 1:CAS:528:DC%2BC38Xht1GmtLjM
    • Meredith MT, Minteer SD. (2012) Biofuel cells: enhanced enzymatic bioelectrocatalysis. Ann. Rev. Anal. Chem. (Palo Alto Calif.). 5:157–79. DOI: 10.1146/annurev-anchem-062011-143049
    • (2012) Ann. Rev. Anal. Chem. (Palo Alto Calif.) , vol.5 , pp. 157-179
    • Meredith, M.T.1    Minteer, S.D.2
  • 44
    • 84869085132 scopus 로고    scopus 로고
    • Enzymatic fuel cells: Recent progress
    • COI: 1:CAS:528:DC%2BC38Xhs1Ghu7bO
    • Leech D, Kavanagh P, Schuhmann W. (2012) Enzymatic fuel cells: Recent progress. Electrochim. Acta. 84:223–34. DOI: 10.1016/j.electacta.2012.02.087
    • (2012) Electrochim. Acta. , vol.84 , pp. 223-234
    • Leech, D.1    Kavanagh, P.2    Schuhmann, W.3
  • 45
    • 44349166894 scopus 로고    scopus 로고
    • Extended lifetime biofuel cells
    • COI: 1:CAS:528:DC%2BD1cXmtlSisL0%3D, PID: 18497931
    • Moehlenbrock MJ, Minteer, SD. (2008) Extended lifetime biofuel cells. Chem. Soc. Rev. 37:1188–96. DOI: 10.1039/b708013c
    • (2008) Chem. Soc. Rev. , vol.37 , pp. 1188-1196
    • Moehlenbrock, M.J.1    Minteer, S.D.2
  • 46
    • 79960896249 scopus 로고    scopus 로고
    • Enzymatic fuel cells: integrating flow-through anode and air-breathing cathode into a membrane-less biofuel cell design
    • COI: 1:CAS:528:DC%2BC3MXpvFWnsL0%3D, PID: 21775124
    • Rincón RA, et al. (2011) Enzymatic fuel cells: integrating flow-through anode and air-breathing cathode into a membrane-less biofuel cell design. Biosens. Bioelectron. 27:132–6. DOI: 10.1016/j.bios.2011.06.029
    • (2011) Biosens. Bioelectron. , vol.27 , pp. 132-136
    • Rincón, R.A.1
  • 47
    • 81255196511 scopus 로고    scopus 로고
    • Bioelectrochemical interface engineering: toward the fabrication of electrochemical biosensors, biofuel cells, and self-powered logic biosensors
    • COI: 1:CAS:528:DC%2BC3MXpslWqsbY%3D, PID: 21812435
    • Zhou M, Dong S. (2011) Bioelectrochemical interface engineering: toward the fabrication of electrochemical biosensors, biofuel cells, and self-powered logic biosensors. Acc. Chem. Res. 44:1232–43. DOI: 10.1021/ar200096g
    • (2011) Acc. Chem. Res. , vol.44 , pp. 1232-1243
    • Zhou, M.1    Dong, S.2
  • 48
    • 84862810818 scopus 로고    scopus 로고
    • Small-size biofuel cell on paper
    • COI: 1:CAS:528:DC%2BC38Xjslemur0%3D, PID: 22417872
    • Zhang L, et al. (2012) Small-size biofuel cell on paper. Biosens. Bioelectron. 35:155–9. DOI: 10.1016/j.bios.2012.02.035
    • (2012) Biosens. Bioelectron. , vol.35 , pp. 155-159
    • Zhang, L.1
  • 49
    • 84863012036 scopus 로고    scopus 로고
    • Biofuel cells for self-powered electrochemical biosensing and logic biosensing: a review
    • COI: 1:CAS:528:DC%2BC38Xksl2ktg%3D%3D
    • Zhou M, Wang J. (2012) Biofuel cells for self-powered electrochemical biosensing and logic biosensing: a review. Electroanalysis. 24:197–209. DOI: 10.1002/elan.201100631
    • (2012) Electroanalysis , vol.24 , pp. 197-209
    • Zhou, M.1    Wang, J.2
  • 51
    • 84862165737 scopus 로고    scopus 로고
    • A glucose fuel cell for implantable brain-machine interfaces
    • COI: 1:CAS:528:DC%2BC38XovFyqtr0%3D, PID: 22719888
    • Rapoport BI, Kedzierski JT, Sarpeshkar R. (2012) A glucose fuel cell for implantable brain-machine interfaces. PLoS ONE. 7:e38436. DOI: 10.1371/journal.pone.0038436
    • (2012) PLoS ONE , vol.7
    • Rapoport, B.I.1    Kedzierski, J.T.2    Sarpeshkar, R.3
  • 52
    • 33749858044 scopus 로고    scopus 로고
    • Harnessing the body’s own energy and communication resources
    • Sun MG, et al. (2006) Harnessing the body’s own energy and communication resources. IEEE Eng. Med. Biol. Magazine. 25:39–46.
    • (2006) IEEE Eng. Med. Biol. Magazine , vol.25 , pp. 39-46
    • Sun, M.G.1
  • 53
    • 0037032299 scopus 로고    scopus 로고
    • A miniature biofuel cell operating in a physiological buffer
    • COI: 1:CAS:528:DC%2BD38XnvVShu74%3D, PID: 12405819
    • Mano N, Mao F, Heller A. (2002) A miniature biofuel cell operating in a physiological buffer. J. Am. Chem. Soc. 124:12962–3. DOI: 10.1021/ja028514g
    • (2002) J. Am. Chem. Soc. , vol.124 , pp. 12962-12963
    • Mano, N.1    Mao, F.2    Heller, A.3
  • 54
    • 76649123641 scopus 로고    scopus 로고
    • A direct electron transfer-based glucose/oxygen biofuel cell operating in human serum
    • COI: 1:CAS:528:DC%2BC3cXhvFaqtLs%3D
    • Coman V, et al. (2010) A direct electron transfer-based glucose/oxygen biofuel cell operating in human serum. Fuel Cells. 10:9–16.
    • (2010) Fuel Cells. , vol.10 , pp. 9-16
    • Coman, V.1
  • 55
    • 78650284921 scopus 로고    scopus 로고
    • Generating electricity from biofluid with a nanowire-based biofuel cell for self-powered nanodevices
    • COI: 1:CAS:528:DC%2BC3cXhsFCkt7rL, PID: 20972979
    • Pan C, et al (2010) Generating electricity from biofluid with a nanowire-based biofuel cell for self-powered nanodevices. Adv. Mater. 22:5388–92. DOI: 10.1002/adma.201002519
    • (2010) Adv. Mater. , vol.22 , pp. 5388-5392
    • Pan, C.1
  • 56
    • 84887569786 scopus 로고    scopus 로고
    • Towards glucose biofuel cells implanted in human body for powering artificial organs: Review
    • COI: 1:CAS:528:DC%2BC3sXhvFOrsb3E
    • Cosnier S., Le Goff A, Holzinger M. (2014) Towards glucose biofuel cells implanted in human body for powering artificial organs: Review. Electrochem. Commun. 38:19–23. DOI: 10.1016/j.elecom.2013.09.021
    • (2014) Electrochem. Commun. , vol.38 , pp. 19-23
    • Cosnier, S.1    Le Goff, A.2    Holzinger, M.3
  • 57
    • 84856288432 scopus 로고    scopus 로고
    • An implantable biofuel cell for a live insect
    • COI: 1:CAS:528:DC%2BC38XivVertw%3D%3D, PID: 22239249
    • Rasmussen M, Ritzmann RE, Lee I, Pollack AJ, Scherson D. (2012) An implantable biofuel cell for a live insect. J. Am. Chem. Soc. 134:1458–60. DOI: 10.1021/ja210794c
    • (2012) J. Am. Chem. Soc. , vol.134 , pp. 1458-1460
    • Rasmussen, M.1    Ritzmann, R.E.2    Lee, I.3    Pollack, A.J.4    Scherson, D.5
  • 58
    • 84858683374 scopus 로고    scopus 로고
    • Implanted biofuel cell operating in a living snail
    • COI: 1:CAS:528:DC%2BC38XjsFehsbo%3D, PID: 22401501
    • Halámková L, et al. (2012) Implanted biofuel cell operating in a living snail. J. Am. Chem. Soc. 134:5040–3. DOI: 10.1021/ja211714w
    • (2012) J. Am. Chem. Soc. , vol.134 , pp. 5040-5043
    • Halámková, L.1
  • 59
    • 84870042797 scopus 로고    scopus 로고
    • Living battery—biofuel cells operating in vivo in clams
    • COI: 1:CAS:528:DC%2BC38Xhtlyqs7fN
    • Szczupak A, et al. (2012) Living battery—biofuel cells operating in vivo in clams. Energy Environ. Sci. 5:8891–5. DOI: 10.1039/c2ee21626d
    • (2012) Energy Environ. Sci. , vol.5 , pp. 8891-8895
    • Szczupak, A.1
  • 60
    • 84871307662 scopus 로고    scopus 로고
    • From “cyborg” lobsters to a pacemaker powered by implantable biofuel cells
    • COI: 1:CAS:528:DC%2BC38XhvVKqtLbN
    • MacVittie K, et al. (2013) From “cyborg” lobsters to a pacemaker powered by implantable biofuel cells. Energy Environ. Sci. 6:81–6. DOI: 10.1039/C2EE23209J
    • (2013) Energy Environ. Sci. , vol.6 , pp. 81-86
    • MacVittie, K.1
  • 61
    • 77956420559 scopus 로고    scopus 로고
    • A glucose biofuel cell implanted in rats
    • COI: 1:CAS:528:DC%2BC3cXmtFGktr8%3D, PID: 20454563
    • Cinquin P, et al. (2010) A glucose biofuel cell implanted in rats. PLoS ONE. 5:e10476. DOI: 10.1371/journal.pone.0010476
    • (2010) PLoS ONE , vol.5
    • Cinquin, P.1
  • 62
    • 84872093852 scopus 로고    scopus 로고
    • An intravenous implantable glucose/dioxygen biofuel cell with modified flexible carbon fiber electrodes
    • COI: 1:CAS:528:DC%2BC3sXjtlyhsg%3D%3D, PID: 23242477
    • Sales FC, Iost RM, Martins MV, Almeida MC, Crespilho FN. (2013) An intravenous implantable glucose/dioxygen biofuel cell with modified flexible carbon fiber electrodes. Lab Chip. 13:468–74. DOI: 10.1039/C2LC41007A
    • (2013) Lab Chip. , vol.13 , pp. 468-474
    • Sales, F.C.1    Iost, R.M.2    Martins, M.V.3    Almeida, M.C.4    Crespilho, F.N.5
  • 63
    • 84884561261 scopus 로고    scopus 로고
    • Biofuel cell-based self-powered biogenerators for online continuous monitoring of neurochemicals in rat brain
    • COI: 1:CAS:528:DC%2BC38Xhslequ7nF, PID: 23120750
    • Cheng H, et al. (2013) Biofuel cell-based self-powered biogenerators for online continuous monitoring of neurochemicals in rat brain. Analyst. 138:179–85. DOI: 10.1039/C2AN36385B
    • (2013) Analyst , vol.138 , pp. 179-185
    • Cheng, H.1
  • 64
    • 84875766734 scopus 로고    scopus 로고
    • Single glucose biofuel cells implanted in rats power electronic devices
    • COI: 1:CAS:528:DC%2BC3sXhtVSktb%2FO
    • Zebda A, et al. (2013) Single glucose biofuel cells implanted in rats power electronic devices. Sci. Reports. 3:1516. DOI: 10.1038/srep01516
    • (2013) Sci. Reports , vol.3 , pp. 1516
    • Zebda, A.1
  • 65
    • 84880358743 scopus 로고    scopus 로고
    • Biofuel cell operating in vivo in rat
    • COI: 1:CAS:528:DC%2BC3sXnvVOhs78%3D
    • Castorena-Gonzalez JA, et al. (2013) Biofuel cell operating in vivo in rat. Electroanalysis. 25:1579–84. DOI: 10.1002/elan.201300136
    • (2013) Electroanalysis , vol.25 , pp. 1579-1584
    • Castorena-Gonzalez, J.A.1
  • 66
    • 82555193617 scopus 로고    scopus 로고
    • Enzymatic biofuel cells designed for direct power generation from biofluids in living organisms
    • COI: 1:CAS:528:DC%2BC3MXhsFKlurjM
    • Miyake T, et al. (2011) Enzymatic biofuel cells designed for direct power generation from biofluids in living organisms. Energy Environ. Sci. 4:5008–12. DOI: 10.1039/c1ee02200h
    • (2011) Energy Environ. Sci. , vol.4 , pp. 5008-5012
    • Miyake, T.1
  • 67
    • 7544227821 scopus 로고    scopus 로고
    • Enzymatic biofuel cells for implantable and microscale devices
    • COI: 1:CAS:528:DC%2BD2cXnsleju74%3D, PID: 15669171
    • Barton SC, Gallaway J, Atanassov P. (2004) Enzymatic biofuel cells for implantable and microscale devices. Chem. Rev. 104:4867–86. DOI: 10.1021/cr020719k
    • (2004) Chem. Rev. , vol.104 , pp. 4867-4886
    • Barton, S.C.1    Gallaway, J.2    Atanassov, P.3
  • 68
    • 0742304946 scopus 로고    scopus 로고
    • Miniature biofuel cells
    • COI: 1:CAS:528:DC%2BD2cXhs1ehsg%3D%3D
    • Heller A. (2004) Miniature biofuel cells. Phys. Chem. Chem. Phys. 6:209–16. DOI: 10.1039/b313149a
    • (2004) Phys. Chem. Chem. Phys. , vol.6 , pp. 209-216
    • Heller, A.1
  • 70
    • 77649234772 scopus 로고    scopus 로고
    • Improved energy output levels from small-scale microbial fuel cells
    • COI: 1:CAS:528:DC%2BC3cXjtVWiuro%3D, PID: 19540172
    • Ieropoulos I, Greenman J, Melhuish C. (2010) Improved energy output levels from small-scale microbial fuel cells. Bioelectrochemistry. 78:44–50. DOI: 10.1016/j.bioelechem.2009.05.009
    • (2010) Bioelectrochemistry , vol.78 , pp. 44-50
    • Ieropoulos, I.1    Greenman, J.2    Melhuish, C.3
  • 71
    • 55949104194 scopus 로고    scopus 로고
    • Microbial fuel cells based on carbon veil electrodes: Stack configuration and scalability
    • COI: 1:CAS:528:DC%2BD1cXhtlClu7fL
    • Ieropoulos I, Greenman J, Melhuish C. (2008) Microbial fuel cells based on carbon veil electrodes: Stack configuration and scalability. Int. J. Energy Res. 32:1228–40. DOI: 10.1002/er.1419
    • (2008) Int. J. Energy Res. , vol.32 , pp. 1228-1240
    • Ieropoulos, I.1    Greenman, J.2    Melhuish, C.3
  • 72
    • 33646749524 scopus 로고    scopus 로고
    • Continuous electricity generation at high voltages and currents using stacked microbial fuel cells
    • COI: 1:CAS:528:DC%2BD28XjtlSit7c%3D, PID: 16749711
    • Aelterman P, Rabaey K, Pham HT, Boon N, Verstraete W. (2006) Continuous electricity generation at high voltages and currents using stacked microbial fuel cells. Environ. Sci. Technol. 40:3388–94. DOI: 10.1021/es0525511
    • (2006) Environ. Sci. Technol. , vol.40 , pp. 3388-3394
    • Aelterman, P.1    Rabaey, K.2    Pham, H.T.3    Boon, N.4    Verstraete, W.5
  • 73
    • 78650984998 scopus 로고    scopus 로고
    • Energy harvesting with microbial fuel cell and power management system
    • Meehan A, Ga, H, Lewandowski Z. (2011) Energy harvesting with microbial fuel cell and power management system. IEEE Trans. Power Electronics. 26:176–81. DOI: 10.1109/TPEL.2010.2054114
    • (2011) IEEE Trans. Power Electronics , vol.26 , pp. 176-181
    • Meehan, A.1    Ga, H.2    Lewandowski, Z.3
  • 74
    • 85186929797 scopus 로고    scopus 로고
    • Los Angeles: G4 Media Inc.; 2012 Apr 18. Available from
    • How To Harvest Electricity From Lobsters [online video]. Los Angeles: G4 Media Inc.; 2012 Apr 18. Available from: https://doi.org/www.g4tv.com/videos/58223/how-to-harvest-electricity-from-lobsters/
    • How To Harvest Electricity From Lobsters [online video].
  • 75
    • 60349113674 scopus 로고    scopus 로고
    • BioCapacitor—a novel category of biosensor
    • COI: 1:CAS:528:DC%2BD1MXit1Olsb0%3D, PID: 19013784
    • Hanashi T, et al. (2009) BioCapacitor—a novel category of biosensor. Biosens. Bioelectron. 24:1837–42. DOI: 10.1016/j.bios.2008.09.014
    • (2009) Biosens. Bioelectron. , vol.24 , pp. 1837-1842
    • Hanashi, T.1
  • 76
    • 84857420677 scopus 로고    scopus 로고
    • BioRadioTransmitter: a self-powered wireless glucose-sensing system
    • PID: 22027294
    • Hanashi T, Yamazaki T, Tsugawa W, Ikebukuro K, Sode K. (2011) BioRadioTransmitter: a self-powered wireless glucose-sensing system. J. Diabetes Sci. Technol. 5:1030–5. DOI: 10.1177/193229681100500502
    • (2011) J. Diabetes Sci. Technol. , vol.5 , pp. 1030-1035
    • Hanashi, T.1    Yamazaki, T.2    Tsugawa, W.3    Ikebukuro, K.4    Sode, K.5
  • 77
    • 84907904030 scopus 로고    scopus 로고
    • Self-powered wireless carbohydrate/oxygen sensitive biodevice based on radio signal transmission
    • COI: 1:CAS:528:DC%2BC2cXhvVOisr7I
    • Falk M, et al. (2014) Self-powered wireless carbohydrate/oxygen sensitive biodevice based on radio signal transmission. PlosOne. 9:e109104. DOI: 10.1371/journal.pone.0109104
    • (2014) PlosOne , vol.9
    • Falk, M.1
  • 79
    • 84875841606 scopus 로고    scopus 로고
    • Pacemaker powered by implantable biofuel cell operating under conditions mimicking human blood circulation system—battery not included
    • COI: 1:CAS:528:DC%2BC3sXlt1aiurc%3D, PID: 23519144
    • Southcott M, et al. (2013) Pacemaker powered by implantable biofuel cell operating under conditions mimicking human blood circulation system—battery not included. Phys. Chem. Chem. Phys. 15:6278–83. DOI: 10.1039/c3cp50929j
    • (2013) Phys. Chem. Chem. Phys. , vol.15 , pp. 6278-6283
    • Southcott, M.1
  • 80
    • 75149162574 scopus 로고    scopus 로고
    • Remote monitoring of patients with implanted cardiac devices
    • Kusumoto F, Goldschlager N. (2010) Remote monitoring of patients with implanted cardiac devices. Clin. Cardiology. 33:10–7. DOI: 10.1002/clc.20688
    • (2010) Clin. Cardiology. , vol.33 , pp. 10-17
    • Kusumoto, F.1    Goldschlager, N.2
  • 81
    • 57949090117 scopus 로고    scopus 로고
    • Microfluidic fuel cells: a review
    • COI: 1:CAS:528:DC%2BD1cXhsFCjtr7E
    • Kjeang E, Djilali N, Sinton D. (2009) Microfluidic fuel cells: a review. J. Power Sources. 186:353–69. DOI: 10.1016/j.jpowsour.2008.10.011
    • (2009) J. Power Sources. , vol.186 , pp. 353-369
    • Kjeang, E.1    Djilali, N.2    Sinton, D.3
  • 82
    • 84880545808 scopus 로고    scopus 로고
    • Electrochemical tattoo biosensors for real-time noninvasive lactate monitoring in human perspiration
    • COI: 1:CAS:528:DC%2BC3sXhtVChu73I, PID: 23815621
    • Jia W, et al. (2013) Electrochemical tattoo biosensors for real-time noninvasive lactate monitoring in human perspiration. Anal. Chem. 85:6553–60. DOI: 10.1021/ac401573r
    • (2013) Anal. Chem. , vol.85 , pp. 6553-6560
    • Jia, W.1
  • 83
    • 84880168760 scopus 로고    scopus 로고
    • Epidermal biofuel cells: Energy harvesting from human perspiration
    • COI: 1:CAS:528:DC%2BC3sXovVWjtL0%3D
    • Jia WZ, Valdes-Ramirez G, Bandodkar AJ, Windmiller JR, Wang J. (2013) Epidermal biofuel cells: Energy harvesting from human perspiration. Angew. Chem. Int. Ed. 52:7233–6. DOI: 10.1002/anie.201302922
    • (2013) Angew. Chem. Int. Ed. , vol.52 , pp. 7233-7236
    • Jia, W.Z.1    Valdes-Ramirez, G.2    Bandodkar, A.J.3    Windmiller, J.R.4    Wang, J.5
  • 84
    • 85186905057 scopus 로고    scopus 로고
    • A wireless transmission system powered by an enzyme biofuel cell implanted in an orange
    • 2014, Nov 5 [Epub ahead of print]
    • MacVittie K, Conlon T, Katz E. (2014) A wireless transmission system powered by an enzyme biofuel cell implanted in an orange. Bioelectrochemistry. 2014, Nov 5 [Epub ahead of print].
    • (2014) Bioelectrochemistry.
    • Macvittie, K.1    Conlon, T.2    Katz, E.3
  • 85
    • 84873635664 scopus 로고    scopus 로고
    • High volumetric power density, non-enzymatic, glucose fuel cells
    • COI: 1:CAS:528:DC%2BC3sXpvFWjs7k%3D
    • Oncescu V, Erickson D. (2013) High volumetric power density, non-enzymatic, glucose fuel cells. Sci. Reports 3:1226. DOI: 10.1038/srep01226
    • (2013) Sci. Reports , vol.3 , pp. 1226
    • Oncescu, V.1    Erickson, D.2
  • 86
    • 77953154022 scopus 로고    scopus 로고
    • Raney-platinum film electrodes for potentially implantable glucose fuel cells. Part 1: Nickel-free glucose oxidation anodes
    • COI: 1:CAS:528:DC%2BC3cXmvFyjsL8%3D
    • Kerzenmacher S, Schroeder M, Brämer R, Zengerle R, von Stetten F. (2010) Raney-platinum film electrodes for potentially implantable glucose fuel cells. Part 1: Nickel-free glucose oxidation anodes. J. Power Sources. 195:6516–23. DOI: 10.1016/j.jpowsour.2010.04.039
    • (2010) J. Power Sources. , vol.195 , pp. 6516-6523
    • Kerzenmacher, S.1    Schroeder, M.2    Brämer, R.3    Zengerle, R.4    von Stetten, F.5
  • 87
    • 77953151601 scopus 로고    scopus 로고
    • Raney-platinum film electrodes for potentially implantable glucose fuel cells. Part 2: Glucose-tolerant oxygen reduction cathodes
    • COI: 1:CAS:528:DC%2BC3cXmvFyjsLw%3D
    • Kerzenmacher S, et al. (2010) Raney-platinum film electrodes for potentially implantable glucose fuel cells. Part 2: Glucose-tolerant oxygen reduction cathodes. J. Power Sources. 195:6524–31. DOI: 10.1016/j.jpowsour.2010.04.049
    • (2010) J. Power Sources. , vol.195 , pp. 6524-6531
    • Kerzenmacher, S.1
  • 88
    • 84255182829 scopus 로고    scopus 로고
    • Pt-decorated nanoporous gold for glucose electrooxidation in neutral and alkaline solutions
    • COI: 1:CAS:528:DC%2BC3MXhtl2mtr3E, PID: 21711835
    • Yan X, Ge X, Cui S. (2011) Pt-decorated nanoporous gold for glucose electrooxidation in neutral and alkaline solutions. Nanoscale Res. Lett. 6:313. DOI: 10.1186/1556-276X-6-313
    • (2011) Nanoscale Res. Lett. , vol.6 , pp. 313
    • Yan, X.1    Ge, X.2    Cui, S.3
  • 89
    • 84898648018 scopus 로고    scopus 로고
    • A membraneless single compartment abiotic glucose fuel cell
    • COI: 1:CAS:528:DC%2BC2cXnsl2lsbw%3D
    • Slaughter G, Sunday J. (2014) A membraneless single compartment abiotic glucose fuel cell. J. Power Sources. 261:332–6. DOI: 10.1016/j.jpowsour.2014.03.090
    • (2014) J. Power Sources. , vol.261 , pp. 332-336
    • Slaughter, G.1    Sunday, J.2
  • 90
    • 84892602449 scopus 로고    scopus 로고
    • Modification of abiotic-biotic interfaces with small molecules and nanomaterials for improved bioelectronics
    • COI: 1:CAS:528:DC%2BC3sXhsVSit7rM
    • Du J, Catania C, Bazan GC. (2014) Modification of abiotic-biotic interfaces with small molecules and nanomaterials for improved bioelectronics. Chem. Mater. 26:686–97. DOI: 10.1021/cm401912j
    • (2014) Chem. Mater. , vol.26 , pp. 686-697
    • Du, J.1    Catania, C.2    Bazan, G.C.3
  • 91
    • 44649168099 scopus 로고    scopus 로고
    • Energy harvesting by implantable abiotically catalyzed glucose fuel cells
    • COI: 1:CAS:528:DC%2BD1cXmvVChs78%3D
    • Kerzenmacher S, Ducrée J, Zengerle R, von Stetten F. (2008) Energy harvesting by implantable abiotically catalyzed glucose fuel cells. J. Power Sources. 182:1–17. DOI: 10.1016/j.jpowsour.2008.03.031
    • (2008) J. Power Sources , vol.182 , pp. 1-17
    • Kerzenmacher, S.1    Ducrée, J.2    Zengerle, R.3    von Stetten, F.4
  • 92
    • 44649169583 scopus 로고    scopus 로고
    • An abiotically catalyzed glucose fuel cell for powering medical implants: Reconstructed manufacturing protocol and analysis of performance
    • COI: 1:CAS:528:DC%2BD1cXmvVCgt7c%3D
    • Kerzenmacher S, Ducrée J, Zengerle R, von Stetten F. (2008) An abiotically catalyzed glucose fuel cell for powering medical implants: Reconstructed manufacturing protocol and analysis of performance. J. Power Sources. 182:66–75. DOI: 10.1016/j.jpowsour.2008.03.049
    • (2008) J. Power Sources. , vol.182 , pp. 66-75
    • Kerzenmacher, S.1    Ducrée, J.2    Zengerle, R.3    von Stetten, F.4
  • 93
    • 79954516601 scopus 로고    scopus 로고
    • A single layer glucose fuel cell intended as power supplying coating for medical implants
    • COI: 1:CAS:528:DC%2BC3MXkslKmsbw%3D
    • Kloke A, et al. (2011) A single layer glucose fuel cell intended as power supplying coating for medical implants. Fuel Cells. 11:316–26. DOI: 10.1002/fuce.201000114
    • (2011) Fuel Cells , vol.11 , pp. 316-326
    • Kloke, A.1
  • 94
    • 80052506502 scopus 로고    scopus 로고
    • A microfabricated low cost enzyme-free glucose fuel cell for powering low-power implantable devices
    • COI: 1:CAS:528:DC%2BC3MXhtFWktr7O
    • Oncescu V, Erickson D. (2011) A microfabricated low cost enzyme-free glucose fuel cell for powering low-power implantable devices. J. Power Sources. 196:9169–75. DOI: 10.1016/j.jpowsour.2011.06.100
    • (2011) J. Power Sources , vol.196 , pp. 9169-9175
    • Oncescu, V.1    Erickson, D.2
  • 95
    • 78049365086 scopus 로고    scopus 로고
    • A potentially implantable glucose fuel cell with Raney-platinum film electrodes for improved hydrolytic and oxidative stability
    • COI: 1:CAS:528:DC%2BC3cXhtlGnurzP
    • Kerzenmacher S, Kräling U, Metz T, Zengerle R, von Stetten F. (2011) A potentially implantable glucose fuel cell with Raney-platinum film electrodes for improved hydrolytic and oxidative stability. J. Power Sources 196:1264–72. DOI: 10.1016/j.jpowsour.2010.08.019
    • (2011) J. Power Sources , vol.196 , pp. 1264-1272
    • Kerzenmacher, S.1    Kräling, U.2    Metz, T.3    Zengerle, R.4    von Stetten, F.5
  • 96
    • 80051749782 scopus 로고    scopus 로고
    • Mesoporous silica as a membrane for ultra-thin implantable direct glucose fuel cells
    • COI: 1:CAS:528:DC%2BC3MXotFSlt7g%3D, PID: 21637881
    • Sharma T, et al. (2011) Mesoporous silica as a membrane for ultra-thin implantable direct glucose fuel cells. Lab Chip. 11:2460–5. DOI: 10.1039/c1lc20119k
    • (2011) Lab Chip. , vol.11 , pp. 2460-2465
    • Sharma, T.1
  • 98
    • 78049375480 scopus 로고    scopus 로고
    • An efficient low-power DC-DC converter enables operation of a cardiac pacemaker by an integrated glucose fuel cell
    • 2008 Nov 9–12; Sendai, Japan
    • Kerzenmacher S, et al. (2008) An efficient low-power DC-DC converter enables operation of a cardiac pacemaker by an integrated glucose fuel cell. In: [Proceedings of] PowerMEMS 2008 + microEMS2008; 2008 Nov 9–12; Sendai, Japan. p. 189–92.
    • (2008) Proceedings Of] Powermems 2008 + Microems2008 , pp. 189-192
    • Kerzenmacher, S.1
  • 99
    • 84927005943 scopus 로고    scopus 로고
    • (ed), Cambridge University Press, Cambridge: 167
    • Marks WJ Jr. (ed.). (2010) Deep Brain Stimulation Management. Cambridge University Press, Cambridge. 167 pp.
    • (2010) Deep Brain Stimulation Management
    • Marks, W.1
  • 102
    • 84890667987 scopus 로고    scopus 로고
    • The chemistry of cyborgs—interfacing technical devices with organisms
    • COI: 1:CAS:528:DC%2BC3sXhvVOhsLfF
    • Giselbrecht S, Rapp BE, Niemeyer CM. (2013) The chemistry of cyborgs—interfacing technical devices with organisms. Angew. Chem. Int. Ed. 52:13942–57. DOI: 10.1002/anie.201307495
    • (2013) Angew. Chem. Int. Ed. , vol.52 , pp. 13942-13957
    • Giselbrecht, S.1    Rapp, B.E.2    Niemeyer, C.M.3
  • 103
    • 0003633755 scopus 로고    scopus 로고
    • 8, National Academies Press, Washington (DC
    • Committee for the Update of the Guide for the Care and Use of Laboratory Animals, Institute for Laboratory Animal Research, Division on Earth and Life Studies, National Research Council of the National Academies. (2011) Guide for the Care and Use of Laboratory Animals. 8th edition. Washington (DC): National Academies Press.
    • (2011) Guide for the Care and Use of Laboratory Animals


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.