메뉴 건너뛰기




Volumn 267, Issue , 2011, Pages 308-313

An effective intrusion detection model based on random forest and neural networks

Author keywords

Intrusion detection; Neural networks; Random forest

Indexed keywords

COMPUTATIONALLY EFFICIENT; DATA FEATURE; DATA MINING METHODS; DATA SETS; HYBRID MODEL; INTRUSION DETECTION MODELS; INTRUSION DETECTION SYSTEMS; NETWORK INTRUSION DETECTION SYSTEMS; RANDOM FOREST; RANDOM FOREST METHODS; RANDOM FORESTS; RESEARCH DOMAINS;

EID: 79960464355     PISSN: 10226680     EISSN: None     Source Type: Book Series    
DOI: 10.4028/www.scientific.net/AMR.267.308     Document Type: Conference Paper
Times cited : (8)

References (13)
  • 3
    • 0347742772 scopus 로고    scopus 로고
    • Intrusion detection systems and multisensor data fusion
    • T. Bass, "Intrusion detection systems and multisensor data fusion", Communications of the ACM, 43 (4), pp. 99-105, 2000.
    • (2000) Communications of the ACM , vol.43 , Issue.4 , pp. 99-105
    • Bass, T.1
  • 5
    • 0028496468 scopus 로고
    • Learning Boolean concepts in the presence of many irrelevant features
    • H. Almuallim and T.G. Dietterich" "Learning Boolean Concepts in the Presence of Many Irrelevant Features", Artificial Intelligence, vol. 69, nos. 1-2, 1994, pp. 279-305.
    • (1994) Artificial Intelligence , vol.69 , Issue.1-2 , pp. 279-305
    • Almuallim, H.1    Dietterich, T.G.2
  • 6
    • 17044405923 scopus 로고    scopus 로고
    • Towards integrating feature selection algorithms for classification and clustering
    • H. Liu and L. Yu. Towards integrating feature selection algorithms for classification and clustering. IEEE Transactions on Knowledge and Data Engineering, 17(3):1-12, 2005.
    • (2005) IEEE Transactions on Knowledge and Data Engineering , vol.17 , Issue.3 , pp. 1-12
    • Liu, H.1    Yu, L.2
  • 8
    • 0035478854 scopus 로고    scopus 로고
    • Random forest
    • Breiman, L.: Random forest. Machine Learning 45(1) (2001) 5-32
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.