메뉴 건너뛰기




Volumn E91-D, Issue 4, 2008, Pages 1050-1057

Modeling network intrusion detection system using feature selection and parameters optimization

Author keywords

Feature selection; Filter method; Genetic algorithm; Intrusion detection system; Network security; Parameters optimization; Random forest; Support vector machines

Indexed keywords

CLUSTERING ALGORITHMS; COMPUTER CRIME; DECISION TREES; GENETIC ALGORITHMS; INTRUSION DETECTION; MERCURY (METAL); NETWORK SECURITY; OPTIMIZATION; PARAMETER ESTIMATION; SUPPORT VECTOR MACHINES;

EID: 68149099646     PISSN: 09168532     EISSN: 17451361     Source Type: Journal    
DOI: 10.1093/ietisy/e91-d.4.1050     Document Type: Article
Times cited : (7)

References (34)
  • 2
    • 85065703189 scopus 로고    scopus 로고
    • Correlation-based feature selection for discrete and numeric class machine learning
    • M.A. Hall, "Correlation-based feature selection for discrete and numeric class machine learning," Proc. 17th Int'l Conf. on Machine Learning, pp.359-366, 2000.
    • (2000) Proc. 17th Int'l Conf. on Machine Learning , pp. 359-366
    • Hall, M.A.1
  • 4
    • 0028496468 scopus 로고
    • Learning Boolean concepts in the presence of many irrelevant features
    • H. Almuallim and T.G. Dietterich, "Learning Boolean concepts in the presence of many irrelevant features," Artif. Intell., vol.69, nos.1-2, pp.279-305, 1994.
    • (1994) Artif. Intell , vol.69 , Issue.1-2 , pp. 279-305
    • Almuallim, H.1    Dietterich, T.G.2
  • 6
    • 84958740656 scopus 로고    scopus 로고
    • Anomaly detection enhanced classification in computer intrusion detection
    • Springer-Verlag, Berlin Heidelberg
    • M. Fugate and J.R. Gattiker, "Anomaly detection enhanced classification in computer intrusion detection," Lecture Notes in Computer Science, vol.2388, Springer-Verlag, Berlin Heidelberg, 2002.
    • (2002) Lecture Notes in Computer Science , vol.2388
    • Fugate, M.1    Gattiker, J.R.2
  • 8
    • 24944563451 scopus 로고    scopus 로고
    • Robust support vector machines for anomaly detection in computer security
    • CSREA Press
    • W. Hu, Y. Liao, and V. Vemuri, "Robust support vector machines for anomaly detection in computer security," Proc. Int. Conf. on Machine Learning and Applications 2003, pp.168-174, CSREA Press, 2003.
    • (2003) Proc. Int. Conf. on Machine Learning and Applications , pp. 168-174
    • Hu, W.1    Liao, Y.2    Vemuri, V.3
  • 9
    • 85027124166 scopus 로고    scopus 로고
    • J. Cannady, Artificial neural network for misuse detection, Proc. 1998 National Information System Security Conf., pp.443-456, Arlington, Oct. 1998.
    • J. Cannady, "Artificial neural network for misuse detection," Proc. 1998 National Information System Security Conf., pp.443-456, Arlington, Oct. 1998.
  • 11
    • 0037382208 scopus 로고    scopus 로고
    • Evaluation of simple performance measures for tuning SVM hyperparameters
    • K. Duan, S.S. Keerthi, and A.N. Poo, "Evaluation of simple performance measures for tuning SVM hyperparameters," Neurocomputing, vol.51, pp.41-59, 2003.
    • (2003) Neurocomputing , vol.51 , pp. 41-59
    • Duan, K.1    Keerthi, S.S.2    Poo, A.N.3
  • 12
    • 85027161029 scopus 로고    scopus 로고
    • KDD Cup 1999 Data, http://kdd.ics.uci.edu/databases/kddcup99/kddcup99. html
    • (1999) Data
  • 13
    • 85027102405 scopus 로고    scopus 로고
    • Open SourceWEKA Project
    • Open SourceWEKA Project, http://www.cs.waikato.ac.nz/ml/weka/index.html
  • 14
    • 17044405923 scopus 로고    scopus 로고
    • Toward integrating feature selection algorithms for classification and clustering
    • H. Liu and L. Yu, "Toward integrating feature selection algorithms for classification and clustering," IEEE Trans. Knowl. Data Eng., vol.17, no.3, pp.1-12, 2005.
    • (2005) IEEE Trans. Knowl. Data Eng , vol.17 , Issue.3 , pp. 1-12
    • Liu, H.1    Yu, L.2
  • 15
    • 84943383590 scopus 로고    scopus 로고
    • Identifying important features for intrusion detection using support vector machines and neural networks
    • IEEE Computer Society Press
    • A.H. Sung and S. Mukkamala, "Identifying important features for intrusion detection using support vector machines and neural networks," Proc. 2003 Int. Symposium on Applications and the Internet Technology, pp.209-216, IEEE Computer Society Press, 2003.
    • (2003) Proc. 2003 Int. Symposium on Applications and the Internet Technology , pp. 209-216
    • Sung, A.H.1    Mukkamala, S.2
  • 16
    • 24944485860 scopus 로고    scopus 로고
    • Fusions of GA and SVM for anomaly detection in intrusion detection system
    • Springer Verlag
    • D. Kim, H.-N. Nguyen, S.-Y. Ohn, and J. Park, "Fusions of GA and SVM for anomaly detection in intrusion detection system," Lecture Notes in Computer Science, vol.3498, pp.415-420, Springer Verlag, 2005.
    • (2005) Lecture Notes in Computer Science , vol.3498 , pp. 415-420
    • Kim, D.1    Nguyen, H.-N.2    Ohn, S.-Y.3    Park, J.4
  • 18
    • 0002593344 scopus 로고
    • Multi-interval discretization of continuous attributes as pre-processing for classification learning
    • U. Fayyad and K. Irani, "Multi-interval discretization of continuous attributes as pre-processing for classification learning," Proc. 13th Int. Join Conf. on Artificial Intelligence, pp.1022-1027, 1993.
    • (1993) Proc. 13th Int. Join Conf. on Artificial Intelligence , pp. 1022-1027
    • Fayyad, U.1    Irani, K.2
  • 19
    • 85027160935 scopus 로고    scopus 로고
    • W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling, Numerical recipes in C, Cambridge University Press, Cambridge, 1988.
    • W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling, Numerical recipes in C, Cambridge University Press, Cambridge, 1988.
  • 21
    • 49649112245 scopus 로고    scopus 로고
    • On failure of machine learning algorithms for detecting misuse in KDD intrusion detection data set
    • M. Sabhnani and G. Serpen, "On failure of machine learning algorithms for detecting misuse in KDD intrusion detection data set," Journal of Intelligent Data Analysis, vol.8, no.4, pp.403-415, 2004.
    • (2004) Journal of Intelligent Data Analysis , vol.8 , Issue.4 , pp. 403-415
    • Sabhnani, M.1    Serpen, G.2
  • 23
    • 0003587805 scopus 로고    scopus 로고
    • Introduction to genetic Algorithms
    • MIT Press
    • M. Mitchell, Introduction to genetic Algorithms, 5th printing, MIT Press, 1999.
    • (1999) 5th printing
    • Mitchell, M.1
  • 27
    • 0002714543 scopus 로고    scopus 로고
    • Making large-scale SVM learning practical
    • ed. B. Scholkopf, C. Burges, and A. Smola, chapter 11, MIT Press
    • T. Joachims, "Making large-scale SVM learning practical," in Advances in Kernel Methods - Support Vector Learning, ed. B. Scholkopf, C. Burges, and A. Smola, chapter 11, MIT Press, 1999.
    • (1999) Advances in Kernel Methods - Support Vector Learning
    • Joachims, T.1
  • 28
    • 34547626171 scopus 로고    scopus 로고
    • Anomaly detection enhanced classification in computer intrusion detection
    • M. Fugate and J.R. Gattiker, "Anomaly detection enhanced classification in computer intrusion detection," LANL Tech Report, LAUR-02-1149, 2002.
    • (2002) LANL Tech Report, LAUR-02-1149
    • Fugate, M.1    Gattiker, J.R.2
  • 29
    • 24944586818 scopus 로고    scopus 로고
    • Network-based intrusion detection with support vector machines
    • ICOIN 2003, Springer-Verlag
    • D. Kim and J. Park, "Network-based intrusion detection with support vector machines," ICOIN 2003, Lecture Notes in Computer Science, vol.2662, Springer-Verlag, 2003.
    • (2003) Lecture Notes in Computer Science , vol.2662
    • Kim, D.1    Park, J.2
  • 32
    • 0035478854 scopus 로고    scopus 로고
    • Random forest
    • L. Breiman, "Random forest," Mach. Learn., vol.45, pp.5-32, 2001.
    • (2001) Mach. Learn , vol.45 , pp. 5-32
    • Breiman, L.1
  • 34
    • 85027123998 scopus 로고    scopus 로고
    • The R Project for Statistical Computing, http://www.r-project.org/


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.