-
1
-
-
85018063423
-
Pathogenesis of liver fibrosis
-
Alcolado R, Iredale P: Pathogenesis of liver fibrosis. Studies, 1997; 50: 51
-
(1997)
Studies
, vol.50
, pp. 51
-
-
Alcolado, R.1
Iredale, P.2
-
2
-
-
77955472579
-
Evolving challenges in hepatic fibrosis
-
Friedman SL: Evolving challenges in hepatic fibrosis. Nat Rev Gastroenterol Hepatol, 2010; 7: 425-36
-
(2010)
Nat Rev Gastroenterol Hepatol
, vol.7
, pp. 425-436
-
-
Friedman, S.L.1
-
4
-
-
80054034723
-
Expression of angiotensinogen during hepatic fibrogenesis and its effect on hepatic stellate cells
-
Lu P, Liu H, Yin H, Yang L: Expression of angiotensinogen during hepatic fibrogenesis and its effect on hepatic stellate cells. Am J Case Rep, 2011; 17: 248-56
-
(2011)
Am J Case Rep
, vol.17
, pp. 248-256
-
-
Lu, P.1
Liu, H.2
Yin, H.3
Yang, L.4
-
5
-
-
84855279840
-
18alpha-Glycyrrhizin induces apoptosis and suppresses activation of rat hepatic stellate cells
-
Qu Y, Chen W-H, Zong L et al: 18alpha-Glycyrrhizin induces apoptosis and suppresses activation of rat hepatic stellate cells. Med Sci Monit Basic Res, 2011; 18: 24-32
-
(2011)
Med Sci Monit Basic Res
, vol.18
, pp. 24-32
-
-
Qu, Y.1
Chen, W.-H.2
Zong, L.3
-
6
-
-
0034723290
-
Molecular regulation of hepatic fibrosis, an integrated cellular response to tissue injury
-
Friedman SL: Molecular regulation of hepatic fibrosis, an integrated cellular response to tissue injury. J Biol Chem, 2000; 275: 2247-50
-
(2000)
J Biol Chem
, vol.275
, pp. 2247-2250
-
-
Friedman, S.L.1
-
7
-
-
0033781716
-
Hepatic stellate cells: A target for the treatment of liver fibrosis
-
Wu J, Zern MA: Hepatic stellate cells: a target for the treatment of liver fibrosis. J Gastroenterol, 2000; 35: 665-72
-
(2000)
J Gastroenterol
, vol.35
, pp. 665-672
-
-
Wu, J.1
Zern, M.A.2
-
8
-
-
84871137412
-
Phosphodiesterase inhibition mediates matrix metalloproteinase activity and the level of collagen degradation fragments in a liver fibrosis ex vivo rat model
-
Veidal SS, Nielsen MJ, Leeming DJ, Karsdal MA: Phosphodiesterase inhibition mediates matrix metalloproteinase activity and the level of collagen degradation fragments in a liver fibrosis ex vivo rat model. BMC Res Notes, 2012; 5: 686
-
(2012)
BMC Res Notes
, vol.5
, pp. 686
-
-
Veidal, S.S.1
Nielsen, M.J.2
Leeming, D.J.3
Karsdal, M.A.4
-
9
-
-
84920885393
-
Fibronectin peptides as potential regulators of hepatic fibrosis through apoptosis of hepatic stellate cells
-
Mòdol T, Brice N, Ruiz de Galarreta M et al: Fibronectin peptides as potential regulators of hepatic fibrosis through apoptosis of hepatic stellate cells. J Cell Physiol, 2015; 230: 546-53
-
(2015)
J Cell Physiol
, vol.230
, pp. 546-553
-
-
Mòdol, T.1
Brice, N.2
De Ruiz Galarreta, M.3
-
10
-
-
80655147912
-
The parallel universe: MicroRNAs and their role in chronic hepatitis, liver tissue damage and hepatocarcinogenesis
-
Haybaeck J, Zeller N, Heikenwalder M: The parallel universe: microRNAs and their role in chronic hepatitis, liver tissue damage and hepatocarcinogenesis. Swiss Med Wkly, 2011; 141: w13287
-
(2011)
Swiss Med Wkly
, vol.141
-
-
Haybaeck, J.1
Zeller, N.2
Heikenwalder, M.3
-
12
-
-
84925114209
-
MiR-630 overexpression in hepatocellular carcinoma tissues is positively correlated with alpha-fetoprotein
-
Zhang J-W, Li Y, Zeng X-C et al: miR-630 overexpression in hepatocellular carcinoma tissues is positively correlated with alpha-fetoprotein. Med Sci Monit, 2015; 21: 667-73
-
(2015)
Med Sci Monit
, vol.21
, pp. 667-673
-
-
Zhang, J.-W.1
Li, Y.2
Zeng, X.-C.3
-
13
-
-
79955065145
-
The rno-miR-34 family is upregulated and targets ACSL1 in dimethylnitrosamine-induced hepatic fibrosis in rats
-
Li WQ, Chen C, Xu MD et al: The rno-miR-34 family is upregulated and targets ACSL1 in dimethylnitrosamine-induced hepatic fibrosis in rats. FEBS J, 2011; 278: 1522-32
-
(2011)
FEBS J
, vol.278
, pp. 1522-1532
-
-
Li, W.Q.1
Chen, C.2
Xu, M.D.3
-
14
-
-
33749263507
-
Overexpression of acyl-CoA synthetase-1 increases lipid deposition in hepatic (HepG2) cells and rodent liver in vivo
-
Parkes HA, Preston E, Wilks D et al: Overexpression of acyl-CoA synthetase-1 increases lipid deposition in hepatic (HepG2) cells and rodent liver in vivo. Am J Physiol Endocrinol Metab, 2006; 291: E737-44
-
(2006)
Am J Physiol Endocrinol Metab
, vol.291
, pp. 737-744
-
-
Parkes, H.A.1
Preston, E.2
Wilks, D.3
-
15
-
-
43249086785
-
Mammalian long-chain acyl-CoA synthetases
-
Soupene E, Kuypers FA: Mammalian long-chain acyl-CoA synthetases. Exp Biol Med, 2008; 233: 507-21
-
(2008)
Exp Biol Med
, vol.233
, pp. 507-521
-
-
Soupene, E.1
Kuypers, F.A.2
-
16
-
-
77952409179
-
Acyl-coenzyme A synthetases in metabolic control
-
Ellis JM, Frahm JL, Li LO, Coleman RA: Acyl-coenzyme A synthetases in metabolic control. Curr Opin Lipidol, 2010; 21: 212-17
-
(2010)
Curr Opin Lipidol
, vol.21
, pp. 212-217
-
-
Ellis, J.M.1
Frahm, J.L.2
Li, L.O.3
Coleman, R.A.4
-
17
-
-
0041707903
-
Involvement of intracellular glutathione in zinc deficiency-induced activation of hepatic stellate cells
-
Kojima-Yuasa A, Ohkita T, Yukami K et al: Involvement of intracellular glutathione in zinc deficiency-induced activation of hepatic stellate cells. Chem Biol Interact, 2003; 146: 89-99
-
(2003)
Chem Biol Interact
, vol.146
, pp. 89-99
-
-
Kojima-Yuasa, A.1
Ohkita, T.2
Yukami, K.3
-
18
-
-
0027190038
-
The contraction of hepatic stellate (Ito) cells stimulated with vasoactive substances
-
Kawada N, Tran-Thi TA, Klein H, Decker K: The contraction of hepatic stellate (Ito) cells stimulated with vasoactive substances. Eur J Biochem, 1993; 213: 815-23
-
(1993)
Eur J Biochem
, vol.213
, pp. 815-823
-
-
Kawada, N.1
Tran-Thi, T.A.2
Klein, H.3
Decker, K.4
-
19
-
-
59849084351
-
Over-expressed microRNA-27a and 27b influence fat accumulation and cell proliferation during rat hepatic stellate cell activation
-
Ji J, Zhang J, Huang G et al: Over-expressed microRNA-27a and 27b influence fat accumulation and cell proliferation during rat hepatic stellate cell activation. FEBS Lett, 2009; 583: 759-66
-
(2009)
FEBS Lett
, vol.583
, pp. 759-766
-
-
Ji, J.1
Zhang, J.2
Huang, G.3
-
20
-
-
33846283385
-
The evolution of gene regulation by transcription factors and microRNAs
-
Chen K, Rajewsky N: The evolution of gene regulation by transcription factors and microRNAs. Nat Rev Genet, 2007; 8: 93-103
-
(2007)
Nat Rev Genet
, vol.8
, pp. 93-103
-
-
Chen, K.1
Rajewsky, N.2
-
21
-
-
84923623851
-
Different normalization strategies might cause inconsistent variation in circulating microRNAs in patients with hepatocellular carcinoma
-
Tang G, Shen X, Lv K et al: Different normalization strategies might cause inconsistent variation in circulating microRNAs in patients with hepatocellular carcinoma. Med Sci Monit, 2015; 21: 617-24
-
(2015)
Med Sci Monit
, vol.21
, pp. 617-624
-
-
Tang, G.1
Shen, X.2
Lv, K.3
-
22
-
-
58249088751
-
MicroRNAs: Target recognition and regulatory functions
-
Bartel DP: MicroRNAs: target recognition and regulatory functions. Cell, 2009; 136: 215-33
-
(2009)
Cell
, vol.136
, pp. 215-233
-
-
Bartel, D.P.1
-
23
-
-
11844278458
-
Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets
-
Lewis BP, Burge CB, Bartel DP: Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell, 2005; 120: 15-20
-
(2005)
Cell
, vol.120
, pp. 15-20
-
-
Lewis, B.P.1
Burge, C.B.2
Bartel, D.P.3
-
24
-
-
60149095444
-
Most mammalian mRNAs are conserved targets of microRNAs
-
Friedman RC, Farh KK-H, Burge CB, Bartel DP: Most mammalian mRNAs are conserved targets of microRNAs. Genome Res, 2009; 19: 92-105
-
(2009)
Genome Res
, vol.19
, pp. 92-105
-
-
Friedman, R.C.1
Farh, K.K.-H.2
Burge, C.B.3
Bartel, D.P.4
-
25
-
-
0037197803
-
Identification of tissue- specific microRNAs from mouse
-
Lagos-Quintana M, Rauhut R, Yalcin A, Meyer J et al: Identification of tissue- specific microRNAs from mouse. Curr Biol, 2002; 12: 735-39
-
(2002)
Curr Biol
, vol.12
, pp. 735-739
-
-
Lagos-Quintana, M.1
Rauhut, R.2
Yalcin, A.3
Meyer, J.4
-
26
-
-
72949093641
-
MicroRNAs as potential cancer therapeutics
-
Trang P, Weidhaas J, Slack F: MicroRNAs as potential cancer therapeutics. Oncogene, 2008; 27: S52-57
-
(2008)
Oncogene
, vol.27
, pp. S52-S57
-
-
Trang, P.1
Weidhaas, J.2
Slack, F.3
-
27
-
-
72949098057
-
Therapeutic microRNA strategies in human cancer
-
Li C, Feng Y, Coukos G, Zhang L: Therapeutic microRNA strategies in human cancer. AAPS J, 2009; 11: 747-57
-
(2009)
AAPS J
, vol.11
, pp. 747-757
-
-
Li, C.1
Feng, Y.2
Coukos, G.3
Zhang, L.4
-
28
-
-
72049101201
-
Ivan M et al: MicroRNA: Emerging therapeutic targets in acute ischemic diseases
-
Fasanaro P, Greco S, Ivan M et al: microRNA: emerging therapeutic targets in acute ischemic diseases. Pharmacol Ther, 2010; 125: 92-104
-
(2010)
Pharmacol Ther
, vol.125
, pp. 92-104
-
-
Fasanaro, P.1
Greco, S.2
-
29
-
-
50149085495
-
Fatty acid transport and activation and the expression patterns of genes involved in fatty acid trafficking
-
Sandoval A, Fraisl P, Arias-Barrau E et al: Fatty acid transport and activation and the expression patterns of genes involved in fatty acid trafficking. Arch Biochem Biophys, 2008; 477: 363-71
-
(2008)
Arch Biochem Biophys
, vol.477
, pp. 363-371
-
-
Sandoval, A.1
Fraisl, P.2
Arias-Barrau, E.3
-
30
-
-
84872930995
-
Endothelial acyl-CoA synthetase 1 is not required for inflammatory and apoptotic effects of a saturated fatty acidrich environment
-
Li X, Gonzalez O, Shen X et al: Endothelial acyl-CoA synthetase 1 is not required for inflammatory and apoptotic effects of a saturated fatty acidrich environment. Arterioscler Thromb Vasc Biol, 2013; 33: 232-40
-
(2013)
Arterioscler Thromb Vasc Biol
, vol.33
, pp. 232-240
-
-
Li, X.1
Gonzalez, O.2
Shen, X.3
-
31
-
-
2542490433
-
Association of stomatin with lipid bodies
-
Umlauf E, Csaszar E, Moertelmaier M et al: Association of stomatin with lipid bodies. J Biol Chem, 2004; 279: 23699-709
-
(2004)
J Biol Chem
, vol.279
, pp. 23699-23709
-
-
Umlauf, E.1
Csaszar, E.2
Moertelmaier, M.3
-
32
-
-
0031006469
-
A novel arachidonate-preferring acyl-CoA synthetase is present in steroidogenic cells of the rat adrenal, ovary, and testis
-
Kang M-J, Fujino T, Sasano H et al: A novel arachidonate-preferring acyl-CoA synthetase is present in steroidogenic cells of the rat adrenal, ovary, and testis. Proc Natl Acad Sci USA, 1997; 94: 2880-84
-
(1997)
Proc Natl Acad Sci USA
, vol.94
, pp. 2880-2884
-
-
Kang, M.-J.1
Fujino, T.2
Sasano, H.3
-
33
-
-
79952267150
-
Mouse cardiac acyl coenzyme a synthetase 1 deficiency impairs fatty acid oxidation and induces cardiac hypertrophy
-
Ellis JM, Mentock SM, DePetrillo MA et al: Mouse cardiac acyl coenzyme a synthetase 1 deficiency impairs fatty acid oxidation and induces cardiac hypertrophy. Mol Cell Biol, 2011; 31: 1252-62
-
(2011)
Mol Cell Biol
, vol.31
, pp. 1252-1262
-
-
Ellis, J.M.1
Mentock, S.M.2
Depetrillo, M.A.3
-
34
-
-
70350450243
-
Liver-specific loss of long chain acyl-CoA synthetase- 1 decreases triacylglycerol synthesis and b-oxidation and alters phospholipid fatty acid composition
-
Li LO, Ellis JM, Paich HA et al: Liver-specific loss of long chain acyl-CoA synthetase- 1 decreases triacylglycerol synthesis and b-oxidation and alters phospholipid fatty acid composition. J Biol Chem, 2009; 284: 27816-26
-
(2009)
J Biol Chem
, vol.284
, pp. 27816-27826
-
-
Li, L.O.1
Ellis, J.M.2
Paich, H.A.3
-
35
-
-
84894587324
-
MiR-205 modulates abnormal lipid metabolism of hepatoma cells via targeting acyl-CoA synthetase long-chain family member 1 (ACSL1) mRNA
-
Cui M, Wang Y, Sun B et al: MiR-205 modulates abnormal lipid metabolism of hepatoma cells via targeting acyl-CoA synthetase long-chain family member 1 (ACSL1) mRNA. Biochem Biophys Res Commun, 2014; 444: 270-75
-
(2014)
Biochem Biophys Res Commun
, vol.444
, pp. 270-275
-
-
Cui, M.1
Wang, Y.2
Sun, B.3
-
36
-
-
77956030796
-
Curcumin protects hepatic stellate cells against leptin-induced activation in vitro by accumulating intracellular lipids
-
Tang Y, Chen A: Curcumin protects hepatic stellate cells against leptin-induced activation in vitro by accumulating intracellular lipids. Endocrinology, 2010; 151: 4168-77
-
(2010)
Endocrinology
, vol.151
, pp. 4168-4177
-
-
Tang, Y.1
Chen, A.2
|