-
1
-
-
0031144409
-
Estimation of non-linear systems using linear multiple models
-
Banerjee, A., Arkun, Y., Ogunnaike, B. and Pearson, R., 1997, Estimation of non-linear systems using linear multiple models, AIChE J, 43(5): 1204-1226.
-
(1997)
AIChE J.
, vol.43
, Issue.5
, pp. 1204-1226
-
-
Banerjee, A.1
Arkun, Y.2
Ogunnaike, B.3
Pearson, R.4
-
3
-
-
0003408496
-
UCI Repository of machine learning databases
-
Department of Information and Computer Science, University of California, Irvine, CA, USA
-
Blake, C.L. and Merz, C.J., 1998, UCI Repository of machine learning databases, Department of Information and Computer Science, University of California, Irvine, CA, USA, http://www.ics.uci.edu/~mlearn/ MLRepository.html
-
(1998)
-
-
Blake, C.L.1
Merz, C.J.2
-
4
-
-
0003495934
-
-
Technical Report 421, Department of Statistics, University of California, Berkley, USA
-
Breiman, L., 1994, Bagging Predictors, Technical Report 421, Department of Statistics, University of California, Berkley, USA.
-
(1994)
Bagging Predictors
-
-
Breiman, L.1
-
6
-
-
84871421483
-
Derivative-free pattern search methods for multidisciplinary design problems
-
Panama City, Florida, USA, September 7-9, paper AIAA-94-4349
-
Dennis, J.E. and Torczon, V.J., 1994, Derivative-free pattern search methods for multidisciplinary design problems, in Proceedings of the 5th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Panama City, Florida, USA, September 7-9, paper AIAA-94-4349, 922-932.
-
(1994)
Proceedings of the 5th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization
, pp. 922-932
-
-
Dennis, J.E.1
Torczon, V.J.2
-
7
-
-
84899013173
-
Support vector regression machines
-
Mozer, M.C., Jordan, M.I. and Petsche, T. (eds)., (MIT Press, Cambridge, MA, USA)
-
Drucker, H., Burges, C.J.C., Kaufman, L., Smola, A. and Vapnik, V., 1997, Support vector regression machines, in Mozer, M.C., Jordan, M.I. and Petsche, T. (eds)., Advances in Neural Information Processing Systems, Vol. 9, 155-161 (MIT Press, Cambridge, MA, USA).
-
(1997)
Advances in Neural Information Processing Systems
, vol.9
, pp. 155-161
-
-
Drucker, H.1
Burges, C.J.C.2
Kaufman, L.3
Smola, A.4
Vapnik, V.5
-
8
-
-
0000251975
-
Neural network based quantitative structural property relations (QSPRs) for predicting boiling points of aliphatic hydrocarbons
-
Espinosa, G., Yaffe, D., Cohen, Y., Arenas, A. and Giralt, F., 2000, Neural network based quantitative structural property relations (QSPRs) for predicting boiling points of aliphatic hydrocarbons, J Chem Inf Comput Sci, 40: 859-879.
-
(2000)
J. Chem. Inf. Comput. Sci.
, vol.40
, pp. 859-879
-
-
Espinosa, G.1
Yaffe, D.2
Cohen, Y.3
Arenas, A.4
Giralt, F.5
-
10
-
-
0035890807
-
Evolutionary polymorphic neural network in chemical process modelling
-
Gao, L. and Loney, N.W., 2001, Evolutionary polymorphic neural network in chemical process modelling, Comp Chem Eng, 25(11-12): 1403-1410.
-
(2001)
Comp. Chem. Eng.
, vol.25
, Issue.11-12
, pp. 1403-1410
-
-
Gao, L.1
Loney, N.W.2
-
11
-
-
0001159626
-
Prediction of the normal boiling points of organic compounds from molecular structures with a computational neural network model
-
Goll, E.S. and Jurs, P.C., 1999, Prediction of the normal boiling points of organic compounds from molecular structures with a computational neural network model, J Chem Inf Comput Sci, 39: 974-983.
-
(1999)
J. Chem. Inf. Comput. Sci.
, vol.39
, pp. 974-983
-
-
Goll, E.S.1
Jurs, P.C.2
-
12
-
-
0004236492
-
-
(Johns Hopkins University Press, Baltimore, MD, USA)
-
Golub, G.H. and Van Loan, C.F., 1989, Matrix Computations (Johns Hopkins University Press, Baltimore, MD, USA).
-
(1989)
Matrix Computations
-
-
Golub, G.H.1
Van Loan, C.F.2
-
13
-
-
0003425664
-
-
Technical Report, Image Speech and Intelligent Systems Research Group, University of Southampton
-
Gunn, S.R., 1997, Support Vector Machines for Classification and Regression, Technical Report, Image Speech and Intelligent Systems Research Group, University of Southampton, http://www.ecs.soton.ac.uk/ ~srg/publications/pdf/SVM.pdf.
-
(1997)
Support Vector Machines for Classification and Regression
-
-
Gunn, S.R.1
-
14
-
-
0017947982
-
Hedonic housing prices and the demand for clean air
-
Harrison, D. and Rubinfeld, D.L., 1978, Hedonic housing prices and the demand for clean air, J Environ Econ Manag, 5: 81-102.
-
(1978)
J. Environ. Econ. Manag.
, vol.5
, pp. 81-102
-
-
Harrison, D.1
Rubinfeld, D.L.2
-
15
-
-
0000135303
-
Methods of conjugate gradients for solving linear systems
-
Hestenes, M.R. and Stiefel, E., 1952, Methods of conjugate gradients for solving linear systems, J Res Natl Bur Stand, 49: 409-436.
-
(1952)
J. Res. Natl. Bur. Stand.
, vol.49
, pp. 409-436
-
-
Hestenes, M.R.1
Stiefel, E.2
-
16
-
-
0024880831
-
Multilayer feed forward networks are universal approximators
-
Hornik, K., Stinchcombe, M. and White, H., 1989, Multilayer feed forward networks are universal approximators, Neural Networks, 2: 359-366.
-
(1989)
Neural Networks
, vol.2
, pp. 359-366
-
-
Hornik, K.1
Stinchcombe, M.2
White, H.3
-
17
-
-
0141958733
-
Feature extraction and denoising using kernel PCA
-
Jade, A.M., Srikanth, B., Jayaraman, V.K., Kulkarni, B.D., Jog, J.P. and Priya, L., 2003, Feature extraction and denoising using kernel PCA, Chem Eng Sci, 58(19): 4441-4448.
-
(2003)
Chem. Eng. Sci.
, vol.58
, Issue.19
, pp. 4441-4448
-
-
Jade, A.M.1
Srikanth, B.2
Jayaraman, V.K.3
Kulkarni, B.D.4
Jog, J.P.5
Priya, L.6
-
18
-
-
0001246549
-
Higher chaos in a four variable chemical reaction model
-
Killory, H., Rössler, O.E. and Hudson, J.L., 1987, Higher chaos in a four variable chemical reaction model, Physics Letters A, 122: 341-345.
-
(1987)
Physics Letters A
, vol.122
, pp. 341-345
-
-
Killory, H.1
Rössler, O.E.2
Hudson, J.L.3
-
19
-
-
0033412824
-
Pattern search algorithms for bound constrained minimization
-
Lewis, R. and Torczon, V., 1996, Pattern search algorithms for bound constrained minimization, SIAM J Optimization, 9: 1082-1099.
-
(1996)
SIAM J. Optimization
, vol.9
, pp. 1082-1099
-
-
Lewis, R.1
Torczon, V.2
-
20
-
-
0040888006
-
A new efficient approach for variable selection based on multiregression: Prediction of gas chromatographic retention times and response factors
-
Lucic, B. and Trinajstic, N., 1999, A new efficient approach for variable selection based on multiregression: prediction of gas chromatographic retention times and response factors, J Chem Inf Comput Sci, 39: 610-621.
-
(1999)
J. Chem. Inf. Comput. Sci.
, vol.39
, pp. 610-621
-
-
Lucic, B.1
Trinajstic, N.2
-
21
-
-
0000104192
-
Nonlinear multivariate regression outperforms several concisely designed neural networks on three QSPR data sets
-
Lucic, B., Amic, D. and Trinajstic, N., 2000, Nonlinear multivariate regression outperforms several concisely designed neural networks on three QSPR data sets, J Chem Inf Comput Sci, 40: 403-413.
-
(2000)
J. Chem. Inf. Comput. Sci.
, vol.40
, pp. 403-413
-
-
Lucic, B.1
Amic, D.2
Trinajstic, N.3
-
22
-
-
0017714604
-
Oscillation and chaos in physiological control systems
-
Mackey, M. and Glass, L., 1977, Oscillation and chaos in physiological control systems, Science, 197: 287-289.
-
(1977)
Science
, vol.197
, pp. 287-289
-
-
Mackey, M.1
Glass, L.2
-
23
-
-
0035299148
-
An approach to robust and flexible modeling and control of pH in reactors
-
Mwembeshi, M.M., Kent, C.A. and Salhi, S., 2001, An approach to robust and flexible modeling and control of pH in reactors, Trans IChemE, Part A, Chem Eng Res Des, 79(3): 323-334.
-
(2001)
Trans. IChemE, Part A, Chem. Eng. Res. Des.
, vol.79
, Issue.3
, pp. 323-334
-
-
Mwembeshi, M.M.1
Kent, C.A.2
Salhi, S.3
-
24
-
-
0242288791
-
N4: Computing with neural receptive fields
-
Pedrycz, W., Chun, M.G. and Succi, G., 2003, N4: computing with neural receptive fields, Neurocomputing, 55: 383-401.
-
(2003)
Neurocomputing
, vol.55
, pp. 383-401
-
-
Pedrycz, W.1
Chun, M.G.2
Succi, G.3
-
25
-
-
0025490985
-
Networks for approximation and learning
-
Poggio, T. and Girosi, F., 1990, Networks for approximation and learning, Proceedings of IEEE, 78(9): 1481-1497.
-
(1990)
Proceedings of IEEE
, vol.78
, Issue.9
, pp. 1481-1497
-
-
Poggio, T.1
Girosi, F.2
-
26
-
-
0035561486
-
Kernel PCA for feature extraction and de-noising nonlinear regression
-
Rosipal, R., Girolami, K., Trejo, L.J. and Cichocki, A., 2001, Kernel PCA for feature extraction and de-noising nonlinear regression, Neural Comput Applic, 10: 231-243.
-
(2001)
Neural. Comput. Applic.
, vol.10
, pp. 231-243
-
-
Rosipal, R.1
Girolami, K.2
Trejo, L.J.3
Cichocki, A.4
-
27
-
-
0002619965
-
Ridge regression learning algorithm in dual variables
-
(ICML'98), Morgan Kaufmann, San Francisco, CA, USA
-
Saunders, C., Gammerman, A. and Vovk, V., 1998, Ridge regression learning algorithm in dual variables, Proceedings of the 15th International Conference on Machine Learning (ICML'98), Morgan Kaufmann, San Francisco, CA, USA, 515-521.
-
(1998)
Proceedings of the 15th International Conference on Machine Learning
, pp. 515-521
-
-
Saunders, C.1
Gammerman, A.2
Vovk, V.3
-
28
-
-
0003526730
-
-
(Taylor and Francis, London, UK)
-
Smith, M. and Johansen, T.A., 1997, Multiple Model Approaches to Modeling and Control (Taylor and Francis, London, UK).
-
(1997)
Multiple Model Approaches to Modeling and Control
-
-
Smith, M.1
Johansen, T.A.2
-
29
-
-
0004240479
-
Learning with kernels
-
Ph.D. thesis, GMD, Birlinghoven, Germany
-
Smola, A., 1999, Learning with kernels, Ph.D. thesis, GMD, Birlinghoven, Germany.
-
(1999)
-
-
Smola, A.1
-
30
-
-
0003401675
-
A tutorial on support vector regression
-
NeuroCOLT2 Technical Report NC-TR-98-030, Royal Holloway College, University of London, UK
-
Smola, A. and Schölkopf, B., 1998, A tutorial on support vector regression, NeuroCOLT2 Technical Report NC-TR-98-030, Royal Holloway College, University of London, UK.
-
(1998)
-
-
Smola, A.1
Schölkopf, B.2
-
31
-
-
0003953609
-
-
(Kluwer Academic Publishers, Boston, USA)
-
Suykens, J.A.K. and Vandewalle, J., 1998, Nonlinear Modeling: Advanced Black-Box Techniques (Kluwer Academic Publishers, Boston, USA).
-
(1998)
Nonlinear Modeling: Advanced Black-Box Techniques
-
-
Suykens, J.A.K.1
Vandewalle, J.2
-
32
-
-
0032638628
-
Least squares support vector machine classifiers
-
Suykens, J.A.K. and Vandewalle, J., 1999, Least squares support vector machine classifiers, Neural Processing Letters, 9(3): 293-300.
-
(1999)
Neural Processing Letters
, vol.9
, Issue.3
, pp. 293-300
-
-
Suykens, J.A.K.1
Vandewalle, J.2
-
33
-
-
0001874815
-
Least squares support vector machine classifiers: A large scale algorithm
-
(ECCTD'99), Stresa Italy
-
Suykens, J.A.K., Lukas, L., Van Dooren, P., De Moor, B. and Vandewalle, J., 1999, Least squares support vector machine classifiers: a large scale algorithm, European Conference on Circuit Theory and Design, (ECCTD'99), Stresa Italy, 839-842.
-
(1999)
European Conference on Circuit Theory and Design
, pp. 839-842
-
-
Suykens, J.A.K.1
Lukas, L.2
Van Dooren, P.3
De Moor, B.4
Vandewalle, J.5
-
34
-
-
0001939479
-
Sparse least squares support vector machine classifiers
-
(ESANN 2000), Bruges Belgium
-
Suykens, J.A.K., Lukas, L. and Vandewalle, J., 2000, Sparse least squares support vector machine classifiers, in European Symposium on Artificial Neural Networks (ESANN 2000), Bruges Belgium, 37-42.
-
(2000)
European Symposium on Artificial Neural Networks
, pp. 37-42
-
-
Suykens, J.A.K.1
Lukas, L.2
Vandewalle, J.3
-
35
-
-
0036825528
-
Weighted least squares support vector machines: Robustness and sparse approximation
-
Suykens, J.A.K., De Brabanter, J., Lukas, L. and Vandewalle, J. 2002a, Weighted least squares support vector machines: robustness and sparse approximation, Neurocomputing, 48: 85-105.
-
(2002)
Neurocomputing
, vol.48
, pp. 85-105
-
-
Suykens, J.A.K.1
De Brabanter, J.2
Lukas, L.3
Vandewalle, J.4
-
36
-
-
0037695279
-
-
(ISBN 981-238-151-1) (World Scientific, Singapore)
-
Suykens, J.A.K., Van Gestel, T., De Brabanter, J., De Moor, B. and Vandewalle, J., 2002b, Least Squares Support Vector Machines, (ISBN 981-238-151-1) (World Scientific, Singapore).
-
(2002)
Least Squares Support Vector Machines
-
-
Suykens, J.A.K.1
Van Gestel, T.2
De Brabanter, J.3
De Moor, B.4
Vandewalle, J.5
-
38
-
-
84887252594
-
Support vector method for function approximation, regression estimation, and signal processing
-
Mozer, M.C., Jordan, M.I. and Petsche, T. (eds), (MIT Press, Cambridge, MA, USA)
-
Vapnik, V., Golowich, S. and Smola, A., 1997, Support vector method for function approximation, regression estimation, and signal processing, in Mozer, M.C., Jordan, M.I. and Petsche, T. (eds), Advances in Neural Information Processing Systems, Vol. 9, 281-287 (MIT Press, Cambridge, MA, USA).
-
(1997)
Advances in Neural Information Processing Systems
, vol.9
, pp. 281-287
-
-
Vapnik, V.1
Golowich, S.2
Smola, A.3
-
39
-
-
0037443771
-
A review of process fault detection and diagnosis. Part II: Qualitative models and search strategies
-
Venkatasubramanian, V., Rengaswamy, R. and Kavuri, S.N., 2003, A review of process fault detection and diagnosis. Part II: Qualitative models and search strategies, Comp Chem Eng, 27(3): 313-326.
-
(2003)
Comp. Chem. Eng.
, vol.27
, Issue.3
, pp. 313-326
-
-
Venkatasubramanian, V.1
Rengaswamy, R.2
Kavuri, S.N.3
-
40
-
-
33644770673
-
Spider v1.6: An object oriented machine learning library
-
Weston, J., Elisseeff, A., Bakir, G. and F. Sinz, 2005, Spider v1.6: an object oriented machine learning library, http://www.kyb.tuebingen.mpg. de/bs/people/spider/index.html.
-
(2005)
-
-
Weston, J.1
Elisseeff, A.2
Bakir, G.3
Sinz, F.4
-
41
-
-
0033495144
-
Multi-stage modeling of a semi-batch polymerization reactor using artificial neural networks
-
Yang, S.H., Chung, P.W.H. and Brooks, B.W., 1999, Multi-stage modeling of a semi-batch polymerization reactor using artificial neural networks, Trans IChemE, Part A, Chem Eng Res Des, 77(8): 779-783.
-
(1999)
Trans. IChemE, Part A, Chem. Eng. Res. Des.
, vol.77
, Issue.8
, pp. 779-783
-
-
Yang, S.H.1
Chung, P.W.H.2
Brooks, B.W.3
-
42
-
-
0035443180
-
Composition estimations in a middle-vessel batch distillation column using artificial neural networks
-
Zamprogna, E., Barolo M. and Seborg, D.E., 2001, Composition estimations in a middle-vessel batch distillation column using artificial neural networks, Trans IChemE, Part A, Chem Eng Res Des, 79: 689-696.
-
(2001)
Trans. IChemE, Part A, Chem. Eng. Res. Des.
, vol.79
, pp. 689-696
-
-
Zamprogna, E.1
Barolo, M.2
Seborg, D.E.3
|