-
1
-
-
48249098215
-
The Gonyaulax clock at 50: translational control of circadian expression
-
Hastings JW. 2007. The Gonyaulax clock at 50: translational control of circadian expression. Cold Spring Harb Symp Quant Biol 72: 141-4.
-
(2007)
Cold Spring Harb Symp Quant Biol
, vol.72
, pp. 141-144
-
-
Hastings, J.W.1
-
2
-
-
84879185726
-
Beyond Arabidopsis: the circadian clock in non-model plant species
-
McClung CR. 2013. Beyond Arabidopsis: the circadian clock in non-model plant species. Semin Cell Dev Biol 24: 430-6.
-
(2013)
Semin Cell Dev Biol
, vol.24
, pp. 430-436
-
-
McClung, C.R.1
-
3
-
-
80054682906
-
Molecular mechanisms underlying the Arabidopsis circadian clock
-
Nakamichi N. 2011. Molecular mechanisms underlying the Arabidopsis circadian clock. Plant Cell Physiol 52: 1709-18.
-
(2011)
Plant Cell Physiol
, vol.52
, pp. 1709-1718
-
-
Nakamichi, N.1
-
4
-
-
47249110232
-
The in(put) s and out(put) s of the Drosophila circadian clock
-
Boothroyd CE, Young MW. 2008. The in(put) s and out(put) s of the Drosophila circadian clock. Ann NY Acad Sci 1129: 350-7.
-
(2008)
Ann NY Acad Sci
, vol.1129
, pp. 350-357
-
-
Boothroyd, C.E.1
Young, M.W.2
-
6
-
-
0015119210
-
Clock mutants of Drosophila melanogaster
-
Konopka RJ, Benzer S. 1971. Clock mutants of Drosophila melanogaster. Proc Natl Acad Sci USA 68: 2112-6.
-
(1971)
Proc Natl Acad Sci USA
, vol.68
, pp. 2112-2116
-
-
Konopka, R.J.1
Benzer, S.2
-
7
-
-
11144353910
-
PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues
-
Yoo SH, Yamazaki S, Lowrey PL, Shimomura K, et al. 2004. PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. Proc Natl Acad Sci USA 101: 5339-46.
-
(2004)
Proc Natl Acad Sci USA
, vol.101
, pp. 5339-5346
-
-
Yoo, S.H.1
Yamazaki, S.2
Lowrey, P.L.3
Shimomura, K.4
-
8
-
-
0032511229
-
A serum shock induces circadian gene expression in mammalian tissue culture cells
-
Balsalobre A, Damiola F, Schibler U. 1998. A serum shock induces circadian gene expression in mammalian tissue culture cells. Cell 93: 929-37.
-
(1998)
Cell
, vol.93
, pp. 929-937
-
-
Balsalobre, A.1
Damiola, F.2
Schibler, U.3
-
9
-
-
0015353260
-
Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions
-
Stephan FK, Zucker I. 1972. Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions. Proc Natl Acad Sci USA 69: 1583-6.
-
(1972)
Proc Natl Acad Sci USA
, vol.69
, pp. 1583-1586
-
-
Stephan, F.K.1
Zucker, I.2
-
10
-
-
0015504847
-
Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat
-
Moore RY, Eichler VB. 1972. Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat. Brain Res 42: 201-6.
-
(1972)
Brain Res
, vol.42
, pp. 201-206
-
-
Moore, R.Y.1
Eichler, V.B.2
-
11
-
-
34247516815
-
Intercellular coupling confers robustness against mutations in the SCN circadian clock network
-
Liu AC, Welsh DK, Ko CH, Tran HG, et al. 2007. Intercellular coupling confers robustness against mutations in the SCN circadian clock network. Cell 129: 605-16.
-
(2007)
Cell
, vol.129
, pp. 605-616
-
-
Liu, A.C.1
Welsh, D.K.2
Ko, C.H.3
Tran, H.G.4
-
12
-
-
84909953483
-
Network-mediated encoding of circadian time: the suprachiasmatic nucleus (SCN) from genes to neurons to circuits, and back
-
Brancaccio M, Enoki R, Mazuski CN, Jones J, et al. 2014. Network-mediated encoding of circadian time: the suprachiasmatic nucleus (SCN) from genes to neurons to circuits, and back. J Neurosci 34: 15192-9.
-
(2014)
J Neurosci
, vol.34
, pp. 15192-15199
-
-
Brancaccio, M.1
Enoki, R.2
Mazuski, C.N.3
Jones, J.4
-
14
-
-
0033637383
-
Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus
-
Damiola F, Le Minh N, Preitner N, Kornmann B, et al. 2000. Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev 14: 2950-61.
-
(2000)
Genes Dev
, vol.14
, pp. 2950-2961
-
-
Damiola, F.1
Le Minh, N.2
Preitner, N.3
Kornmann, B.4
-
15
-
-
33645048181
-
Light activates the adrenal gland: timing of gene expression and glucocorticoid release
-
Ishida A, Mutoh T, Ueyama T, Bando H, et al. 2005. Light activates the adrenal gland: timing of gene expression and glucocorticoid release. Cell Metab 2: 297-307.
-
(2005)
Cell Metab
, vol.2
, pp. 297-307
-
-
Ishida, A.1
Mutoh, T.2
Ueyama, T.3
Bando, H.4
-
16
-
-
84899105315
-
Light stimulates the mouse adrenal through a retinohypothalamic pathway independent of an effect on the clock in the suprachiasmatic nucleus
-
Kiessling S, Sollars PJ, Pickard GE. 2014. Light stimulates the mouse adrenal through a retinohypothalamic pathway independent of an effect on the clock in the suprachiasmatic nucleus. PLoS ONE 9: e92959.
-
(2014)
PLoS ONE
, vol.9
-
-
Kiessling, S.1
Sollars, P.J.2
Pickard, G.E.3
-
17
-
-
0037870773
-
Synchronization of the molecular clockwork by light- and food-related cues in mammals
-
Challet E, Caldelas I, Graff C, Pevet P. 2003. Synchronization of the molecular clockwork by light- and food-related cues in mammals. Biol Chem 384: 711-9.
-
(2003)
Biol Chem
, vol.384
, pp. 711-719
-
-
Challet, E.1
Caldelas, I.2
Graff, C.3
Pevet, P.4
-
18
-
-
84861324365
-
Circadian desynchrony promotes metabolic disruption in a mouse model of shiftwork
-
Barclay JL, Husse J, Bode B, Naujokat N, et al. 2012. Circadian desynchrony promotes metabolic disruption in a mouse model of shiftwork. PLoS ONE 7: e37150.
-
(2012)
PLoS ONE
, vol.7
-
-
Barclay, J.L.1
Husse, J.2
Bode, B.3
Naujokat, N.4
-
19
-
-
84880406921
-
Molecular components of the mammalian circadian clock
-
Buhr ED, Takahashi JS. 2013. Molecular components of the mammalian circadian clock. Handb Exp Pharmacol 217: 3-27.
-
(2013)
Handb Exp Pharmacol
, vol.217
, pp. 3-27
-
-
Buhr, E.D.1
Takahashi, J.S.2
-
20
-
-
84875373998
-
The clock shop: coupled circadian oscillators
-
Granados-Fuentes D, Herzog ED. 2013. The clock shop: coupled circadian oscillators. Exp Neurol 243: 21-7.
-
(2013)
Exp Neurol
, vol.243
, pp. 21-27
-
-
Granados-Fuentes, D.1
Herzog, E.D.2
-
21
-
-
84880431946
-
Mammalian circadian clock: the roles of transcriptional repression and delay
-
Minami Y, Ode KL, Ueda HR. 2013. Mammalian circadian clock: the roles of transcriptional repression and delay. Handb Exp Pharmacol 217: 359-77.
-
(2013)
Handb Exp Pharmacol
, vol.217
, pp. 359-377
-
-
Minami, Y.1
Ode, K.L.2
Ueda, H.R.3
-
23
-
-
84896996418
-
The Drosophila circadian clock is a variably coupled network of multiple peptidergic units
-
Yao Z, Shafer OT. 2014. The Drosophila circadian clock is a variably coupled network of multiple peptidergic units. Science 343: 1516-20.
-
(2014)
Science
, vol.343
, pp. 1516-1520
-
-
Yao, Z.1
Shafer, O.T.2
-
24
-
-
0028486228
-
Complete suprachiasmatic lesions eliminate circadian rhythmicity of body temperature and locomotor activity in golden hamsters
-
Refinetti R, Kaufman CM, Menaker M. 1994. Complete suprachiasmatic lesions eliminate circadian rhythmicity of body temperature and locomotor activity in golden hamsters. J Comp Physiol A 175: 223-32.
-
(1994)
J Comp Physiol A
, vol.175
, pp. 223-232
-
-
Refinetti, R.1
Kaufman, C.M.2
Menaker, M.3
-
25
-
-
0037006795
-
Circadian cycling of the mouse liver transcriptome, as revealed by cDNA microarray, is driven by the suprachiasmatic nucleus
-
Akhtar RA, Reddy AB, Maywood ES, Clayton JD, et al. 2002. Circadian cycling of the mouse liver transcriptome, as revealed by cDNA microarray, is driven by the suprachiasmatic nucleus. Curr Biol 12: 540-50.
-
(2002)
Curr Biol
, vol.12
, pp. 540-550
-
-
Akhtar, R.A.1
Reddy, A.B.2
Maywood, E.S.3
Clayton, J.D.4
-
26
-
-
15144349978
-
Multitissue circadian expression of rat period homolog (rPer2) mRNA is governed by the mammalian circadian clock, the suprachiasmatic nucleus in the brain
-
Sakamoto K, Nagase T, Fukui H, Horikawa K, et al. 1998. Multitissue circadian expression of rat period homolog (rPer2) mRNA is governed by the mammalian circadian clock, the suprachiasmatic nucleus in the brain. J Biol Chem 273: 27039-42.
-
(1998)
J Biol Chem
, vol.273
, pp. 27039-27042
-
-
Sakamoto, K.1
Nagase, T.2
Fukui, H.3
Horikawa, K.4
-
27
-
-
0038651005
-
Adrenergic regulation of clock gene expression in mouse liver
-
Terazono H, Mutoh T, Yamaguchi S, Kobayashi M, et al. 2003. Adrenergic regulation of clock gene expression in mouse liver. Proc Natl Acad Sci USA 100: 6795-800.
-
(2003)
Proc Natl Acad Sci USA
, vol.100
, pp. 6795-6800
-
-
Terazono, H.1
Mutoh, T.2
Yamaguchi, S.3
Kobayashi, M.4
-
28
-
-
0036455214
-
Methamphetamine-induced, suprachiasmatic nucleus-independent circadian rhythms of activity and mPer gene expression in the striatum of the mouse
-
Iijima M, Nikaido T, Akiyama M, Moriya T, et al. 2002. Methamphetamine-induced, suprachiasmatic nucleus-independent circadian rhythms of activity and mPer gene expression in the striatum of the mouse. Eur J Neurosci 16: 921-9.
-
(2002)
Eur J Neurosci
, vol.16
, pp. 921-929
-
-
Iijima, M.1
Nikaido, T.2
Akiyama, M.3
Moriya, T.4
-
29
-
-
14544272390
-
Differential control of peripheral circadian rhythms by suprachiasmatic-dependent neural signals
-
Guo H, Brewer JM, Champhekar A, Harris RB, et al. 2005. Differential control of peripheral circadian rhythms by suprachiasmatic-dependent neural signals. Proc Natl Acad Sci USA 102: 3111-6.
-
(2005)
Proc Natl Acad Sci USA
, vol.102
, pp. 3111-3116
-
-
Guo, H.1
Brewer, J.M.2
Champhekar, A.3
Harris, R.B.4
-
30
-
-
33745792227
-
Suprachiasmatic regulation of circadian rhythms of gene expression in hamster peripheral organs: effects of transplanting the pacemaker
-
Guo H, Brewer JM, Lehman MN, Bittman EL. 2006. Suprachiasmatic regulation of circadian rhythms of gene expression in hamster peripheral organs: effects of transplanting the pacemaker. J Neurosci 26: 6406-12.
-
(2006)
J Neurosci
, vol.26
, pp. 6406-6412
-
-
Guo, H.1
Brewer, J.M.2
Lehman, M.N.3
Bittman, E.L.4
-
31
-
-
0025021084
-
Transplanted suprachiasmatic nucleus determines circadian period
-
Ralph MR, Foster RG, Davis FC, Menaker M. 1990. Transplanted suprachiasmatic nucleus determines circadian period. Science 247: 975-8.
-
(1990)
Science
, vol.247
, pp. 975-978
-
-
Ralph, M.R.1
Foster, R.G.2
Davis, F.C.3
Menaker, M.4
-
32
-
-
0029781519
-
A diffusible coupling signal from the transplanted suprachiasmatic nucleus controlling circadian locomotor rhythms
-
Silver R, LeSauter J, Tresco PA, Lehman MN. 1996. A diffusible coupling signal from the transplanted suprachiasmatic nucleus controlling circadian locomotor rhythms. Nature 382: 810-3.
-
(1996)
Nature
, vol.382
, pp. 810-813
-
-
Silver, R.1
LeSauter, J.2
Tresco, P.A.3
Lehman, M.N.4
-
33
-
-
84875379260
-
Neuroanatomy of the extended circadian rhythm system
-
Morin LP. 2013. Neuroanatomy of the extended circadian rhythm system. Exp Neurol 243: 4-20.
-
(2013)
Exp Neurol
, vol.243
, pp. 4-20
-
-
Morin, L.P.1
-
34
-
-
34547939468
-
Intrinsic circadian clock of the mammalian retina: importance for retinal processing of visual information
-
Storch KF, Paz C, Signorovitch J, Raviola E, et al. 2007. Intrinsic circadian clock of the mammalian retina: importance for retinal processing of visual information. Cell 130: 730-41.
-
(2007)
Cell
, vol.130
, pp. 730-741
-
-
Storch, K.F.1
Paz, C.2
Signorovitch, J.3
Raviola, E.4
-
35
-
-
80755169765
-
Synaptotagmin10-Cre, a driver to disrupt clock genes in the SCN
-
Husse J, Zhou X, Shostak A, Oster H, et al. 2011. Synaptotagmin10-Cre, a driver to disrupt clock genes in the SCN. J Biol Rhythms 26: 379-89.
-
(2011)
J Biol Rhythms
, vol.26
, pp. 379-389
-
-
Husse, J.1
Zhou, X.2
Shostak, A.3
Oster, H.4
-
36
-
-
84912040804
-
The light-dark cycle controls peripheral rhythmicity in mice with a genetically ablated suprachiasmatic nucleus clock
-
Husse J, Leliavski A, Tsang AH, Oster H, et al. 2014. The light-dark cycle controls peripheral rhythmicity in mice with a genetically ablated suprachiasmatic nucleus clock. FASEB J 28: 4950-60.
-
(2014)
FASEB J
, vol.28
, pp. 4950-4960
-
-
Husse, J.1
Leliavski, A.2
Tsang, A.H.3
Oster, H.4
-
38
-
-
85003265692
-
Differential effects of light and feeding on circadian organization of peripheral clocks in a forebrain Bmal1 mutant
-
Izumo M, Pejchal M, Schook AC, Lange RP, et al. 2014. Differential effects of light and feeding on circadian organization of peripheral clocks in a forebrain Bmal1 mutant. eLife 3: e04617.
-
(2014)
eLife
, vol.3
-
-
Izumo, M.1
Pejchal, M.2
Schook, A.C.3
Lange, R.P.4
-
39
-
-
78649904288
-
The retinohypothalamic tract: comparison of axonal projection patterns from four major targets
-
Canteras NS, Ribeiro-Barbosa ER, Goto M, Cipolla-Neto J, et al. 2011. The retinohypothalamic tract: comparison of axonal projection patterns from four major targets. Brain Res Rev 65: 150-83.
-
(2011)
Brain Res Rev
, vol.65
, pp. 150-183
-
-
Canteras, N.S.1
Ribeiro-Barbosa, E.R.2
Goto, M.3
Cipolla-Neto, J.4
-
40
-
-
0035829383
-
The circadian clock and behavior
-
Albrecht U, Oster H. 2001. The circadian clock and behavior. Behav Brain Res 125: 89-91.
-
(2001)
Behav Brain Res
, vol.125
, pp. 89-91
-
-
Albrecht, U.1
Oster, H.2
-
41
-
-
84890869305
-
Interactions between endocrine and circadian systems
-
Tsang AH, Barclay JL, Oster H. 2014. Interactions between endocrine and circadian systems. J Mol Endocrinol 52: R1-16.
-
(2014)
J Mol Endocrinol
, vol.52
, pp. R1-16
-
-
Tsang, A.H.1
Barclay, J.L.2
Oster, H.3
-
42
-
-
84922382295
-
Adrenal clocks and the role of adrenal hormones in the regulation of circadian physiology
-
Leliavski A, Dumbell R, Ott V, Oster H. 2015. Adrenal clocks and the role of adrenal hormones in the regulation of circadian physiology. J Biol Rhythms 30: 20-34.
-
(2015)
J Biol Rhythms
, vol.30
, pp. 20-34
-
-
Leliavski, A.1
Dumbell, R.2
Ott, V.3
Oster, H.4
-
43
-
-
84879773624
-
Real-time recording of circadian liver gene expression in freely moving mice reveals the phase-setting behavior of hepatocyte clocks
-
Saini C, Liani A, Curie T, Gos P, et al. 2013. Real-time recording of circadian liver gene expression in freely moving mice reveals the phase-setting behavior of hepatocyte clocks. Genes Dev 27: 1526-36.
-
(2013)
Genes Dev
, vol.27
, pp. 1526-1536
-
-
Saini, C.1
Liani, A.2
Curie, T.3
Gos, P.4
-
44
-
-
84861864583
-
In vivo monitoring of peripheral circadian clocks in the mouse
-
Tahara Y, Kuroda H, Saito K, Nakajima Y, et al. 2012. In vivo monitoring of peripheral circadian clocks in the mouse. Curr Biol 22: 1029-34.
-
(2012)
Curr Biol
, vol.22
, pp. 1029-1034
-
-
Tahara, Y.1
Kuroda, H.2
Saito, K.3
Nakajima, Y.4
-
45
-
-
80052185196
-
A diversity of paracrine signals sustains molecular circadian cycling in suprachiasmatic nucleus circuits
-
Maywood ES, Chesham JE, O'Brien JA, Hastings MH. 2011. A diversity of paracrine signals sustains molecular circadian cycling in suprachiasmatic nucleus circuits. Proc Natl Acad Sci USA 108: 14306-11.
-
(2011)
Proc Natl Acad Sci USA
, vol.108
, pp. 14306-14311
-
-
Maywood, E.S.1
Chesham, J.E.2
O'Brien, J.A.3
Hastings, M.H.4
-
46
-
-
0345306748
-
Synchronization of cellular clocks in the suprachiasmatic nucleus
-
Yamaguchi S, Isejima H, Matsuo T, Okura R, et al. 2003. Synchronization of cellular clocks in the suprachiasmatic nucleus. Science 302: 1408-12.
-
(2003)
Science
, vol.302
, pp. 1408-1412
-
-
Yamaguchi, S.1
Isejima, H.2
Matsuo, T.3
Okura, R.4
-
47
-
-
77951927020
-
Suprachiasmatic nucleus: cell autonomy and network properties
-
Welsh DK, Takahashi JS, Kay SA. 2010. Suprachiasmatic nucleus: cell autonomy and network properties. Annu Rev Physiol 72: 551-77.
-
(2010)
Annu Rev Physiol
, vol.72
, pp. 551-577
-
-
Welsh, D.K.1
Takahashi, J.S.2
Kay, S.A.3
-
48
-
-
35348907863
-
Connexin36 vs. connexin32, "miniature" neuronal gap junctions, and limited electrotonic coupling in rodent suprachiasmatic nucleus
-
Rash JE, Olson CO, Pouliot WA, Davidson KG, et al. 2007. Connexin36 vs. connexin32, "miniature" neuronal gap junctions, and limited electrotonic coupling in rodent suprachiasmatic nucleus. Neurosci 149: 350-71.
-
(2007)
Neurosci
, vol.149
, pp. 350-371
-
-
Rash, J.E.1
Olson, C.O.2
Pouliot, W.A.3
Davidson, K.G.4
-
49
-
-
84905727517
-
An epithelial circadian clock controls pulmonary inflammation and glucocorticoid action
-
Gibbs J, Ince L, Matthews L, Mei J, et al. 2014. An epithelial circadian clock controls pulmonary inflammation and glucocorticoid action. Nat Med 20: 919-26.
-
(2014)
Nat Med
, vol.20
, pp. 919-926
-
-
Gibbs, J.1
Ince, L.2
Matthews, L.3
Mei, J.4
-
50
-
-
84873287518
-
Blood-borne circadian signal stimulates daily oscillations in actin dynamics and SRF activity
-
Gerber A, Esnault C, Aubert G, Treisman R, et al. 2013. Blood-borne circadian signal stimulates daily oscillations in actin dynamics and SRF activity. Cell 152: 492-503.
-
(2013)
Cell
, vol.152
, pp. 492-503
-
-
Gerber, A.1
Esnault, C.2
Aubert, G.3
Treisman, R.4
-
51
-
-
33746518020
-
The circadian rhythm of glucocorticoids is regulated by a gating mechanism residing in the adrenal cortical clock
-
Oster H, Damerow S, Kiessling S, Jakubcakova V, et al. 2006. The circadian rhythm of glucocorticoids is regulated by a gating mechanism residing in the adrenal cortical clock. Cell Metab 4: 163-73.
-
(2006)
Cell Metab
, vol.4
, pp. 163-173
-
-
Oster, H.1
Damerow, S.2
Kiessling, S.3
Jakubcakova, V.4
-
52
-
-
70349329709
-
A riot of rhythms: neuronal and glial circadian oscillators in the mediobasal hypothalamus
-
Guilding C, Hughes AT, Brown TM, Namvar S, et al. 2009. A riot of rhythms: neuronal and glial circadian oscillators in the mediobasal hypothalamus. Mol Brain 2: 28.
-
(2009)
Mol Brain
, vol.2
, pp. 28
-
-
Guilding, C.1
Hughes, A.T.2
Brown, T.M.3
Namvar, S.4
-
53
-
-
36348977007
-
Minireview: entrainment of the suprachiasmatic clockwork in diurnal and nocturnal mammals
-
Challet E. 2007. Minireview: entrainment of the suprachiasmatic clockwork in diurnal and nocturnal mammals. Endocrinology 148: 5648-55.
-
(2007)
Endocrinology
, vol.148
, pp. 5648-5655
-
-
Challet, E.1
-
54
-
-
66249107072
-
Effects of nocturnal light on (clock) gene expression in peripheral organs: a role for the autonomic innervation of the liver
-
Cailotto C, Lei J, van der Vliet J, van Heijningen C, et al. 2009. Effects of nocturnal light on (clock) gene expression in peripheral organs: a role for the autonomic innervation of the liver. PLoS ONE 4: e5650.
-
(2009)
PLoS ONE
, vol.4
-
-
Cailotto, C.1
Lei, J.2
van der Vliet, J.3
van Heijningen, C.4
-
55
-
-
33847325216
-
Seasonal encoding by the circadian pacemaker of the SCN
-
VanderLeest HT, Houben T, Michel S, Deboer T, et al. 2007. Seasonal encoding by the circadian pacemaker of the SCN. Curr Biol 17: 468-73.
-
(2007)
Curr Biol
, vol.17
, pp. 468-473
-
-
VanderLeest, H.T.1
Houben, T.2
Michel, S.3
Deboer, T.4
-
56
-
-
63349104285
-
Phase shifting capacity of the circadian pacemaker determined by the SCN neuronal network organization
-
vanderLeest HT, Rohling JH, Michel S, Meijer JH. 2009. Phase shifting capacity of the circadian pacemaker determined by the SCN neuronal network organization. PLoS ONE 4: e4976.
-
(2009)
PLoS ONE
, vol.4
-
-
vanderLeest, H.T.1
Rohling, J.H.2
Michel, S.3
Meijer, J.H.4
-
57
-
-
28744456304
-
The suprachiasmatic nucleus controls the daily variation of plasma glucose via the autonomic output to the liver: are the clock genes involved?
-
Cailotto C, La Fleur SE, Van Heijningen C, Wortel J, et al. 2005. The suprachiasmatic nucleus controls the daily variation of plasma glucose via the autonomic output to the liver: are the clock genes involved? Eur J Neurosci 22: 2531-40.
-
(2005)
Eur J Neurosci
, vol.22
, pp. 2531-2540
-
-
Cailotto, C.1
La Fleur, S.E.2
Van Heijningen, C.3
Wortel, J.4
-
58
-
-
77954995403
-
Adrenal glucocorticoids have a key role in circadian resynchronization in a mouse model of jet lag
-
Kiessling S, Eichele G, Oster H. 2010. Adrenal glucocorticoids have a key role in circadian resynchronization in a mouse model of jet lag. J Clin Invest 120: 2600-9.
-
(2010)
J Clin Invest
, vol.120
, pp. 2600-2609
-
-
Kiessling, S.1
Eichele, G.2
Oster, H.3
-
59
-
-
58549095056
-
Adrenal peripheral clock controls the autonomous circadian rhythm of glucocorticoid by causing rhythmic steroid production
-
Son GH, Chung S, Choe HK, Kim HD, et al. 2008. Adrenal peripheral clock controls the autonomous circadian rhythm of glucocorticoid by causing rhythmic steroid production. Proc Natl Acad Sci USA 105: 20970-5.
-
(2008)
Proc Natl Acad Sci USA
, vol.105
, pp. 20970-20975
-
-
Son, G.H.1
Chung, S.2
Choe, H.K.3
Kim, H.D.4
-
60
-
-
0033560863
-
Mammalian Cry1 and Cry2 are essential for maintenance of circadian rhythms
-
van der Horst GT, Muijtjens M, Kobayashi K, Takano R, et al. 1999. Mammalian Cry1 and Cry2 are essential for maintenance of circadian rhythms. Nature 398: 627-30.
-
(1999)
Nature
, vol.398
, pp. 627-630
-
-
van der Horst, G.T.1
Muijtjens, M.2
Kobayashi, K.3
Takano, R.4
-
61
-
-
0035368681
-
Nonredundant roles of the mPer1 and mPer2 genes in the mammalian circadian clock
-
Zheng B, Albrecht U, Kaasik K, Sage M, et al. 2001. Nonredundant roles of the mPer1 and mPer2 genes in the mammalian circadian clock. Cell 105: 683-94.
-
(2001)
Cell
, vol.105
, pp. 683-694
-
-
Zheng, B.1
Albrecht, U.2
Kaasik, K.3
Sage, M.4
-
62
-
-
84924257556
-
Neuromedin s-producing neurons act as essential pacemakers in the suprachiasmatic nucleus to couple clock neurons and dictate circadian rhythms
-
Lee IT, Chang AS, Manandhar M, Shan Y, et al. 2015. Neuromedin s-producing neurons act as essential pacemakers in the suprachiasmatic nucleus to couple clock neurons and dictate circadian rhythms. Neuron 85: 1086-102.
-
(2015)
Neuron
, vol.85
, pp. 1086-1102
-
-
Lee, I.T.1
Chang, A.S.2
Manandhar, M.3
Shan, Y.4
-
63
-
-
78149369911
-
Emergence of noise-induced oscillations in the central circadian pacemaker
-
Ko CH, Yamada YR, Welsh DK, Buhr ED, et al. 2010. Emergence of noise-induced oscillations in the central circadian pacemaker. PLoS Biol 8: e1000513.
-
(2010)
PLoS Biol
, vol.8
-
-
Ko, C.H.1
Yamada, Y.R.2
Welsh, D.K.3
Buhr, E.D.4
-
64
-
-
84912040804
-
The light-dark cycle controls peripheral rhythmicity in mice with a genetically ablated suprachiasmatic nucleus clock
-
Husse J, Leliavski A, Tsang AH, Oster H, et al. 2014. The light-dark cycle controls peripheral rhythmicity in mice with a genetically ablated suprachiasmatic nucleus clock. FASEB J 28: 4950-60.
-
(2014)
FASEB J
, vol.28
, pp. 4950-4960
-
-
Husse, J.1
Leliavski, A.2
Tsang, A.H.3
Oster, H.4
-
65
-
-
84887481024
-
A neuropeptide speeds circadian entrainment by reducing intercellular synchrony
-
An S, Harang R, Meeker K, Granados-Fuentes D, et al. 2013. A neuropeptide speeds circadian entrainment by reducing intercellular synchrony. Proc Natl Acad Sci USA 110: E4355-61.
-
(2013)
Proc Natl Acad Sci USA
, vol.110
, pp. E4355-E4361
-
-
An, S.1
Harang, R.2
Meeker, K.3
Granados-Fuentes, D.4
-
66
-
-
84885623978
-
Mice genetically deficient in vasopressin V1a and V1b receptors are resistant to jet lag
-
Yamaguchi Y, Suzuki T, Mizoro Y, Kori H, et al. 2013. Mice genetically deficient in vasopressin V1a and V1b receptors are resistant to jet lag. Science 342: 85-90.
-
(2013)
Science
, vol.342
, pp. 85-90
-
-
Yamaguchi, Y.1
Suzuki, T.2
Mizoro, Y.3
Kori, H.4
-
67
-
-
84924231382
-
Cellular clocks in AVP neurons of the SCN are critical for interneuronal coupling regulating circadian behavior rhythm
-
Mieda M, Ono D, Hasegawa E, Okamoto H, et al. 2015. Cellular clocks in AVP neurons of the SCN are critical for interneuronal coupling regulating circadian behavior rhythm. Neuron 85: 1103-16.
-
(2015)
Neuron
, vol.85
, pp. 1103-1116
-
-
Mieda, M.1
Ono, D.2
Hasegawa, E.3
Okamoto, H.4
-
68
-
-
33846944676
-
System-driven and oscillator-dependent circadian transcription in mice with a conditionally active liver clock
-
Kornmann B, Schaad O, Bujard H, Takahashi JS, et al. 2007. System-driven and oscillator-dependent circadian transcription in mice with a conditionally active liver clock. PLoS Biol 5: e34.
-
(2007)
PLoS Biol
, vol.5
-
-
Kornmann, B.1
Schaad, O.2
Bujard, H.3
Takahashi, J.S.4
-
69
-
-
84864584460
-
Brain-specific rescue of Clock reveals system-driven transcriptional rhythms in peripheral tissue
-
Hughes ME, Hong HK, Chong JL, Indacochea AA, et al. 2012. Brain-specific rescue of Clock reveals system-driven transcriptional rhythms in peripheral tissue. PLoS Genet 8: e1002835.
-
(2012)
PLoS Genet
, vol.8
-
-
Hughes, M.E.1
Hong, H.K.2
Chong, J.L.3
Indacochea, A.A.4
-
70
-
-
34249275727
-
Transcriptional coactivator PGC-1alpha integrates the mammalian clock and energy metabolism
-
Liu C, Li S, Liu T, Borjigin J, et al. 2007. Transcriptional coactivator PGC-1alpha integrates the mammalian clock and energy metabolism. Nature 447: 477-81.
-
(2007)
Nature
, vol.447
, pp. 477-481
-
-
Liu, C.1
Li, S.2
Liu, T.3
Borjigin, J.4
-
71
-
-
84902211674
-
Insulin-FOXO3 signaling modulates circadian rhythms via regulation of clock transcription
-
Chaves I, van der Horst GT, Schellevis R, Nijman RM, et al. 2014. Insulin-FOXO3 signaling modulates circadian rhythms via regulation of clock transcription. Curr Biol 24: 1248-55.
-
(2014)
Curr Biol
, vol.24
, pp. 1248-1255
-
-
Chaves, I.1
van der Horst, G.T.2
Schellevis, R.3
Nijman, R.M.4
-
72
-
-
84877929035
-
The circadian epigenome: how metabolism talks to chromatin remodeling
-
Aguilar-Arnal L, Sassone-Corsi P. 2013. The circadian epigenome: how metabolism talks to chromatin remodeling. Curr Opin Cell Biol 25: 170-6.
-
(2013)
Curr Opin Cell Biol
, vol.25
, pp. 170-176
-
-
Aguilar-Arnal, L.1
Sassone-Corsi, P.2
-
73
-
-
0037178787
-
The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator
-
Preitner N, Damiola F, Lopez-Molina L, Zakany J, et al. 2002. The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell 110: 251-60.
-
(2002)
Cell
, vol.110
, pp. 251-260
-
-
Preitner, N.1
Damiola, F.2
Lopez-Molina, L.3
Zakany, J.4
-
74
-
-
4143142003
-
A functional genomics strategy reveals Rora as a component of the mammalian circadian clock
-
Sato TK, Panda S, Miraglia LJ, Reyes TM, et al. 2004. A functional genomics strategy reveals Rora as a component of the mammalian circadian clock. Neuron 43: 527-37.
-
(2004)
Neuron
, vol.43
, pp. 527-537
-
-
Sato, T.K.1
Panda, S.2
Miraglia, L.J.3
Reyes, T.M.4
-
75
-
-
77951897767
-
Systems biology of mammalian circadian clocks
-
Ukai H, Ueda HR. 2010. Systems biology of mammalian circadian clocks. Annu Rev Physiol 72: 579-603.
-
(2010)
Annu Rev Physiol
, vol.72
, pp. 579-603
-
-
Ukai, H.1
Ueda, H.R.2
-
76
-
-
79251571117
-
Tuning the period of the mammalian circadian clock: additive and independent effects of CK1epsilonTau and Fbxl3Afh mutations on mouse circadian behavior and molecular pacemaking
-
Maywood ES, Chesham JE, Meng QJ, Nolan PM, et al. 2011. Tuning the period of the mammalian circadian clock: additive and independent effects of CK1epsilonTau and Fbxl3Afh mutations on mouse circadian behavior and molecular pacemaking. J Neurosci 31: 1539-44.
-
(2011)
J Neurosci
, vol.31
, pp. 1539-1544
-
-
Maywood, E.S.1
Chesham, J.E.2
Meng, Q.J.3
Nolan, P.M.4
|