메뉴 건너뛰기




Volumn 37, Issue 10, 2015, Pages 1119-1128

Synchronization of the mammalian circadian timing system: Light can control peripheral clocks independently of the SCN clock: Alternate routes of entrainment optimize the alignment of the body's circadian clock network with external time

Author keywords

Circadian clock; Clock genes; Entrainment; Light; Mammals; Peripheral clocks; SCN

Indexed keywords

PER2 PROTEIN; TRANSCRIPTION FACTOR ARNTL; TRANSCRIPTION FACTOR CLOCK;

EID: 84942829814     PISSN: 02659247     EISSN: 15211878     Source Type: Journal    
DOI: 10.1002/bies.201500026     Document Type: Article
Times cited : (127)

References (76)
  • 1
    • 48249098215 scopus 로고    scopus 로고
    • The Gonyaulax clock at 50: translational control of circadian expression
    • Hastings JW. 2007. The Gonyaulax clock at 50: translational control of circadian expression. Cold Spring Harb Symp Quant Biol 72: 141-4.
    • (2007) Cold Spring Harb Symp Quant Biol , vol.72 , pp. 141-144
    • Hastings, J.W.1
  • 2
    • 84879185726 scopus 로고    scopus 로고
    • Beyond Arabidopsis: the circadian clock in non-model plant species
    • McClung CR. 2013. Beyond Arabidopsis: the circadian clock in non-model plant species. Semin Cell Dev Biol 24: 430-6.
    • (2013) Semin Cell Dev Biol , vol.24 , pp. 430-436
    • McClung, C.R.1
  • 3
    • 80054682906 scopus 로고    scopus 로고
    • Molecular mechanisms underlying the Arabidopsis circadian clock
    • Nakamichi N. 2011. Molecular mechanisms underlying the Arabidopsis circadian clock. Plant Cell Physiol 52: 1709-18.
    • (2011) Plant Cell Physiol , vol.52 , pp. 1709-1718
    • Nakamichi, N.1
  • 4
    • 47249110232 scopus 로고    scopus 로고
    • The in(put) s and out(put) s of the Drosophila circadian clock
    • Boothroyd CE, Young MW. 2008. The in(put) s and out(put) s of the Drosophila circadian clock. Ann NY Acad Sci 1129: 350-7.
    • (2008) Ann NY Acad Sci , vol.1129 , pp. 350-357
    • Boothroyd, C.E.1    Young, M.W.2
  • 5
    • 84892976423 scopus 로고    scopus 로고
    • Molecular architecture of the mammalian circadian clock
    • Partch CL, Green CB, Takahashi JS. 2014. Molecular architecture of the mammalian circadian clock. Trends Cell Biol 24: 90-9.
    • (2014) Trends Cell Biol , vol.24 , pp. 90-99
    • Partch, C.L.1    Green, C.B.2    Takahashi, J.S.3
  • 6
    • 0015119210 scopus 로고
    • Clock mutants of Drosophila melanogaster
    • Konopka RJ, Benzer S. 1971. Clock mutants of Drosophila melanogaster. Proc Natl Acad Sci USA 68: 2112-6.
    • (1971) Proc Natl Acad Sci USA , vol.68 , pp. 2112-2116
    • Konopka, R.J.1    Benzer, S.2
  • 7
    • 11144353910 scopus 로고    scopus 로고
    • PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues
    • Yoo SH, Yamazaki S, Lowrey PL, Shimomura K, et al. 2004. PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. Proc Natl Acad Sci USA 101: 5339-46.
    • (2004) Proc Natl Acad Sci USA , vol.101 , pp. 5339-5346
    • Yoo, S.H.1    Yamazaki, S.2    Lowrey, P.L.3    Shimomura, K.4
  • 8
    • 0032511229 scopus 로고    scopus 로고
    • A serum shock induces circadian gene expression in mammalian tissue culture cells
    • Balsalobre A, Damiola F, Schibler U. 1998. A serum shock induces circadian gene expression in mammalian tissue culture cells. Cell 93: 929-37.
    • (1998) Cell , vol.93 , pp. 929-937
    • Balsalobre, A.1    Damiola, F.2    Schibler, U.3
  • 9
    • 0015353260 scopus 로고
    • Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions
    • Stephan FK, Zucker I. 1972. Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions. Proc Natl Acad Sci USA 69: 1583-6.
    • (1972) Proc Natl Acad Sci USA , vol.69 , pp. 1583-1586
    • Stephan, F.K.1    Zucker, I.2
  • 10
    • 0015504847 scopus 로고
    • Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat
    • Moore RY, Eichler VB. 1972. Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat. Brain Res 42: 201-6.
    • (1972) Brain Res , vol.42 , pp. 201-206
    • Moore, R.Y.1    Eichler, V.B.2
  • 11
    • 34247516815 scopus 로고    scopus 로고
    • Intercellular coupling confers robustness against mutations in the SCN circadian clock network
    • Liu AC, Welsh DK, Ko CH, Tran HG, et al. 2007. Intercellular coupling confers robustness against mutations in the SCN circadian clock network. Cell 129: 605-16.
    • (2007) Cell , vol.129 , pp. 605-616
    • Liu, A.C.1    Welsh, D.K.2    Ko, C.H.3    Tran, H.G.4
  • 12
    • 84909953483 scopus 로고    scopus 로고
    • Network-mediated encoding of circadian time: the suprachiasmatic nucleus (SCN) from genes to neurons to circuits, and back
    • Brancaccio M, Enoki R, Mazuski CN, Jones J, et al. 2014. Network-mediated encoding of circadian time: the suprachiasmatic nucleus (SCN) from genes to neurons to circuits, and back. J Neurosci 34: 15192-9.
    • (2014) J Neurosci , vol.34 , pp. 15192-15199
    • Brancaccio, M.1    Enoki, R.2    Mazuski, C.N.3    Jones, J.4
  • 14
    • 0033637383 scopus 로고    scopus 로고
    • Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus
    • Damiola F, Le Minh N, Preitner N, Kornmann B, et al. 2000. Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev 14: 2950-61.
    • (2000) Genes Dev , vol.14 , pp. 2950-2961
    • Damiola, F.1    Le Minh, N.2    Preitner, N.3    Kornmann, B.4
  • 15
    • 33645048181 scopus 로고    scopus 로고
    • Light activates the adrenal gland: timing of gene expression and glucocorticoid release
    • Ishida A, Mutoh T, Ueyama T, Bando H, et al. 2005. Light activates the adrenal gland: timing of gene expression and glucocorticoid release. Cell Metab 2: 297-307.
    • (2005) Cell Metab , vol.2 , pp. 297-307
    • Ishida, A.1    Mutoh, T.2    Ueyama, T.3    Bando, H.4
  • 16
    • 84899105315 scopus 로고    scopus 로고
    • Light stimulates the mouse adrenal through a retinohypothalamic pathway independent of an effect on the clock in the suprachiasmatic nucleus
    • Kiessling S, Sollars PJ, Pickard GE. 2014. Light stimulates the mouse adrenal through a retinohypothalamic pathway independent of an effect on the clock in the suprachiasmatic nucleus. PLoS ONE 9: e92959.
    • (2014) PLoS ONE , vol.9
    • Kiessling, S.1    Sollars, P.J.2    Pickard, G.E.3
  • 17
    • 0037870773 scopus 로고    scopus 로고
    • Synchronization of the molecular clockwork by light- and food-related cues in mammals
    • Challet E, Caldelas I, Graff C, Pevet P. 2003. Synchronization of the molecular clockwork by light- and food-related cues in mammals. Biol Chem 384: 711-9.
    • (2003) Biol Chem , vol.384 , pp. 711-719
    • Challet, E.1    Caldelas, I.2    Graff, C.3    Pevet, P.4
  • 18
    • 84861324365 scopus 로고    scopus 로고
    • Circadian desynchrony promotes metabolic disruption in a mouse model of shiftwork
    • Barclay JL, Husse J, Bode B, Naujokat N, et al. 2012. Circadian desynchrony promotes metabolic disruption in a mouse model of shiftwork. PLoS ONE 7: e37150.
    • (2012) PLoS ONE , vol.7
    • Barclay, J.L.1    Husse, J.2    Bode, B.3    Naujokat, N.4
  • 19
    • 84880406921 scopus 로고    scopus 로고
    • Molecular components of the mammalian circadian clock
    • Buhr ED, Takahashi JS. 2013. Molecular components of the mammalian circadian clock. Handb Exp Pharmacol 217: 3-27.
    • (2013) Handb Exp Pharmacol , vol.217 , pp. 3-27
    • Buhr, E.D.1    Takahashi, J.S.2
  • 20
    • 84875373998 scopus 로고    scopus 로고
    • The clock shop: coupled circadian oscillators
    • Granados-Fuentes D, Herzog ED. 2013. The clock shop: coupled circadian oscillators. Exp Neurol 243: 21-7.
    • (2013) Exp Neurol , vol.243 , pp. 21-27
    • Granados-Fuentes, D.1    Herzog, E.D.2
  • 21
    • 84880431946 scopus 로고    scopus 로고
    • Mammalian circadian clock: the roles of transcriptional repression and delay
    • Minami Y, Ode KL, Ueda HR. 2013. Mammalian circadian clock: the roles of transcriptional repression and delay. Handb Exp Pharmacol 217: 359-77.
    • (2013) Handb Exp Pharmacol , vol.217 , pp. 359-377
    • Minami, Y.1    Ode, K.L.2    Ueda, H.R.3
  • 23
    • 84896996418 scopus 로고    scopus 로고
    • The Drosophila circadian clock is a variably coupled network of multiple peptidergic units
    • Yao Z, Shafer OT. 2014. The Drosophila circadian clock is a variably coupled network of multiple peptidergic units. Science 343: 1516-20.
    • (2014) Science , vol.343 , pp. 1516-1520
    • Yao, Z.1    Shafer, O.T.2
  • 24
    • 0028486228 scopus 로고
    • Complete suprachiasmatic lesions eliminate circadian rhythmicity of body temperature and locomotor activity in golden hamsters
    • Refinetti R, Kaufman CM, Menaker M. 1994. Complete suprachiasmatic lesions eliminate circadian rhythmicity of body temperature and locomotor activity in golden hamsters. J Comp Physiol A 175: 223-32.
    • (1994) J Comp Physiol A , vol.175 , pp. 223-232
    • Refinetti, R.1    Kaufman, C.M.2    Menaker, M.3
  • 25
    • 0037006795 scopus 로고    scopus 로고
    • Circadian cycling of the mouse liver transcriptome, as revealed by cDNA microarray, is driven by the suprachiasmatic nucleus
    • Akhtar RA, Reddy AB, Maywood ES, Clayton JD, et al. 2002. Circadian cycling of the mouse liver transcriptome, as revealed by cDNA microarray, is driven by the suprachiasmatic nucleus. Curr Biol 12: 540-50.
    • (2002) Curr Biol , vol.12 , pp. 540-550
    • Akhtar, R.A.1    Reddy, A.B.2    Maywood, E.S.3    Clayton, J.D.4
  • 26
    • 15144349978 scopus 로고    scopus 로고
    • Multitissue circadian expression of rat period homolog (rPer2) mRNA is governed by the mammalian circadian clock, the suprachiasmatic nucleus in the brain
    • Sakamoto K, Nagase T, Fukui H, Horikawa K, et al. 1998. Multitissue circadian expression of rat period homolog (rPer2) mRNA is governed by the mammalian circadian clock, the suprachiasmatic nucleus in the brain. J Biol Chem 273: 27039-42.
    • (1998) J Biol Chem , vol.273 , pp. 27039-27042
    • Sakamoto, K.1    Nagase, T.2    Fukui, H.3    Horikawa, K.4
  • 28
    • 0036455214 scopus 로고    scopus 로고
    • Methamphetamine-induced, suprachiasmatic nucleus-independent circadian rhythms of activity and mPer gene expression in the striatum of the mouse
    • Iijima M, Nikaido T, Akiyama M, Moriya T, et al. 2002. Methamphetamine-induced, suprachiasmatic nucleus-independent circadian rhythms of activity and mPer gene expression in the striatum of the mouse. Eur J Neurosci 16: 921-9.
    • (2002) Eur J Neurosci , vol.16 , pp. 921-929
    • Iijima, M.1    Nikaido, T.2    Akiyama, M.3    Moriya, T.4
  • 29
    • 14544272390 scopus 로고    scopus 로고
    • Differential control of peripheral circadian rhythms by suprachiasmatic-dependent neural signals
    • Guo H, Brewer JM, Champhekar A, Harris RB, et al. 2005. Differential control of peripheral circadian rhythms by suprachiasmatic-dependent neural signals. Proc Natl Acad Sci USA 102: 3111-6.
    • (2005) Proc Natl Acad Sci USA , vol.102 , pp. 3111-3116
    • Guo, H.1    Brewer, J.M.2    Champhekar, A.3    Harris, R.B.4
  • 30
    • 33745792227 scopus 로고    scopus 로고
    • Suprachiasmatic regulation of circadian rhythms of gene expression in hamster peripheral organs: effects of transplanting the pacemaker
    • Guo H, Brewer JM, Lehman MN, Bittman EL. 2006. Suprachiasmatic regulation of circadian rhythms of gene expression in hamster peripheral organs: effects of transplanting the pacemaker. J Neurosci 26: 6406-12.
    • (2006) J Neurosci , vol.26 , pp. 6406-6412
    • Guo, H.1    Brewer, J.M.2    Lehman, M.N.3    Bittman, E.L.4
  • 31
    • 0025021084 scopus 로고
    • Transplanted suprachiasmatic nucleus determines circadian period
    • Ralph MR, Foster RG, Davis FC, Menaker M. 1990. Transplanted suprachiasmatic nucleus determines circadian period. Science 247: 975-8.
    • (1990) Science , vol.247 , pp. 975-978
    • Ralph, M.R.1    Foster, R.G.2    Davis, F.C.3    Menaker, M.4
  • 32
    • 0029781519 scopus 로고    scopus 로고
    • A diffusible coupling signal from the transplanted suprachiasmatic nucleus controlling circadian locomotor rhythms
    • Silver R, LeSauter J, Tresco PA, Lehman MN. 1996. A diffusible coupling signal from the transplanted suprachiasmatic nucleus controlling circadian locomotor rhythms. Nature 382: 810-3.
    • (1996) Nature , vol.382 , pp. 810-813
    • Silver, R.1    LeSauter, J.2    Tresco, P.A.3    Lehman, M.N.4
  • 33
    • 84875379260 scopus 로고    scopus 로고
    • Neuroanatomy of the extended circadian rhythm system
    • Morin LP. 2013. Neuroanatomy of the extended circadian rhythm system. Exp Neurol 243: 4-20.
    • (2013) Exp Neurol , vol.243 , pp. 4-20
    • Morin, L.P.1
  • 34
    • 34547939468 scopus 로고    scopus 로고
    • Intrinsic circadian clock of the mammalian retina: importance for retinal processing of visual information
    • Storch KF, Paz C, Signorovitch J, Raviola E, et al. 2007. Intrinsic circadian clock of the mammalian retina: importance for retinal processing of visual information. Cell 130: 730-41.
    • (2007) Cell , vol.130 , pp. 730-741
    • Storch, K.F.1    Paz, C.2    Signorovitch, J.3    Raviola, E.4
  • 35
    • 80755169765 scopus 로고    scopus 로고
    • Synaptotagmin10-Cre, a driver to disrupt clock genes in the SCN
    • Husse J, Zhou X, Shostak A, Oster H, et al. 2011. Synaptotagmin10-Cre, a driver to disrupt clock genes in the SCN. J Biol Rhythms 26: 379-89.
    • (2011) J Biol Rhythms , vol.26 , pp. 379-389
    • Husse, J.1    Zhou, X.2    Shostak, A.3    Oster, H.4
  • 36
    • 84912040804 scopus 로고    scopus 로고
    • The light-dark cycle controls peripheral rhythmicity in mice with a genetically ablated suprachiasmatic nucleus clock
    • Husse J, Leliavski A, Tsang AH, Oster H, et al. 2014. The light-dark cycle controls peripheral rhythmicity in mice with a genetically ablated suprachiasmatic nucleus clock. FASEB J 28: 4950-60.
    • (2014) FASEB J , vol.28 , pp. 4950-4960
    • Husse, J.1    Leliavski, A.2    Tsang, A.H.3    Oster, H.4
  • 38
    • 85003265692 scopus 로고    scopus 로고
    • Differential effects of light and feeding on circadian organization of peripheral clocks in a forebrain Bmal1 mutant
    • Izumo M, Pejchal M, Schook AC, Lange RP, et al. 2014. Differential effects of light and feeding on circadian organization of peripheral clocks in a forebrain Bmal1 mutant. eLife 3: e04617.
    • (2014) eLife , vol.3
    • Izumo, M.1    Pejchal, M.2    Schook, A.C.3    Lange, R.P.4
  • 39
    • 78649904288 scopus 로고    scopus 로고
    • The retinohypothalamic tract: comparison of axonal projection patterns from four major targets
    • Canteras NS, Ribeiro-Barbosa ER, Goto M, Cipolla-Neto J, et al. 2011. The retinohypothalamic tract: comparison of axonal projection patterns from four major targets. Brain Res Rev 65: 150-83.
    • (2011) Brain Res Rev , vol.65 , pp. 150-183
    • Canteras, N.S.1    Ribeiro-Barbosa, E.R.2    Goto, M.3    Cipolla-Neto, J.4
  • 40
    • 0035829383 scopus 로고    scopus 로고
    • The circadian clock and behavior
    • Albrecht U, Oster H. 2001. The circadian clock and behavior. Behav Brain Res 125: 89-91.
    • (2001) Behav Brain Res , vol.125 , pp. 89-91
    • Albrecht, U.1    Oster, H.2
  • 41
    • 84890869305 scopus 로고    scopus 로고
    • Interactions between endocrine and circadian systems
    • Tsang AH, Barclay JL, Oster H. 2014. Interactions between endocrine and circadian systems. J Mol Endocrinol 52: R1-16.
    • (2014) J Mol Endocrinol , vol.52 , pp. R1-16
    • Tsang, A.H.1    Barclay, J.L.2    Oster, H.3
  • 42
    • 84922382295 scopus 로고    scopus 로고
    • Adrenal clocks and the role of adrenal hormones in the regulation of circadian physiology
    • Leliavski A, Dumbell R, Ott V, Oster H. 2015. Adrenal clocks and the role of adrenal hormones in the regulation of circadian physiology. J Biol Rhythms 30: 20-34.
    • (2015) J Biol Rhythms , vol.30 , pp. 20-34
    • Leliavski, A.1    Dumbell, R.2    Ott, V.3    Oster, H.4
  • 43
    • 84879773624 scopus 로고    scopus 로고
    • Real-time recording of circadian liver gene expression in freely moving mice reveals the phase-setting behavior of hepatocyte clocks
    • Saini C, Liani A, Curie T, Gos P, et al. 2013. Real-time recording of circadian liver gene expression in freely moving mice reveals the phase-setting behavior of hepatocyte clocks. Genes Dev 27: 1526-36.
    • (2013) Genes Dev , vol.27 , pp. 1526-1536
    • Saini, C.1    Liani, A.2    Curie, T.3    Gos, P.4
  • 44
    • 84861864583 scopus 로고    scopus 로고
    • In vivo monitoring of peripheral circadian clocks in the mouse
    • Tahara Y, Kuroda H, Saito K, Nakajima Y, et al. 2012. In vivo monitoring of peripheral circadian clocks in the mouse. Curr Biol 22: 1029-34.
    • (2012) Curr Biol , vol.22 , pp. 1029-1034
    • Tahara, Y.1    Kuroda, H.2    Saito, K.3    Nakajima, Y.4
  • 45
    • 80052185196 scopus 로고    scopus 로고
    • A diversity of paracrine signals sustains molecular circadian cycling in suprachiasmatic nucleus circuits
    • Maywood ES, Chesham JE, O'Brien JA, Hastings MH. 2011. A diversity of paracrine signals sustains molecular circadian cycling in suprachiasmatic nucleus circuits. Proc Natl Acad Sci USA 108: 14306-11.
    • (2011) Proc Natl Acad Sci USA , vol.108 , pp. 14306-14311
    • Maywood, E.S.1    Chesham, J.E.2    O'Brien, J.A.3    Hastings, M.H.4
  • 46
    • 0345306748 scopus 로고    scopus 로고
    • Synchronization of cellular clocks in the suprachiasmatic nucleus
    • Yamaguchi S, Isejima H, Matsuo T, Okura R, et al. 2003. Synchronization of cellular clocks in the suprachiasmatic nucleus. Science 302: 1408-12.
    • (2003) Science , vol.302 , pp. 1408-1412
    • Yamaguchi, S.1    Isejima, H.2    Matsuo, T.3    Okura, R.4
  • 47
    • 77951927020 scopus 로고    scopus 로고
    • Suprachiasmatic nucleus: cell autonomy and network properties
    • Welsh DK, Takahashi JS, Kay SA. 2010. Suprachiasmatic nucleus: cell autonomy and network properties. Annu Rev Physiol 72: 551-77.
    • (2010) Annu Rev Physiol , vol.72 , pp. 551-577
    • Welsh, D.K.1    Takahashi, J.S.2    Kay, S.A.3
  • 48
    • 35348907863 scopus 로고    scopus 로고
    • Connexin36 vs. connexin32, "miniature" neuronal gap junctions, and limited electrotonic coupling in rodent suprachiasmatic nucleus
    • Rash JE, Olson CO, Pouliot WA, Davidson KG, et al. 2007. Connexin36 vs. connexin32, "miniature" neuronal gap junctions, and limited electrotonic coupling in rodent suprachiasmatic nucleus. Neurosci 149: 350-71.
    • (2007) Neurosci , vol.149 , pp. 350-371
    • Rash, J.E.1    Olson, C.O.2    Pouliot, W.A.3    Davidson, K.G.4
  • 49
    • 84905727517 scopus 로고    scopus 로고
    • An epithelial circadian clock controls pulmonary inflammation and glucocorticoid action
    • Gibbs J, Ince L, Matthews L, Mei J, et al. 2014. An epithelial circadian clock controls pulmonary inflammation and glucocorticoid action. Nat Med 20: 919-26.
    • (2014) Nat Med , vol.20 , pp. 919-926
    • Gibbs, J.1    Ince, L.2    Matthews, L.3    Mei, J.4
  • 50
    • 84873287518 scopus 로고    scopus 로고
    • Blood-borne circadian signal stimulates daily oscillations in actin dynamics and SRF activity
    • Gerber A, Esnault C, Aubert G, Treisman R, et al. 2013. Blood-borne circadian signal stimulates daily oscillations in actin dynamics and SRF activity. Cell 152: 492-503.
    • (2013) Cell , vol.152 , pp. 492-503
    • Gerber, A.1    Esnault, C.2    Aubert, G.3    Treisman, R.4
  • 51
    • 33746518020 scopus 로고    scopus 로고
    • The circadian rhythm of glucocorticoids is regulated by a gating mechanism residing in the adrenal cortical clock
    • Oster H, Damerow S, Kiessling S, Jakubcakova V, et al. 2006. The circadian rhythm of glucocorticoids is regulated by a gating mechanism residing in the adrenal cortical clock. Cell Metab 4: 163-73.
    • (2006) Cell Metab , vol.4 , pp. 163-173
    • Oster, H.1    Damerow, S.2    Kiessling, S.3    Jakubcakova, V.4
  • 52
    • 70349329709 scopus 로고    scopus 로고
    • A riot of rhythms: neuronal and glial circadian oscillators in the mediobasal hypothalamus
    • Guilding C, Hughes AT, Brown TM, Namvar S, et al. 2009. A riot of rhythms: neuronal and glial circadian oscillators in the mediobasal hypothalamus. Mol Brain 2: 28.
    • (2009) Mol Brain , vol.2 , pp. 28
    • Guilding, C.1    Hughes, A.T.2    Brown, T.M.3    Namvar, S.4
  • 53
    • 36348977007 scopus 로고    scopus 로고
    • Minireview: entrainment of the suprachiasmatic clockwork in diurnal and nocturnal mammals
    • Challet E. 2007. Minireview: entrainment of the suprachiasmatic clockwork in diurnal and nocturnal mammals. Endocrinology 148: 5648-55.
    • (2007) Endocrinology , vol.148 , pp. 5648-5655
    • Challet, E.1
  • 54
    • 66249107072 scopus 로고    scopus 로고
    • Effects of nocturnal light on (clock) gene expression in peripheral organs: a role for the autonomic innervation of the liver
    • Cailotto C, Lei J, van der Vliet J, van Heijningen C, et al. 2009. Effects of nocturnal light on (clock) gene expression in peripheral organs: a role for the autonomic innervation of the liver. PLoS ONE 4: e5650.
    • (2009) PLoS ONE , vol.4
    • Cailotto, C.1    Lei, J.2    van der Vliet, J.3    van Heijningen, C.4
  • 55
    • 33847325216 scopus 로고    scopus 로고
    • Seasonal encoding by the circadian pacemaker of the SCN
    • VanderLeest HT, Houben T, Michel S, Deboer T, et al. 2007. Seasonal encoding by the circadian pacemaker of the SCN. Curr Biol 17: 468-73.
    • (2007) Curr Biol , vol.17 , pp. 468-473
    • VanderLeest, H.T.1    Houben, T.2    Michel, S.3    Deboer, T.4
  • 56
    • 63349104285 scopus 로고    scopus 로고
    • Phase shifting capacity of the circadian pacemaker determined by the SCN neuronal network organization
    • vanderLeest HT, Rohling JH, Michel S, Meijer JH. 2009. Phase shifting capacity of the circadian pacemaker determined by the SCN neuronal network organization. PLoS ONE 4: e4976.
    • (2009) PLoS ONE , vol.4
    • vanderLeest, H.T.1    Rohling, J.H.2    Michel, S.3    Meijer, J.H.4
  • 57
    • 28744456304 scopus 로고    scopus 로고
    • The suprachiasmatic nucleus controls the daily variation of plasma glucose via the autonomic output to the liver: are the clock genes involved?
    • Cailotto C, La Fleur SE, Van Heijningen C, Wortel J, et al. 2005. The suprachiasmatic nucleus controls the daily variation of plasma glucose via the autonomic output to the liver: are the clock genes involved? Eur J Neurosci 22: 2531-40.
    • (2005) Eur J Neurosci , vol.22 , pp. 2531-2540
    • Cailotto, C.1    La Fleur, S.E.2    Van Heijningen, C.3    Wortel, J.4
  • 58
    • 77954995403 scopus 로고    scopus 로고
    • Adrenal glucocorticoids have a key role in circadian resynchronization in a mouse model of jet lag
    • Kiessling S, Eichele G, Oster H. 2010. Adrenal glucocorticoids have a key role in circadian resynchronization in a mouse model of jet lag. J Clin Invest 120: 2600-9.
    • (2010) J Clin Invest , vol.120 , pp. 2600-2609
    • Kiessling, S.1    Eichele, G.2    Oster, H.3
  • 59
    • 58549095056 scopus 로고    scopus 로고
    • Adrenal peripheral clock controls the autonomous circadian rhythm of glucocorticoid by causing rhythmic steroid production
    • Son GH, Chung S, Choe HK, Kim HD, et al. 2008. Adrenal peripheral clock controls the autonomous circadian rhythm of glucocorticoid by causing rhythmic steroid production. Proc Natl Acad Sci USA 105: 20970-5.
    • (2008) Proc Natl Acad Sci USA , vol.105 , pp. 20970-20975
    • Son, G.H.1    Chung, S.2    Choe, H.K.3    Kim, H.D.4
  • 60
    • 0033560863 scopus 로고    scopus 로고
    • Mammalian Cry1 and Cry2 are essential for maintenance of circadian rhythms
    • van der Horst GT, Muijtjens M, Kobayashi K, Takano R, et al. 1999. Mammalian Cry1 and Cry2 are essential for maintenance of circadian rhythms. Nature 398: 627-30.
    • (1999) Nature , vol.398 , pp. 627-630
    • van der Horst, G.T.1    Muijtjens, M.2    Kobayashi, K.3    Takano, R.4
  • 61
    • 0035368681 scopus 로고    scopus 로고
    • Nonredundant roles of the mPer1 and mPer2 genes in the mammalian circadian clock
    • Zheng B, Albrecht U, Kaasik K, Sage M, et al. 2001. Nonredundant roles of the mPer1 and mPer2 genes in the mammalian circadian clock. Cell 105: 683-94.
    • (2001) Cell , vol.105 , pp. 683-694
    • Zheng, B.1    Albrecht, U.2    Kaasik, K.3    Sage, M.4
  • 62
    • 84924257556 scopus 로고    scopus 로고
    • Neuromedin s-producing neurons act as essential pacemakers in the suprachiasmatic nucleus to couple clock neurons and dictate circadian rhythms
    • Lee IT, Chang AS, Manandhar M, Shan Y, et al. 2015. Neuromedin s-producing neurons act as essential pacemakers in the suprachiasmatic nucleus to couple clock neurons and dictate circadian rhythms. Neuron 85: 1086-102.
    • (2015) Neuron , vol.85 , pp. 1086-1102
    • Lee, I.T.1    Chang, A.S.2    Manandhar, M.3    Shan, Y.4
  • 63
    • 78149369911 scopus 로고    scopus 로고
    • Emergence of noise-induced oscillations in the central circadian pacemaker
    • Ko CH, Yamada YR, Welsh DK, Buhr ED, et al. 2010. Emergence of noise-induced oscillations in the central circadian pacemaker. PLoS Biol 8: e1000513.
    • (2010) PLoS Biol , vol.8
    • Ko, C.H.1    Yamada, Y.R.2    Welsh, D.K.3    Buhr, E.D.4
  • 64
    • 84912040804 scopus 로고    scopus 로고
    • The light-dark cycle controls peripheral rhythmicity in mice with a genetically ablated suprachiasmatic nucleus clock
    • Husse J, Leliavski A, Tsang AH, Oster H, et al. 2014. The light-dark cycle controls peripheral rhythmicity in mice with a genetically ablated suprachiasmatic nucleus clock. FASEB J 28: 4950-60.
    • (2014) FASEB J , vol.28 , pp. 4950-4960
    • Husse, J.1    Leliavski, A.2    Tsang, A.H.3    Oster, H.4
  • 65
    • 84887481024 scopus 로고    scopus 로고
    • A neuropeptide speeds circadian entrainment by reducing intercellular synchrony
    • An S, Harang R, Meeker K, Granados-Fuentes D, et al. 2013. A neuropeptide speeds circadian entrainment by reducing intercellular synchrony. Proc Natl Acad Sci USA 110: E4355-61.
    • (2013) Proc Natl Acad Sci USA , vol.110 , pp. E4355-E4361
    • An, S.1    Harang, R.2    Meeker, K.3    Granados-Fuentes, D.4
  • 66
    • 84885623978 scopus 로고    scopus 로고
    • Mice genetically deficient in vasopressin V1a and V1b receptors are resistant to jet lag
    • Yamaguchi Y, Suzuki T, Mizoro Y, Kori H, et al. 2013. Mice genetically deficient in vasopressin V1a and V1b receptors are resistant to jet lag. Science 342: 85-90.
    • (2013) Science , vol.342 , pp. 85-90
    • Yamaguchi, Y.1    Suzuki, T.2    Mizoro, Y.3    Kori, H.4
  • 67
    • 84924231382 scopus 로고    scopus 로고
    • Cellular clocks in AVP neurons of the SCN are critical for interneuronal coupling regulating circadian behavior rhythm
    • Mieda M, Ono D, Hasegawa E, Okamoto H, et al. 2015. Cellular clocks in AVP neurons of the SCN are critical for interneuronal coupling regulating circadian behavior rhythm. Neuron 85: 1103-16.
    • (2015) Neuron , vol.85 , pp. 1103-1116
    • Mieda, M.1    Ono, D.2    Hasegawa, E.3    Okamoto, H.4
  • 68
    • 33846944676 scopus 로고    scopus 로고
    • System-driven and oscillator-dependent circadian transcription in mice with a conditionally active liver clock
    • Kornmann B, Schaad O, Bujard H, Takahashi JS, et al. 2007. System-driven and oscillator-dependent circadian transcription in mice with a conditionally active liver clock. PLoS Biol 5: e34.
    • (2007) PLoS Biol , vol.5
    • Kornmann, B.1    Schaad, O.2    Bujard, H.3    Takahashi, J.S.4
  • 69
    • 84864584460 scopus 로고    scopus 로고
    • Brain-specific rescue of Clock reveals system-driven transcriptional rhythms in peripheral tissue
    • Hughes ME, Hong HK, Chong JL, Indacochea AA, et al. 2012. Brain-specific rescue of Clock reveals system-driven transcriptional rhythms in peripheral tissue. PLoS Genet 8: e1002835.
    • (2012) PLoS Genet , vol.8
    • Hughes, M.E.1    Hong, H.K.2    Chong, J.L.3    Indacochea, A.A.4
  • 70
    • 34249275727 scopus 로고    scopus 로고
    • Transcriptional coactivator PGC-1alpha integrates the mammalian clock and energy metabolism
    • Liu C, Li S, Liu T, Borjigin J, et al. 2007. Transcriptional coactivator PGC-1alpha integrates the mammalian clock and energy metabolism. Nature 447: 477-81.
    • (2007) Nature , vol.447 , pp. 477-481
    • Liu, C.1    Li, S.2    Liu, T.3    Borjigin, J.4
  • 71
    • 84902211674 scopus 로고    scopus 로고
    • Insulin-FOXO3 signaling modulates circadian rhythms via regulation of clock transcription
    • Chaves I, van der Horst GT, Schellevis R, Nijman RM, et al. 2014. Insulin-FOXO3 signaling modulates circadian rhythms via regulation of clock transcription. Curr Biol 24: 1248-55.
    • (2014) Curr Biol , vol.24 , pp. 1248-1255
    • Chaves, I.1    van der Horst, G.T.2    Schellevis, R.3    Nijman, R.M.4
  • 72
    • 84877929035 scopus 로고    scopus 로고
    • The circadian epigenome: how metabolism talks to chromatin remodeling
    • Aguilar-Arnal L, Sassone-Corsi P. 2013. The circadian epigenome: how metabolism talks to chromatin remodeling. Curr Opin Cell Biol 25: 170-6.
    • (2013) Curr Opin Cell Biol , vol.25 , pp. 170-176
    • Aguilar-Arnal, L.1    Sassone-Corsi, P.2
  • 73
    • 0037178787 scopus 로고    scopus 로고
    • The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator
    • Preitner N, Damiola F, Lopez-Molina L, Zakany J, et al. 2002. The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell 110: 251-60.
    • (2002) Cell , vol.110 , pp. 251-260
    • Preitner, N.1    Damiola, F.2    Lopez-Molina, L.3    Zakany, J.4
  • 74
    • 4143142003 scopus 로고    scopus 로고
    • A functional genomics strategy reveals Rora as a component of the mammalian circadian clock
    • Sato TK, Panda S, Miraglia LJ, Reyes TM, et al. 2004. A functional genomics strategy reveals Rora as a component of the mammalian circadian clock. Neuron 43: 527-37.
    • (2004) Neuron , vol.43 , pp. 527-537
    • Sato, T.K.1    Panda, S.2    Miraglia, L.J.3    Reyes, T.M.4
  • 75
    • 77951897767 scopus 로고    scopus 로고
    • Systems biology of mammalian circadian clocks
    • Ukai H, Ueda HR. 2010. Systems biology of mammalian circadian clocks. Annu Rev Physiol 72: 579-603.
    • (2010) Annu Rev Physiol , vol.72 , pp. 579-603
    • Ukai, H.1    Ueda, H.R.2
  • 76
    • 79251571117 scopus 로고    scopus 로고
    • Tuning the period of the mammalian circadian clock: additive and independent effects of CK1epsilonTau and Fbxl3Afh mutations on mouse circadian behavior and molecular pacemaking
    • Maywood ES, Chesham JE, Meng QJ, Nolan PM, et al. 2011. Tuning the period of the mammalian circadian clock: additive and independent effects of CK1epsilonTau and Fbxl3Afh mutations on mouse circadian behavior and molecular pacemaking. J Neurosci 31: 1539-44.
    • (2011) J Neurosci , vol.31 , pp. 1539-1544
    • Maywood, E.S.1    Chesham, J.E.2    Meng, Q.J.3    Nolan, P.M.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.