-
2
-
-
0000758358
-
-
L. Pecora, T. Carrol, G. Johnson, and D. Mar, Chaos 7, 520 (1997). CHAOEH 1054-1500 10.1063/1.166278
-
(1997)
Chaos
, vol.7
, pp. 520
-
-
Pecora, L.1
Carrol, T.2
Johnson, G.3
Mar, D.4
-
3
-
-
0036285235
-
-
S. Boccaletti, J. Kurths, G. Osipov, D. L. Valladares, and C. S. Zhou, Phys. Rep. 366, 1 (2002). PRPLCM 0370-1573 10.1016/S0370-1573(02)00137-0
-
(2002)
Phys. Rep.
, vol.366
, pp. 1
-
-
Boccaletti, S.1
Kurths, J.2
Osipov, G.3
Valladares, D.L.4
Zhou, C.S.5
-
4
-
-
0001399571
-
-
H. U. Voss, Phys. Rev. E 61, 5115 (2000). 1063-651X 10.1103/PhysRevE.61.5115
-
(2000)
Phys. Rev. e
, vol.61
, pp. 5115
-
-
Voss, H.U.1
-
5
-
-
39249084516
-
-
H. U. Voss, Phys. Rev. Lett. 87, 014102 (2001). PRLTAO 0031-9007 10.1103/PhysRevLett.87.014102
-
(2001)
Phys. Rev. Lett.
, vol.87
, pp. 014102
-
-
Voss, H.U.1
-
6
-
-
1842483513
-
-
O. Calvo, D. R. Chialvo, V. M. Eguiluz, C. Mirasso, and R. Toral, Chaos 14, 7 (2004). CHAOEH 1054-1500 10.1063/1.1620991
-
(2004)
Chaos
, vol.14
, pp. 7
-
-
Calvo, O.1
Chialvo, D.R.2
Eguiluz, V.M.3
Mirasso, C.4
Toral, R.5
-
7
-
-
0035952957
-
-
C. Masoller, Phys. Rev. Lett. 86, 2782 (2001). PRLTAO 0031-9007 10.1103/PhysRevLett.86.2782
-
(2001)
Phys. Rev. Lett.
, vol.86
, pp. 2782
-
-
Masoller, C.1
-
9
-
-
79956032616
-
-
Y. Liu, Y. Takiguchi, P. Davis, T. Aida, S. Saito, and J. M. Liu, Appl. Phys. Lett. 80, 4306 (2002). APPLAB 0003-6951 10.1063/1.1485127
-
(2002)
Appl. Phys. Lett.
, vol.80
, pp. 4306
-
-
Liu, Y.1
Takiguchi, Y.2
Davis, P.3
Aida, T.4
Saito, S.5
Liu, J.M.6
-
11
-
-
18744420849
-
-
M. Ciszak, O. Calvo, C. Masoller, C. R. Mirasso, and R. Toral, Phys. Rev. Lett. 90, 204102 (2003). PRLTAO 0031-9007 10.1103/PhysRevLett.90.204102
-
(2003)
Phys. Rev. Lett.
, vol.90
, pp. 204102
-
-
Ciszak, M.1
Calvo, O.2
Masoller, C.3
Mirasso, C.R.4
Toral, R.5
-
12
-
-
19644371720
-
-
M. Ciszak, F. Marino, R. Toral, and S. Balle, Phys. Rev. Lett. 93, 114102 (2004). PRLTAO 0031-9007 10.1103/PhysRevLett.93.114102
-
(2004)
Phys. Rev. Lett.
, vol.93
, pp. 114102
-
-
Ciszak, M.1
Marino, F.2
Toral, R.3
Balle, S.4
-
14
-
-
28844470295
-
-
M. Ciszak, J. M. Gutiérrez, A. S. Cofiño, C. Mirasso, R. Toral, L. Pesquera, and S. Ortín, Phys. Rev. E 72, 046218 (2005). PLEEE8 1539-3755 10.1103/PhysRevE.72.046218
-
(2005)
Phys. Rev. e
, vol.72
, pp. 046218
-
-
Ciszak, M.1
Gutiérrez, J.M.2
Cofiño, A.S.3
Mirasso, C.4
Toral, R.5
Pesquera, L.6
Ortín, S.7
-
17
-
-
80052201317
-
-
F. S. Matias, P. V. Carelli, C. R. Mirasso, and M. Copelli, Phys. Rev. E 84, 021922 (2011). PLEEE8 1539-3755 10.1103/PhysRevE.84.021922
-
(2011)
Phys. Rev. e
, vol.84
, pp. 021922
-
-
Matias, F.S.1
Carelli, P.V.2
Mirasso, C.R.3
Copelli, M.4
-
18
-
-
0031022266
-
-
P. König, W. Singer, P. R. Roelfsema, and A. K. Engel, Nature 385, 157 (1997). NATUAS 0028-0836 10.1038/385157a0
-
(1997)
Nature
, vol.385
, pp. 157
-
-
König, P.1
Singer, W.2
Roelfsema, P.R.3
Engel, A.K.4
-
19
-
-
3042795832
-
-
A. Brovelli, M. Ding, A. Ledberg, Y. Chen, R. Nakamura, and S. L. Bressler, Proc. Natl. Acad. Sci. USA 101, 9849 (2004). PNASA6 0027-8424 10.1073/pnas.0308538101
-
(2004)
Proc. Natl. Acad. Sci. USA
, vol.101
, pp. 9849
-
-
Brovelli, A.1
Ding, M.2
Ledberg, A.3
Chen, Y.4
Nakamura, R.5
Bressler, S.L.6
-
20
-
-
84903647613
-
-
F. S. Matias, L. L. Gollo, P. V. Carelli, S. L. Bressler, M. Copelli, and C. R. Mirasso, NeuroImage 99, 411 (2014). NEIMEF 1053-8119 10.1016/j.neuroimage.2014.05.063
-
(2014)
NeuroImage
, vol.99
, pp. 411
-
-
Matias, F.S.1
Gollo, L.L.2
Carelli, P.V.3
Bressler, S.L.4
Copelli, M.5
Mirasso, C.R.6
-
21
-
-
65449122435
-
-
M. Ciszak, C. R. Mirasso, R. Toral, and O. Calvo, Phys. Rev. E 79, 046203 (2009). PLEEE8 1539-3755 10.1103/PhysRevE.79.046203
-
(2009)
Phys. Rev. e
, vol.79
, pp. 046203
-
-
Ciszak, M.1
Mirasso, C.R.2
Toral, R.3
Calvo, O.4
-
22
-
-
84861929382
-
-
R. Toral.
-
C. Mayol, C. R. Mirasso, and R. Toral, Phys. Rev. E 85, 056216 (2012). PLEEE8 1539-3755 10.1103/PhysRevE.85.056216
-
(2012)
Phys. Rev. e
, vol.85
, pp. 056216
-
-
Mayol, C.1
Mirasso, C.R.2
-
28
-
-
44049114472
-
-
B. Shraiman, A. Pumir, W. Van Saarloos, P. Hohenberg, H. Chaté, and M. Holen, Physica D 57, 241 (1992). PDNPDT 0167-2789 10.1016/0167-2789(92)90001-4
-
(1992)
Physica D
, vol.57
, pp. 241
-
-
Shraiman, B.1
Pumir, A.2
Van Saarloos, W.3
Hohenberg, P.4
Chaté, H.5
Holen, M.6
-
29
-
-
0004197118
-
-
in (World Scientific, Singapore), p..
-
M. I. Rabinovich, A. B. Ezersky, and P. D. Weidman, in The Dynamics of Patterns (World Scientific, Singapore, 2000), p. 48.
-
(2000)
The Dynamics of Patterns
, pp. 48
-
-
Rabinovich, M.I.1
Ezersky, A.B.2
Weidman, P.D.3
-
31
-
-
82455186861
-
-
S. Heiligenthal, T. Dahms, S. Yanchuk, T. Jüngling, V. Flunkert, I. Kanter, E. Schöll, and W. Kinzel, Phys. Rev. Lett. 107, 234102 (2011). PRLTAO 0031-9007 10.1103/PhysRevLett.107.234102
-
(2011)
Phys. Rev. Lett.
, vol.107
, pp. 234102
-
-
Heiligenthal, S.1
Dahms, T.2
Yanchuk, S.3
Jüngling, T.4
Flunkert, V.5
Kanter, I.6
Schöll, E.7
Kinzel, W.8
-
32
-
-
0022755962
-
-
O. Thual.
-
U. Frisch, Z. S. She, and O. Thual, J. Fluid Mech. 168, 221 (1986). JFLSA7 0022-1120 10.1017/S0022112086000356
-
(1986)
J. Fluid Mech.
, vol.168
, pp. 221
-
-
Frisch, U.1
She, Z.S.2
-
33
-
-
4243206340
-
-
Miguel.
-
R. Montagne, E. Hernández-García, A. Amengual, and M. San Miguel, Phys. Rev. E 56, 151 (1997). 1063-651X 10.1103/PhysRevE.56.151
-
(1997)
Phys. Rev. e
, vol.56
, pp. 151
-
-
Montagne, R.1
Hernández-García, E.2
Amengual, A.3
San, M.4
-
34
-
-
84942288752
-
-
For the numerical integration of Eqs. (5) and (6) we have used a two-step method ("slaved leap frog" of Frisch [32] with the corrective algorithm used in Ref. [33]) to integrate the Fourier modes, assuming periodic boundary conditions. The integration time step is (Equation presented). We use random initial conditions, different in the master and the slave, in order to obtain independent initial dynamics in both systems. The size of the system is (Equation presented), with (Equation presented) and (Equation presented) in the defect turbulence regime, (Equation presented) in the bichaos regime, and (Equation presented) in the phase turbulence regime.
-
For the numerical integration of Eqs. (5) and (6) we have used a two-step method ("slaved leap frog" of Frisch [32] with the corrective algorithm used in Ref. [33]) to integrate the Fourier modes, assuming periodic boundary conditions. The integration time step is (Equation presented). We use random initial conditions, different in the master and the slave, in order to obtain independent initial dynamics in both systems. The size of the system is (Equation presented), with (Equation presented) and (Equation presented) in the defect turbulence regime, (Equation presented) in the bichaos regime, and (Equation presented) in the phase turbulence regime.
-
-
-
|