메뉴 건너뛰기




Volumn 92, Issue 3, 2015, Pages

Anticipated synchronization in coupled complex Ginzburg-Landau systems

Author keywords

[No Author keywords available]

Indexed keywords

TURBULENCE;

EID: 84942279522     PISSN: 15393755     EISSN: 15502376     Source Type: Journal    
DOI: 10.1103/PhysRevE.92.032911     Document Type: Article
Times cited : (17)

References (36)
  • 4
    • 0001399571 scopus 로고    scopus 로고
    • H. U. Voss, Phys. Rev. E 61, 5115 (2000). 1063-651X 10.1103/PhysRevE.61.5115
    • (2000) Phys. Rev. e , vol.61 , pp. 5115
    • Voss, H.U.1
  • 5
    • 39249084516 scopus 로고    scopus 로고
    • H. U. Voss, Phys. Rev. Lett. 87, 014102 (2001). PRLTAO 0031-9007 10.1103/PhysRevLett.87.014102
    • (2001) Phys. Rev. Lett. , vol.87 , pp. 014102
    • Voss, H.U.1
  • 7
    • 0035952957 scopus 로고    scopus 로고
    • C. Masoller, Phys. Rev. Lett. 86, 2782 (2001). PRLTAO 0031-9007 10.1103/PhysRevLett.86.2782
    • (2001) Phys. Rev. Lett. , vol.86 , pp. 2782
    • Masoller, C.1
  • 22
    • 84861929382 scopus 로고    scopus 로고
    • R. Toral.
    • C. Mayol, C. R. Mirasso, and R. Toral, Phys. Rev. E 85, 056216 (2012). PLEEE8 1539-3755 10.1103/PhysRevE.85.056216
    • (2012) Phys. Rev. e , vol.85 , pp. 056216
    • Mayol, C.1    Mirasso, C.R.2
  • 23
  • 32
    • 0022755962 scopus 로고
    • O. Thual.
    • U. Frisch, Z. S. She, and O. Thual, J. Fluid Mech. 168, 221 (1986). JFLSA7 0022-1120 10.1017/S0022112086000356
    • (1986) J. Fluid Mech. , vol.168 , pp. 221
    • Frisch, U.1    She, Z.S.2
  • 34
    • 84942288752 scopus 로고    scopus 로고
    • For the numerical integration of Eqs. (5) and (6) we have used a two-step method ("slaved leap frog" of Frisch [32] with the corrective algorithm used in Ref. [33]) to integrate the Fourier modes, assuming periodic boundary conditions. The integration time step is (Equation presented). We use random initial conditions, different in the master and the slave, in order to obtain independent initial dynamics in both systems. The size of the system is (Equation presented), with (Equation presented) and (Equation presented) in the defect turbulence regime, (Equation presented) in the bichaos regime, and (Equation presented) in the phase turbulence regime.
    • For the numerical integration of Eqs. (5) and (6) we have used a two-step method ("slaved leap frog" of Frisch [32] with the corrective algorithm used in Ref. [33]) to integrate the Fourier modes, assuming periodic boundary conditions. The integration time step is (Equation presented). We use random initial conditions, different in the master and the slave, in order to obtain independent initial dynamics in both systems. The size of the system is (Equation presented), with (Equation presented) and (Equation presented) in the defect turbulence regime, (Equation presented) in the bichaos regime, and (Equation presented) in the phase turbulence regime.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.