메뉴 건너뛰기




Volumn 45, Issue 1, 2015, Pages 35-74

Classification of multivariate time series via temporal abstraction and time intervals mining

Author keywords

Classification; Frequent pattern mining; Temporal abstraction; Temporal knowledge discovery; Time intervals mining

Indexed keywords

CLASSIFICATION (OF INFORMATION); DISCRETE EVENT SIMULATION; FEATURE EXTRACTION; KNOWLEDGE BASED SYSTEMS;

EID: 84942238379     PISSN: 02191377     EISSN: 02193116     Source Type: Journal    
DOI: 10.1007/s10115-014-0784-5     Document Type: Article
Times cited : (97)

References (40)
  • 1
    • 0020849266 scopus 로고
    • Maintaining knowledge about temporal intervals
    • Allen JF (1983) Maintaining knowledge about temporal intervals. Commun ACM 26(11):832–843
    • (1983) Commun ACM , vol.26 , Issue.11 , pp. 832-843
    • Allen, J.F.1
  • 2
    • 84958077410 scopus 로고    scopus 로고
    • Temporal discretization of medical time series—a comparative study
    • Amsterdam, The Netherlands
    • Azulay R, Moskovitch R, Stopel D, Verduijn M, de Jonge E, Shahar Y (2007) Temporal discretization of medical time series—a comparative study. In: IDAMAP 2007, Amsterdam, The Netherlands,
    • (2007) IDAMAP , pp. 2007
    • Azulay, R.1    Moskovitch, R.2    Stopel, D.3    Verduijn, M.4    de Jonge, E.5    Shahar, Y.6
  • 6
    • 84942265017 scopus 로고    scopus 로고
    • Time series abstraction methods—a survey workshop on knowledge discovery in databases
    • Höppner F (2002) Time series abstraction methods—a survey workshop on knowledge discovery in databases, Dortmund
    • (2002) Dortmund
    • Höppner, F.1
  • 7
    • 84960076541 scopus 로고    scopus 로고
    • Time series classification under more realistic assumptions
    • In, Proceedings of SIAM data mining
    • Hu B, Chen Y, Keogh E (2013) Time series classification under more realistic assumptions. In: Proceedings of SIAM data mining
    • (2013)
    • Hu, B.1    Chen, Y.2    Keogh, E.3
  • 8
    • 84930364795 scopus 로고    scopus 로고
    • Discovering temporal patterns for interval based events
    • Kam PS, Fu AWC (2000) Discovering temporal patterns for interval based events. In: Proceedings DaWaK-00
    • (2000) In: Proceedings DaWaK-00
    • Kam, P.S.1    Fu, A.W.C.2
  • 11
    • 84930476065 scopus 로고    scopus 로고
    • Algorithms for time series knowledge mining
    • In, Proceedings of KDD
    • Mörchen F (2006) Algorithms for time series knowledge mining. In: Proceedings of KDD
    • (2006)
    • Mörchen, F.1
  • 12
    • 84942265020 scopus 로고    scopus 로고
    • A better tool than Allen’s relations for expressing temporal knowledge in interval data
    • In, Workshop on temporal data mining
    • Moerchen F (2006) A better tool than Allen’s relations for expressing temporal knowledge in interval data. In: Workshop on temporal data mining
    • (2006)
    • Moerchen, F.1
  • 13
    • 80052392674 scopus 로고    scopus 로고
    • Robust mining of time intervals with semi-interval partial order patterns
    • In, Proceedings of SIAM data mining
    • Moerchen F, Fradkin D (2010) Robust mining of time intervals with semi-interval partial order patterns. In: Proceedings of SIAM data mining
    • (2010)
    • Moerchen, F.1    Fradkin, D.2
  • 14
    • 85044703610 scopus 로고    scopus 로고
    • Vaidurya-a concept-based, context-sensitive search engine for clinical guidelines
    • Moskovitch R, Hessing A, Shahar Y (2004) Vaidurya-a concept-based, context-sensitive search engine for clinical guidelines. Medinfo 11:140–144
    • (2004) Medinfo , vol.11 , pp. 140-144
    • Moskovitch, R.1    Hessing, A.2    Shahar, Y.3
  • 15
    • 84930482475 scopus 로고    scopus 로고
    • Analysis of ICU patients using the time series knowledge mining method
    • Amsterdam, The Netherlands
    • Moskovitch R, Stopel D, Verduijn M, Peek N, de Jonge E, Shahar Y (2007) Analysis of ICU patients using the time series knowledge mining method. In: IDAMAP 2007, Amsterdam, The Netherlands
    • (2007) IDAMAP , pp. 2007
    • Moskovitch, R.1    Stopel, D.2    Verduijn, M.3    Peek, N.4    de Jonge, E.5    Shahar, Y.6
  • 17
    • 60049093635 scopus 로고    scopus 로고
    • Vaidurya: a multiple-ontology, concept-based, context-sensitive clinical-guideline search engine
    • Moskovitch R, Shahar Y (2009) Vaidurya: a multiple-ontology, concept-based, context-sensitive clinical-guideline search engine. J Biomed Inform 42(1):11–21
    • (2009) J Biomed Inform , vol.42 , Issue.1 , pp. 11-21
    • Moskovitch, R.1    Shahar, Y.2
  • 18
    • 79953787924 scopus 로고    scopus 로고
    • Medical temporal-knowledge discovery via temporal abstraction
    • San Francisco, USA
    • Moskovitch R, Shahar Y (2009) Medical temporal-knowledge discovery via temporal abstraction. In: AMIA 2009, San Francisco, USA
    • (2009) AMIA , pp. 2009
    • Moskovitch, R.1    Shahar, Y.2
  • 19
    • 84873197261 scopus 로고    scopus 로고
    • Classification of ICU patients via temporal abstraction and temporal patterns mining
    • Verona, Italy
    • Moskovitch R, Peek N, Shahar Y (2009) Classification of ICU patients via temporal abstraction and temporal patterns mining. In: IDAMAP, Verona, Italy
    • (2009) In: IDAMAP
    • Moskovitch, R.1    Peek, N.2    Shahar, Y.3
  • 20
    • 84939240022 scopus 로고    scopus 로고
    • Fast time intervals mining using transitivity of temporal relations. Knowl Inf Syst
    • Moskovitch R, Shahar Y (2013) Fast time intervals mining using transitivity of temporal relations. Knowl Inf Syst. doi:10.1007/s10115-013-0707-x
    • (2013) doi:10.1007/s10115-013-0707-x
    • Moskovitch, R.1    Shahar, Y.2
  • 21
    • 84942265023 scopus 로고    scopus 로고
    • Fast detection of time intervals related patterns, TechReport 11/14
    • Beer Sheva, Israel
    • Moskovitch R, Shahar Y (2014) Fast detection of time intervals related patterns, TechReport 11/14. Ben Gurion University, Beer Sheva, Israel
    • (2014) Ben Gurion University
    • Moskovitch, R.1    Shahar, Y.2
  • 24
    • 57149147858 scopus 로고    scopus 로고
    • Mining relationships among interval-based events for classification. In: Proceedings of the 2008 ACM SIGMOD international conference on management of data
    • Patel D, Hsu W, Lee ML (2008) Mining relationships among interval-based events for classification. In: Proceedings of the 2008 ACM SIGMOD international conference on management of data, pp 393–404
    • (2008) pp 393–404
    • Patel, D.1    Hsu, W.2    Lee, M.L.3
  • 26
    • 0024610919 scopus 로고
    • A tutorial on Hidden Markov Models and selected applications in speech recognition
    • Rabiner LR (1989) A tutorial on Hidden Markov Models and selected applications in speech recognition. Proc IEEE 77(2):257–286
    • (1989) Proc IEEE , vol.77 , Issue.2 , pp. 257-286
    • Rabiner, L.R.1
  • 27
    • 34250727441 scopus 로고    scopus 로고
    • Three myths about dynamic time warping data mining. In, Proceedings of SIAM data mining
    • Ratanamahatana C, Keogh EJ (2005) Three myths about dynamic time warping data mining. In: Proceedings of SIAM data mining
    • (2005) Keogh EJ
    • Ratanamahatana, C.1
  • 28
    • 0036649978 scopus 로고    scopus 로고
    • A survey of temporal knowledge discovery paradigms and methods
    • Roddick J, Spiliopoulou M (2002) A survey of temporal knowledge discovery paradigms and methods. IEEE Trans Knowl Data Eng 4(14):750–767
    • (2002) IEEE Trans Knowl Data Eng , vol.4 , Issue.14 , pp. 750-767
    • Roddick, J.1    Spiliopoulou, M.2
  • 29
    • 34548083516 scopus 로고    scopus 로고
    • Data mining with temporal abstractions: learning rules from time series
    • Sacchi L, Larizza C, Combi C, Bellazi R (2007) Data mining with temporal abstractions: learning rules from time series. Data Mining Knowl Discov 15(2):217–247
    • (2007) Data Mining Knowl Discov , vol.15 , Issue.2 , pp. 217-247
    • Sacchi, L.1    Larizza, C.2    Combi, C.3    Bellazi, R.4
  • 30
    • 0031069719 scopus 로고    scopus 로고
    • A framework for knowledge-based temporal abstraction
    • Shahar Y (1997) A framework for knowledge-based temporal abstraction. Artif Intell 90(1–2):79–133
    • (1997) Artif Intell , vol.90 , Issue.1-2 , pp. 79-133
    • Shahar, Y.1
  • 31
    • 0032384750 scopus 로고    scopus 로고
    • Dynamic temporal interpretation contexts for temporal abstraction
    • Shahar Y (1998) Dynamic temporal interpretation contexts for temporal abstraction. Ann Math Artif Intell 22(1–2):159–192
    • (1998) Ann Math Artif Intell , vol.22 , Issue.1-2 , pp. 159-192
    • Shahar, Y.1
  • 32
    • 0031323294 scopus 로고    scopus 로고
    • Knowledge-based temporal interpolation. J Exp Theor
    • Shahar Y (1999) Knowledge-based temporal interpolation. J Exp Theor, Artif Intell 11:102–111
    • (1999) Artif Intell , vol.11 , pp. 102-111
    • Shahar, Y.1
  • 35
    • 40649103203 scopus 로고    scopus 로고
    • Application of artificial neural networks techniques to computer worm detection. In: International joint conference on neural networks
    • Stopel D, Boger Z, Moskovitch R, Shahar Y, Elovici Y (2006a) Application of artificial neural networks techniques to computer worm detection. In: International joint conference on neural networks, pp 2362–2369
    • (2006) pp 2362–2369
    • Stopel, D.1    Boger, Z.2    Moskovitch, R.3    Shahar, Y.4    Elovici, Y.5
  • 36
    • 70350179568 scopus 로고    scopus 로고
    • Improving worm detection with artificial neural networks through feature selection and temporal analysis techniques
    • Proceedings of the third international conference on neural networks, Barcelona
    • Stopel D, Boger Z, Moskovitch R, Shahar Y, Elovici Y (2006b) Improving worm detection with artificial neural networks through feature selection and temporal analysis techniques. In: Proceedings of the third international conference on neural networks, Barcelona
    • (2006) In
    • Stopel, D.1    Boger, Z.2    Moskovitch, R.3    Shahar, Y.4    Elovici, Y.5
  • 37
    • 34548277939 scopus 로고    scopus 로고
    • Temporal abstraction for feature extraction: a comparative case study in prediction from intensive care monitoring data
    • Verduijn M, Sacchi L, Peek N, Bellazi R, de Jonge E, de Mol B (2007) Temporal abstraction for feature extraction: a comparative case study in prediction from intensive care monitoring data. Artif Intell Med 41:112
    • (2007) Artif Intell Med , vol.41 , pp. 112
    • Verduijn, M.1    Sacchi, L.2    Peek, N.3    Bellazi, R.4    de Jonge, E.5    de Mol, B.6
  • 38
    • 0034229069 scopus 로고    scopus 로고
    • Knowledge discovery from time series of interval events
    • Villafane R, Hua K, Tran D, Maulik B (2000) Knowledge discovery from time series of interval events. J Intell Inf Syst 15(1):71–89
    • (2000) J Intell Inf Syst , vol.15 , Issue.1 , pp. 71-89
    • Villafane, R.1    Hua, K.2    Tran, D.3    Maulik, B.4
  • 39
    • 34250202878 scopus 로고    scopus 로고
    • Armada—an algorithm for discovering richer relative temporal association rules from interval-based data
    • Winarko E, Roddick J (2007) Armada—an algorithm for discovering richer relative temporal association rules from interval-based data. Data Knowl Eng 1(63):76–90
    • (2007) Data Knowl Eng , vol.1 , Issue.63 , pp. 76-90
    • Winarko, E.1    Roddick, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.