메뉴 건너뛰기




Volumn 105, Issue 9, 2015, Pages 1174-1182

Combining models is more likely to give better predictions than single models

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER SIMULATION; PLANT DISEASE; STATISTICAL MODEL; THEORETICAL MODEL;

EID: 84941787313     PISSN: 0031949X     EISSN: 19437684     Source Type: Journal    
DOI: 10.1094/PHYTO-11-14-0315-R     Document Type: Article
Times cited : (17)

References (38)
  • 1
    • 51849177370 scopus 로고
    • Likelihood and the Bayes procedure
    • J. M. Bernardo, M. H. DeGroot, D. V. Lindley, and A. F. M. Smith, eds. University Press, Valencia, Spain
    • Akaike, H. 1980. Likelihood and the Bayes procedure. Pages 143-166 in: Bayesian Statistics. J. M. Bernardo, M. H. DeGroot, D. V. Lindley, and A. F. M. Smith, eds. University Press, Valencia, Spain.
    • (1980) Bayesian Statistics , pp. 143-166
    • Akaike, H.1
  • 3
    • 0001587464 scopus 로고
    • The little bootstrap and other methods for dimensionality selection in regression: X-fixed prediction error
    • Breiman, L. 1992. The little bootstrap and other methods for dimensionality selection in regression: X-fixed prediction error. J. Am. Stat. Assoc. 87:738-754.
    • (1992) J. Am. Stat. Assoc. , vol.87 , pp. 738-754
    • Breiman, L.1
  • 5
    • 35148874157 scopus 로고    scopus 로고
    • Disease cycle approach to plant disease prediction
    • De Wolf, E. D., and Isard, S. A. 2007. Disease cycle approach to plant disease prediction. Annu. Rev. Phytopathol. 45:203-220.
    • (2007) Annu. Rev. Phytopathol. , vol.45 , pp. 203-220
    • De Wolf, E.D.1    Isard, S.A.2
  • 6
    • 0037377371 scopus 로고    scopus 로고
    • Risk assessment models for wheat Fusarium head blight epidemics based on within-season weather data
    • De Wolf, E. D., Madden, L. V., and Lipps, P. E. 2003. Risk assessment models for wheat Fusarium head blight epidemics based on within-season weather data. Phytopathology 93:428-435.
    • (2003) Phytopathology , vol.93 , pp. 428-435
    • De Wolf, E.D.1    Madden, L.V.2    Lipps, P.E.3
  • 7
    • 84886752441 scopus 로고    scopus 로고
    • Using multimodel averaging to improve the reliability of catchment scale nitrogen predictions
    • Exbrayat, J. F., Viney, N. R., Frede, H. G., and Breuer, L. 2013. Using multimodel averaging to improve the reliability of catchment scale nitrogen predictions. Geosci. Model Dev. 6:117-125.
    • (2013) Geosci. Model Dev. , vol.6 , pp. 117-125
    • Exbrayat, J.F.1    Viney, N.R.2    Frede, H.G.3    Breuer, L.4
  • 9
    • 34250303142 scopus 로고    scopus 로고
    • Least square model averaging
    • Hansen, B. E. 2007. Least square model averaging. Econometrica 75:1175-1189.
    • (2007) Econometrica , vol.75 , pp. 1175-1189
    • Hansen, B.E.1
  • 10
    • 48149099672 scopus 로고    scopus 로고
    • Disease forecasting
    • B. Cooke, D. G. Jones, and B. Kaye, eds. Springer, Dordrecht, The Netherlands
    • Hardwick, N. V. 2006. Disease forecasting. Pages 239-267 in: The Epidemiology of Plant Diseases. B. Cooke, D. G. Jones, and B. Kaye, eds. Springer, Dordrecht, The Netherlands.
    • (2006) The Epidemiology of Plant Diseases , pp. 239-267
    • Hardwick, N.V.1
  • 13
    • 0001159321 scopus 로고
    • The impact of model selection on inference in linear regression
    • Hurvich, C. M., and Tsai, C. L. 1990. The impact of model selection on inference in linear regression. Am. Stat. 44:214-217.
    • (1990) Am. Stat. , vol.44 , pp. 214-217
    • Hurvich, C.M.1    Tsai, C.L.2
  • 14
    • 1942489320 scopus 로고    scopus 로고
    • A quantitative approach to conservation planning: Using resource selection functions to map the distribution of mountain caribou at multiple spatial scales
    • Johnson, C. J., Seip, D. R., and Boyce, M. S. 2004. A quantitative approach to conservation planning: Using resource selection functions to map the distribution of mountain caribou at multiple spatial scales. J. Appl. Ecol. 41:238-251.
    • (2004) J. Appl. Ecol. , vol.41 , pp. 238-251
    • Johnson, C.J.1    Seip, D.R.2    Boyce, M.S.3
  • 15
    • 1242296549 scopus 로고    scopus 로고
    • Model selection in ecology and evolution
    • Johnson, J. B., and Omland, K. S. 2004. Model selection in ecology and evolution. Trends Ecol. Evol. 19:101-108.
    • (2004) Trends Ecol. Evol. , vol.19 , pp. 101-108
    • Johnson, J.B.1    Omland, K.S.2
  • 16
    • 2142781609 scopus 로고    scopus 로고
    • Methods and criteria for model selection
    • Kadane, J. B., and Lazar, N. A. 2004. Methods and criteria for model selection. J. Am. Stat. Assoc. 99:279-290.
    • (2004) J. Am. Stat. Assoc. , vol.99 , pp. 279-290
    • Kadane, J.B.1    Lazar, N.A.2
  • 17
    • 84930476203 scopus 로고    scopus 로고
    • Toward a reliable evaluation of forecasting systems for plant diseases: A case study using Fusarium head blight of wheat
    • Landschoot, S., Waegeman, W., Audenaert, K., Vandepitte, J., Haesaert, G., and De Baets, B. 2012. Toward a reliable evaluation of forecasting systems for plant diseases: A case study using Fusarium head blight of wheat. Plant Dis. 96:889-896.
    • (2012) Plant Dis. , vol.96 , pp. 889-896
    • Landschoot, S.1    Waegeman, W.2    Audenaert, K.3    Vandepitte, J.4    Haesaert, G.5    De Baets, B.6
  • 20
    • 84859111279 scopus 로고    scopus 로고
    • A systematic review of breast cancer incidence risk prediction models with meta-analysis of their performance
    • Meads, C., Ahmed, I., and Riley, R. D. 2012. A systematic review of breast cancer incidence risk prediction models with meta-analysis of their performance. Breast Cancer Res. Treat. 132:365-377.
    • (2012) Breast Cancer Res. Treat. , vol.132 , pp. 365-377
    • Meads, C.1    Ahmed, I.2    Riley, R.D.3
  • 21
    • 84864516626 scopus 로고    scopus 로고
    • Improving predictions using ensemble Bayesian model averaging
    • Montgomery, J. M. 2012. Improving predictions using ensemble Bayesian model averaging. Polit. Anal. 20:271-291.
    • (2012) Polit. Anal. , vol.20 , pp. 271-291
    • Montgomery, J.M.1
  • 22
    • 0029661253 scopus 로고    scopus 로고
    • Predicting wheat head blight incidence using models based in meteorological factors in Pergamino, Argentina
    • Moschini, R. C., and Fortugno, C. 1996. Predicting wheat head blight incidence using models based in meteorological factors in Pergamino, Argentina. Eur. J. Plant Pathol. 102:211-218.
    • (1996) Eur. J. Plant Pathol. , vol.102 , pp. 211-218
    • Moschini, R.C.1    Fortugno, C.2
  • 23
    • 0034803251 scopus 로고    scopus 로고
    • Empirical predictions of wheat head blight in the northern Argentinean Pampas region
    • Moschini, R. C., Pioli, R., Carmona, M., and Sacchi, O. 2001. Empirical predictions of wheat head blight in the northern Argentinean Pampas region. Crop Sci. 41:1541-1545.
    • (2001) Crop Sci. , vol.41 , pp. 1541-1545
    • Moschini, R.C.1    Pioli, R.2    Carmona, M.3    Sacchi, O.4
  • 24
  • 26
    • 84902270722 scopus 로고    scopus 로고
    • Predicting Fusarium head blight epidemics with boosted regression trees
    • Shah, D. A., De Wolf, E. D., Paul, P. A., and Madden, L. V. 2014. Predicting Fusarium head blight epidemics with boosted regression trees. Phytopathology 104:702-714.
    • (2014) Phytopathology , vol.104 , pp. 702-714
    • Shah, D.A.1    De Wolf, E.D.2    Paul, P.A.3    Madden, L.V.4
  • 27
    • 84881519838 scopus 로고    scopus 로고
    • Predicting Fusarium head blight epidemics with weather-driven pre- and post-anthesis logistic regression models
    • Shah, D. A., Molineros, J. E., Paul, P. A., Willyerd, K. T., Madden, L. V., and De Wolf, E. D. 2013. Predicting Fusarium head blight epidemics with weather-driven pre- and post-anthesis logistic regression models. Phytopathology 103:906-919.
    • (2013) Phytopathology , vol.103 , pp. 906-919
    • Shah, D.A.1    Molineros, J.E.2    Paul, P.A.3    Willyerd, K.T.4    Madden, L.V.5    De Wolf, E.D.6
  • 28
    • 0036107393 scopus 로고    scopus 로고
    • Variation in survivorship of a migratory songbird throughout its annual cycle
    • Sillett, T. S., and Holmes, R. T. 2002. Variation in survivorship of a migratory songbird throughout its annual cycle. J. Anim. Ecol. 71:296-308.
    • (2002) J. Anim. Ecol. , vol.71 , pp. 296-308
    • Sillett, T.S.1    Holmes, R.T.2
  • 30
    • 0033213971 scopus 로고    scopus 로고
    • Stepwise selection in small data sets: A simulation study of bias in logistic regression analysis
    • Steyerberg, E. W., Eijkemans, M. J. C., and Habbema, J. D. F. 1999. Stepwise selection in small data sets: A simulation study of bias in logistic regression analysis. J. Clin. Epidemiol. 52:935-942.
    • (1999) J. Clin. Epidemiol. , vol.52 , pp. 935-942
    • Steyerberg, E.W.1    Eijkemans, M.J.C.2    Habbema, J.D.F.3
  • 31
    • 0036468622 scopus 로고    scopus 로고
    • Effects of sample size on accuracy of species distribution models
    • Stockwell, D. R. B., and Peterson, A. T. 2002. Effects of sample size on accuracy of species distribution models. Ecol. Modell. 148:1-13.
    • (2002) Ecol. Modell. , vol.148 , pp. 1-13
    • Stockwell, D.R.B.1    Peterson, A.T.2
  • 32
    • 17444420853 scopus 로고    scopus 로고
    • Substantial effective sample sizes were required for external validation studies of predictive logistic regression models
    • Vergouwe, Y., Steyerberg, E. W., Eijkemans, M. J. C., and Habbema, J. D. F. 2005. Substantial effective sample sizes were required for external validation studies of predictive logistic regression models. J. Clin. Epidemiol. 58:475-83.
    • (2005) J. Clin. Epidemiol. , vol.58 , pp. 475-483
    • Vergouwe, Y.1    Steyerberg, E.W.2    Eijkemans, M.J.C.3    Habbema, J.D.F.4
  • 33
    • 33746801903 scopus 로고    scopus 로고
    • Why do we still use stepwise modelling in ecology and behaviour?
    • Whittingham, M., Stephens, P., Bradbury, R., and Freckleton, R. 2006. Why do we still use stepwise modelling in ecology and behaviour? J. Anim. Ecol. 75:1182-1189.
    • (2006) J. Anim. Ecol. , vol.75 , pp. 1182-1189
    • Whittingham, M.1    Stephens, P.2    Bradbury, R.3    Freckleton, R.4
  • 34
    • 0346735387 scopus 로고    scopus 로고
    • The use of Bayesian model averaging to better represent uncertainty in ecological models
    • Wintle, B. A., McCarthy, M. A., Volinsky, C. T., and Kavanagh, R. P. 2003. The use of Bayesian model averaging to better represent uncertainty in ecological models. Conserv. Biol. 17:1579-1590.
    • (2003) Conserv. Biol. , vol.17 , pp. 1579-1590
    • Wintle, B.A.1    McCarthy, M.A.2    Volinsky, C.T.3    Kavanagh, R.P.4
  • 35
    • 84890953815 scopus 로고    scopus 로고
    • Modeling the effects of environmental conditions on HT2 and T2 toxin accumulation in field oat grains
    • Xu, X.-M., Madden, L. V., and Edwards, S. G. 2014. Modeling the effects of environmental conditions on HT2 and T2 toxin accumulation in field oat grains. Phytopathology 104:57-66.
    • (2014) Phytopathology , vol.104 , pp. 57-66
    • Xu, X.-M.1    Madden, L.V.2    Edwards, S.G.3
  • 36
    • 84886751616 scopus 로고    scopus 로고
    • Developing logistic models to relate the accumulation of DON associated with Fusarium head blight to climatic conditions in Europe
    • Xu, X.-M., Madden, L. V., Edwards, S. G., Doohan, F. M., Moretti, A., Hornok, L., and Ritieni, A. 2013. Developing logistic models to relate the accumulation of DON associated with Fusarium head blight to climatic conditions in Europe. Eur. J. Plant Pathol. 137:689-706.
    • (2013) Eur. J. Plant Pathol. , vol.137 , pp. 689-706
    • Xu, X.-M.1    Madden, L.V.2    Edwards, S.G.3    Doohan, F.M.4    Moretti, A.5    Hornok, L.6    Ritieni, A.7
  • 37
    • 0141573227 scopus 로고    scopus 로고
    • Regression with multiple candidate models: Selecting or mixing?
    • Yang, Y. 2003. Regression with multiple candidate models: Selecting or mixing? Stat. Sin. 13:783-809.
    • (2003) Stat. Sin. , vol.13 , pp. 783-809
    • Yang, Y.1
  • 38
    • 29144505412 scopus 로고    scopus 로고
    • Combining linear regression models: When and how?
    • Yuan, Z., and Yang, Y. 2005. Combining linear regression models: When and how? J. Am. Stat. Assoc. 100:1202-1214.
    • (2005) J. Am. Stat. Assoc. , vol.100 , pp. 1202-1214
    • Yuan, Z.1    Yang, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.