메뉴 건너뛰기




Volumn 60, Issue 9, 2015, Pages 1566-1586

Assessment of sediment transport approaches for sand-bed rivers by means of machine learning;Evaluation d’approches du transport de sédiments de rivières à lit sableux par apprentissage automatique

Author keywords

adaptive network based fuzzy inference system; artificial neural networks; genetic programming; machine learning; sand bed rivers; sediment transport

Indexed keywords

ARTIFICIAL INTELLIGENCE; FUZZY INFERENCE; FUZZY NEURAL NETWORKS; GENETIC ALGORITHMS; GENETIC PROGRAMMING; LEARNING ALGORITHMS; NEURAL NETWORKS; RIVERS; SEDIMENT TRANSPORT; SEDIMENTATION; SEDIMENTS; SHEAR STRESS;

EID: 84941178712     PISSN: 02626667     EISSN: 21503435     Source Type: Journal    
DOI: 10.1080/02626667.2014.909599     Document Type: Article
Times cited : (25)

References (78)
  • 1
    • 82355183599 scopus 로고    scopus 로고
    • Gene-expression programming for sediment transport in sewer pipe systems
    • A.Ab. Ghani, and H.M.Azamathulla,, 2011. Gene-expression programming for sediment transport in sewer pipe systems. Journal of Pipeline Systems Engineering and Practice, 2 (3), 102–106. doi:10.1061/(ASCE)PS.1949-1204.0000076
    • (2011) Journal of Pipeline Systems Engineering and Practice , vol.2 , Issue.3 , pp. 102-106
    • Ab. Ghani, A.1    Azamathulla, H.M.2
  • 2
    • 84892834845 scopus 로고    scopus 로고
    • Development of GEP-based functional relationship for sediment transport in tropical rivers
    • A.Ab. Ghani, and H.M.Azamathulla,, 2014. Development of GEP-based functional relationship for sediment transport in tropical rivers. Neural Computing and Applications, 24 (2), 271–276. doi:10.1007/s00521-012-1222-9
    • (2014) Neural Computing and Applications , vol.24 , Issue.2 , pp. 271-276
    • Ab. Ghani, A.1    Azamathulla, H.M.2
  • 3
    • 0015571299 scopus 로고
    • Sediment transport: new approach and analysis
    • P.Ackers, and W.R.White,, 1973. Sediment transport: new approach and analysis. Journal of the Hydraulics Division, 99 (HY11), 2041–2060.
    • (1973) Journal of the Hydraulics Division , vol.99 , Issue.HY11 , pp. 2041-2060
    • Ackers, P.1    White, W.R.2
  • 4
    • 0019704567 scopus 로고
    • Estimating sediment transport capacity in watershed modeling
    • C.V.Alonso,, W.H.Neibling,, and G.R.Foster,, 1981. Estimating sediment transport capacity in watershed modeling. Transactions, ASAE, 24 (5), 1211–1220. doi:10.13031/2013.34422
    • (1981) Transactions, ASAE , vol.24 , Issue.5 , pp. 1211-1220
    • Alonso, C.V.1    Neibling, W.H.2    Foster, G.R.3
  • 5
    • 81155141234 scopus 로고    scopus 로고
    • ANFIS-based approach for predicting the scour depth at culvert outlets
    • H.M.Azamathulla, and A.Ab. Ghani,, 2011. ANFIS-based approach for predicting the scour depth at culvert outlets. Journal of Pipeline Systems Engineering and Practice, 2 (1), 35–40. doi:10.1061/(ASCE)PS.1949-1204.0000066
    • (2011) Journal of Pipeline Systems Engineering and Practice , vol.2 , Issue.1 , pp. 35-40
    • Azamathulla, H.M.1    Ab. Ghani, A.2
  • 6
    • 84855985774 scopus 로고    scopus 로고
    • ANFIS-based approach for predicting sediment transport in clean sewer
    • H.M.Azamathulla,, A.Ab. Ghani,, and S.Y.Fei,, 2012. ANFIS-based approach for predicting sediment transport in clean sewer. Applied Soft Computing, 12 (3), 1227–1230. doi:10.1016/j.asoc.2011.12.003
    • (2012) Applied Soft Computing , vol.12 , Issue.3 , pp. 1227-1230
    • Azamathulla, H.M.1    Ab. Ghani, A.2    Fei, S.Y.3
  • 7
    • 77950612797 scopus 로고    scopus 로고
    • Genetic programming to predict bridge pier scour
    • H.M.Azamathulla,, et al., 2010. Genetic programming to predict bridge pier scour. Journal of Hydraulic Engineering, 136 (3), 165–169. doi:10.1061/(ASCE)HY.1943-7900.0000133
    • (2010) Journal of Hydraulic Engineering , vol.136 , Issue.3 , pp. 165-169
    • Azamathulla, H.M.1
  • 8
    • 67349204543 scopus 로고    scopus 로고
    • An ANFIS-based approach for predicting the bed load for moderately sized rivers
    • H.M.Azamathulla,, et al., 2009. An ANFIS-based approach for predicting the bed load for moderately sized rivers. Journal of Hydro-Environment Research, 3 (1), 35–44. doi:10.1016/j.jher.2008.10.003
    • (2009) Journal of Hydro-Environment Research , vol.3 , Issue.1 , pp. 35-44
    • Azamathulla, H.M.1
  • 9
    • 0034285035 scopus 로고    scopus 로고
    • Data mining and knowledge discovery in sediment transport
    • V.Babovic,, 2000. Data mining and knowledge discovery in sediment transport. Computer Aided Civil and Infrastructure Engineering, 15 (5), 383–389. doi:10.1111/0885-9507.00202
    • (2000) Computer Aided Civil and Infrastructure Engineering , vol.15 , Issue.5 , pp. 383-389
    • Babovic, V.1
  • 10
    • 0030698936 scopus 로고    scopus 로고
    • The evolution of equations from hydraulic data. Part II: applications
    • V.Babovic, and M.B.Abbott,, 1997. The evolution of equations from hydraulic data. Part II: applications. Journal of Hydraulic Research, 35 (3), 411–430. doi:10.1080/00221689709498421
    • (1997) Journal of Hydraulic Research , vol.35 , Issue.3 , pp. 411-430
    • Babovic, V.1    Abbott, M.B.2
  • 11
    • 0002158924 scopus 로고    scopus 로고
    • Genetic programming as a model induction engine
    • V.Babovic, and M.Keijzer,, 2000. Genetic programming as a model induction engine. Journal of Hydroinformatics, 2 (1), 35–60.
    • (2000) Journal of Hydroinformatics , vol.2 , Issue.1 , pp. 35-60
    • Babovic, V.1    Keijzer, M.2
  • 14
    • 67349239067 scopus 로고    scopus 로고
    • Long-shore sediment transport estimation using fuzzy inference system
    • R.Bakhtyar,, et al., 2008. Long-shore sediment transport estimation using fuzzy inference system. Applied Ocean Research, 30 (4), 273–286. doi:10.1016/j.apor.2008.12.001
    • (2008) Applied Ocean Research , vol.30 , Issue.4 , pp. 273-286
    • Bakhtyar, R.1
  • 15
    • 19944401912 scopus 로고    scopus 로고
    • Data driven modeling in the context of sediment transport
    • B.Bhattacharya,, R.K.Price,, and D.P.Solomatine,, 2005. Data driven modeling in the context of sediment transport. Physics and Chemistry of the Earth, 30 (4–5), 297–302. doi:10.1016/j.pce.2004.12.001
    • (2005) Physics and Chemistry of the Earth , vol.30 , Issue.4-5 , pp. 297-302
    • Bhattacharya, B.1    Price, R.K.2    Solomatine, D.P.3
  • 16
    • 34248631948 scopus 로고    scopus 로고
    • Machine learning approach to modeling sediment transport
    • B.Bhattacharya,, R.K.Price,, and D.P.Solomatine,, 2007. Machine learning approach to modeling sediment transport. Journal of Hydraulic Engineering, 133 (4), 440–450. doi:10.1061/(ASCE)0733-9429(2007)133:4(440)
    • (2007) Journal of Hydraulic Engineering , vol.133 , Issue.4 , pp. 440-450
    • Bhattacharya, B.1    Price, R.K.2    Solomatine, D.P.3
  • 17
    • 0036221122 scopus 로고    scopus 로고
    • Optimal division of data for neural networks models in water resources applications
    • G.J.Bowden,, H.R.Maier,, and G.C.Dandy,, 2002. Optimal division of data for neural networks models in water resources applications. Water Resources Research, 38 (2), 2–11. doi:10.1029/2001WR000266
    • (2002) Water Resources Research , vol.38 , Issue.2
    • Bowden, G.J.1    Maier, H.R.2    Dandy, G.C.3
  • 18
    • 85040292972 scopus 로고
    • Pasadena, CA: Tech. Rep. KH-R-43B, W.M. Keck Laboratory of Hydraulics and Water Resources, California Institute of Technology
    • W.R.Brownlie,, 1981a. Compilation of alluvial channel data: laboratory and field. Pasadena, CA: Tech. Rep. KH-R-43B, W.M. Keck Laboratory of Hydraulics and Water Resources, California Institute of Technology.
    • (1981) Compilation of alluvial channel data: laboratory and field
    • Brownlie, W.R.1
  • 19
    • 0004194857 scopus 로고
    • Pasadena, CA: Tech. Rep. KH-R-43A, W.M. Keck Laboratory of Hydraulics and Water Resources, California Institute of Technology
    • W.R.Brownlie,, 1981b. Prediction of flow depth and sediment discharge in open channels. Pasadena, CA: Tech. Rep. KH-R-43A, W.M. Keck Laboratory of Hydraulics and Water Resources, California Institute of Technology.
    • (1981) Prediction of flow depth and sediment discharge in open channels
    • Brownlie, W.R.1
  • 21
    • 70349781844 scopus 로고    scopus 로고
    • From flumes to rivers: can sediment transport in natural alluvial channels be predicted from observations at the laboratory scale?
    • E.Dogan,, et al., 2009. From flumes to rivers: can sediment transport in natural alluvial channels be predicted from observations at the laboratory scale? Water Resources Research, 45 (8), W08433. doi:10.1029/2008WR007637
    • (2009) Water Resources Research , vol.45 , Issue.8 , pp. W08433
    • Dogan, E.1
  • 22
    • 79957623077 scopus 로고    scopus 로고
    • A rational sediment transport scaling relation based on dimensionless stream power
    • B.C.Eaton, and M.Church,, 2011. A rational sediment transport scaling relation based on dimensionless stream power. Earth Surface Processes and Landforms, 36 (7), 901–910. doi:10.1002/esp.2120
    • (2011) Earth Surface Processes and Landforms , vol.36 , Issue.7 , pp. 901-910
    • Eaton, B.C.1    Church, M.2
  • 23
    • 1842475489 scopus 로고    scopus 로고
    • Some contributions to the uncertainty of sediment transport predictions
    • K.J.Eidsvik,, 2004. Some contributions to the uncertainty of sediment transport predictions. Continental Shelf Research, 24 (6), 739–754. doi:10.1016/j.csr.2003.11.003
    • (2004) Continental Shelf Research , vol.24 , Issue.6 , pp. 739-754
    • Eidsvik, K.J.1
  • 24
    • 0000558174 scopus 로고
    • Formulas for the transportation of bed load
    • H.A.Einstein,, 1942. Formulas for the transportation of bed load. Transactions, ASCE, 107 (2140), 561–573.
    • (1942) Transactions, ASCE , vol.107 , Issue.2140 , pp. 561-573
    • Einstein, H.A.1
  • 26
    • 0028543366 scopus 로고
    • Training feedforward networks with the Marquardt algorithm
    • M.T.Hagan, and M.B.Menhaj,, 1994. Training feedforward networks with the Marquardt algorithm. IEEE Transactions on Neural Networks, 5 (6), 989–993. doi:10.1109/72.329697
    • (1994) IEEE Transactions on Neural Networks , vol.5 , Issue.6 , pp. 989-993
    • Hagan, M.T.1    Menhaj, M.B.2
  • 28
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • K.Hornik,, M.Stinchcombe,, and H.White,, 1989. Multilayer feedforward networks are universal approximators. Neural Networks, 2 (5), 359–366. doi:10.1016/0893-6080(89)90020-8
    • (1989) Neural Networks , vol.2 , Issue.5 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 29
    • 0027601884 scopus 로고
    • ANFIS: adaptive-network-based fuzzy inference system
    • J.-S.R.Jang,, 1993. ANFIS: adaptive-network-based fuzzy inference system. IEEE Transactions on Systems, Man, and Cybernetics, 23 (3), 665–685. doi:10.1109/21.256541
    • (1993) IEEE Transactions on Systems, Man, and Cybernetics , vol.23 , Issue.3 , pp. 665-685
    • Jang, J.-S.R.1
  • 30
    • 0027266182 scopus 로고
    • Functional equivalence between radial basis function networks and fuzzy inference systems
    • J.-S.R.Jang, and C.-T.Sun,, 1993. Functional equivalence between radial basis function networks and fuzzy inference systems. IEEE Transactions on Neural Networks, 4 (1), 156–159. doi:10.1109/72.182710
    • (1993) IEEE Transactions on Neural Networks , vol.4 , Issue.1 , pp. 156-159
    • Jang, J.-S.R.1    Sun, C.-T.2
  • 31
    • 0029273384 scopus 로고
    • Neuro-fuzzy modeling and control
    • J.-S.R.Jang, and C.-T.Sun,, 1995. Neuro-fuzzy modeling and control. Proceedings of the IEEE, 83 (3), 378–406. doi:10.1109/5.364486
    • (1995) Proceedings of the IEEE , vol.83 , Issue.3 , pp. 378-406
    • Jang, J.-S.R.1    Sun, C.-T.2
  • 32
    • 0025473499 scopus 로고
    • Menu of coupled velocity and sediment- discharge relations for rivers
    • M.F.Karim, and J.F.Kennedy,, 1990. Menu of coupled velocity and sediment- discharge relations for rivers. Journal of Hydraulic Engineering, 116, 978–996. doi:10.1061/(ASCE)0733-9429(1990)116:8(978)
    • (1990) Journal of Hydraulic Engineering , vol.116
    • Karim, M.F.1    Kennedy, J.F.2
  • 33
    • 84900992524 scopus 로고    scopus 로고
    • Derivation of sediment transport models for sand bed rivers from data-driven techniques
    • Manning A., (ed), Rijeka: InTech Publishing Company
    • V.Kitsikoudis,, E.Sidiropoulos,, and V.Hrissanthou,, 2013. Derivation of sediment transport models for sand bed rivers from data-driven techniques. In: A.Manning, ed. Sediment transport processes and their modelling applications. Rijeka: InTech Publishing Company, 277–308.
    • (2013) Sediment transport processes and their modelling applications
    • Kitsikoudis, V.1    Sidiropoulos, E.2    Hrissanthou, V.3
  • 34
    • 0004553876 scopus 로고
    • Energy balance in stream flows carrying suspended load
    • R.T.Knapp,, 1938. Energy balance in stream flows carrying suspended load. Transactions, American Geophysical Union, 19 (1), 501–505. doi:10.1029/TR019i001p00501
    • (1938) Transactions, American Geophysical Union , vol.19 , Issue.1 , pp. 501-505
    • Knapp, R.T.1
  • 36
    • 0023524497 scopus 로고
    • Do critical stresses for incipient motion and erosion really exist?
    • J.W.Lavelle, and H.O.Mofjeld,, 1987. Do critical stresses for incipient motion and erosion really exist? Journal of Hydraulic Engineering, 113 (3), 370–385. doi:10.1061/(ASCE)0733-9429(1987)113:3(370)
    • (1987) Journal of Hydraulic Engineering , vol.113 , Issue.3 , pp. 370-385
    • Lavelle, J.W.1    Mofjeld, H.O.2
  • 37
    • 21244443364 scopus 로고    scopus 로고
    • Modelling suspended sediment transport using an integrated numerical and ANNs model
    • B.Lin, and M.M.Namin,, 2005. Modelling suspended sediment transport using an integrated numerical and ANNs model. Journal of Hydraulic Research, 43 (3), 302–310. doi:10.1080/00221680509500124
    • (2005) Journal of Hydraulic Research , vol.43 , Issue.3 , pp. 302-310
    • Lin, B.1    Namin, M.M.2
  • 38
    • 0032051569 scopus 로고    scopus 로고
    • The effect of internal parameters and geometry on the performance of back-propagation neural networks: an empirical study
    • H.R.Maier, and G.C.Dandy,, 1998. The effect of internal parameters and geometry on the performance of back-propagation neural networks: an empirical study. Environmental Modelling and Software, 13 (2), 193–209. doi:10.1016/S1364-8152(98)00020-6
    • (1998) Environmental Modelling and Software , vol.13 , Issue.2 , pp. 193-209
    • Maier, H.R.1    Dandy, G.C.2
  • 39
    • 0033957764 scopus 로고    scopus 로고
    • Neural networks for the prediction and fore- casting of water resources variables: a review of modeling issues and applications
    • H.R.Maier, and G.C.Dandy,, 2000. Neural networks for the prediction and fore- casting of water resources variables: a review of modeling issues and applications. Environmental Modelling and Software, 15 (1), 101–124.
    • (2000) Environmental Modelling and Software , vol.15 , Issue.1 , pp. 101-124
    • Maier, H.R.1    Dandy, G.C.2
  • 40
    • 0016451032 scopus 로고
    • An experiment in linguistic synthesis with a fuzzy logic controller
    • E.H.Mamdani, and S.Assilian,, 1975. An experiment in linguistic synthesis with a fuzzy logic controller. International Journal of Man-Machine Studies, 7 (1), 1–13. doi:10.1016/S0020-7373(75)80002-2
    • (1975) International Journal of Man-Machine Studies , vol.7 , Issue.1 , pp. 1-13
    • Mamdani, E.H.1    Assilian, S.2
  • 41
    • 0013015416 scopus 로고    scopus 로고
    • Subsymbolic methods for data mining in hydraulic engineering
    • A.W.Minns,, 2000. Subsymbolic methods for data mining in hydraulic engineering. Journal of Hydroinformatics, 2 (1), 3–13.
    • (2000) Journal of Hydroinformatics , vol.2 , Issue.1 , pp. 3-13
    • Minns, A.W.1
  • 42
    • 0034991079 scopus 로고    scopus 로고
    • Transport of sediment in large sand-bed rivers
    • A.Molinas, and B.Wu,, 2001. Transport of sediment in large sand-bed rivers. Journal of Hydraulic Research, 39 (2), 135–146. doi:10.1080/00221680109499814
    • (2001) Journal of Hydraulic Research , vol.39 , Issue.2 , pp. 135-146
    • Molinas, A.1    Wu, B.2
  • 43
    • 0036611003 scopus 로고    scopus 로고
    • Prediction of sediment load concentration in rivers using artificial neural network model
    • H.M.Nagy,, K.Watanabe,, and M.Hirano,, 2002. Prediction of sediment load concentration in rivers using artificial neural network model. Journal of Hydraulic Engineering, 128 (6), 588–595. doi:10.1061/(ASCE)0733-9429(2002)128:6(588)
    • (2002) Journal of Hydraulic Engineering , vol.128 , Issue.6 , pp. 588-595
    • Nagy, H.M.1    Watanabe, K.2    Hirano, M.3
  • 44
    • 0025397834 scopus 로고
    • Tests of selected sediment-transport formulas
    • T.Nakato,, 1990. Tests of selected sediment-transport formulas. Journal of Hydraulic Engineering, 116 (3), 362–379. doi:10.1061/(ASCE)0733-9429(1990)116:3(362)
    • (1990) Journal of Hydraulic Engineering , vol.116 , Issue.3 , pp. 362-379
    • Nakato, T.1
  • 45
    • 0014776873 scopus 로고
    • River flow forecasting through conceptual models, Part I—a discussion of principles
    • J.E.Nash, and J.V.Sutcliffe,, 1970. River flow forecasting through conceptual models, Part I—a discussion of principles. Journal of Hydrology, 10 (3), 282–290. doi:10.1016/0022-1694(70)90255-6
    • (1970) Journal of Hydrology , vol.10 , Issue.3 , pp. 282-290
    • Nash, J.E.1    Sutcliffe, J.V.2
  • 46
    • 84954903883 scopus 로고
    • Concept of critical shear stress in loose boundary open channels
    • A.S.Paintal,, 1971. Concept of critical shear stress in loose boundary open channels. Journal of Hydraulic Research, 9 (1), 91–113. doi:10.1080/00221687109500339
    • (1971) Journal of Hydraulic Research , vol.9 , Issue.1 , pp. 91-113
    • Paintal, A.S.1
  • 48
    • 84981757469 scopus 로고
    • Equilibrium conditions in debris-laden streams
    • W.W.Rubey,, 1933. Equilibrium conditions in debris-laden streams. Transactions, American Geophysical Union, 14 (1), 497–505. doi:10.1029/TR014i001p00497
    • (1933) Transactions, American Geophysical Union , vol.14 , Issue.1 , pp. 497-505
    • Rubey, W.W.1
  • 49
    • 0022471098 scopus 로고
    • Learning representations of back-propagation errors
    • D.E.Rumelhart,, G.E.Hinton,, and R.J.Williams,, 1986. Learning representations of back-propagation errors. Nature, 323 (6088), 533–536. doi:10.1038/323533a0
    • (1986) Nature , vol.323 , Issue.6088 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 53
    • 39449089195 scopus 로고    scopus 로고
    • Data-driven modelling: some past experiences and new approaches
    • D.P.Solomatine, and A.Ostfeld,, 2008. Data-driven modelling: some past experiences and new approaches. Journal of Hydroinformatics, 10 (1), 3–22. doi:10.2166/hydro.2008.015
    • (2008) Journal of Hydroinformatics , vol.10 , Issue.1 , pp. 3-22
    • Solomatine, D.P.1    Ostfeld, A.2
  • 54
    • 45449126257 scopus 로고
    • Structure identification of fuzzy model
    • M.Sugeno, and G.T.Kang,, 1988. Structure identification of fuzzy model. Fuzzy Sets and Systems, 28 (1), 15–33. doi:10.1016/0165-0114(88)90113-3
    • (1988) Fuzzy Sets and Systems , vol.28 , Issue.1 , pp. 15-33
    • Sugeno, M.1    Kang, G.T.2
  • 55
    • 17244377701 scopus 로고    scopus 로고
    • Impact of humans on the flux of terrestrial sediment to the global coastal ocean
    • J.P.M.Syvitski,, et al., 2005. Impact of humans on the flux of terrestrial sediment to the global coastal ocean. Science, 308 (5720), 376–380. doi:10.1126/science.1109454
    • (2005) Science , vol.308 , Issue.5720 , pp. 376-380
    • Syvitski, J.P.M.1
  • 56
    • 0021892282 scopus 로고
    • Fuzzy identification of systems and its applications to modeling and control
    • T.Takagi, and M.Sugeno,, 1985. Fuzzy identification of systems and its applications to modeling and control. IEEE Transactions on Systems, Man, and Cybernetics, 15 (1), 116–132.
    • (1985) IEEE Transactions on Systems, Man, and Cybernetics , vol.15 , Issue.1 , pp. 116-132
    • Takagi, T.1    Sugeno, M.2
  • 57
    • 0002906650 scopus 로고
    • An approach to fuzzy reasoning method
    • Gupta M.M., Ragade R.K., Yager R., (eds), Amsterdam: Elsevier Science Ltd
    • Y.Tsukamoto,, 1979. An approach to fuzzy reasoning method. In: M.M.Gupta, R.K.Ragade, and R.Yager, eds. Advances in fuzzy set theory and applications. Amsterdam: Elsevier Science Ltd, 137–149.
    • (1979) Advances in fuzzy set theory and applications , pp. 137-149
    • Tsukamoto, Y.1
  • 58
    • 80053920081 scopus 로고    scopus 로고
    • Prediction of coarse particle movement with adaptive neuro-fuzzy inference systems
    • M.Valyrakis,, P.Diplas,, and C.L.Dancey,, 2011a. Prediction of coarse particle movement with adaptive neuro-fuzzy inference systems. Hydrological Processes, 25 (22), 3513–3524.
    • (2011) Hydrological Processes , vol.25 , Issue.22 , pp. 3513-3524
    • Valyrakis, M.1    Diplas, P.2    Dancey, C.L.3
  • 59
    • 80053062813 scopus 로고    scopus 로고
    • Entrainment of coarse grains in turbulent flows: an extreme value theory approach
    • M.Valyrakis,, P.Diplas,, and C.L.Dancey,, 2011b. Entrainment of coarse grains in turbulent flows: an extreme value theory approach. Water Resources Research, 47 (9), W09512.
    • (2011) Water Resources Research , vol.47 , Issue.9 , pp. W09512
    • Valyrakis, M.1    Diplas, P.2    Dancey, C.L.3
  • 62
    • 0017820873 scopus 로고
    • Predicting sediment discharge in alluvial channels
    • Oxford: Pergamon Press
    • V.A.Vanoni,, 1978. Predicting sediment discharge in alluvial channels. In: A.K.Biswas, ed. Water supply and management. Oxford: Pergamon Press, 399–417.
    • (1978) Water supply and management , pp. 399-417
    • Vanoni, V.A.1    Biswas, A.K.2
  • 65
    • 84928812729 scopus 로고
    • Dynamics of channel flow - v.2
    • 3rd, Moscow: State Publishing House for Technical - Theoretical Literature
    • M.A.Velikanov,, 1955. Dynamics of channel flow - v.2. In: Sediments and the channel, 3rd ed. Moscow: State Publishing House for Technical - Theoretical Literature, 107–120. in Russian.
    • (1955) Sediments and the channel , pp. 107-120
    • Velikanov, M.A.1
  • 66
    • 0025503558 scopus 로고
    • Backpropagation through time: what it does and how to do it
    • P.J.Werbos,, 1990. Backpropagation through time: what it does and how to do it. Proceedings of the IEEE, 78 (10), 1550–1560.
    • (1990) Proceedings of the IEEE , vol.78 , Issue.10 , pp. 1550-1560
    • Werbos, P.J.1
  • 67
    • 84876452664 scopus 로고    scopus 로고
    • A neuro-fuzzy-based modelling approach for sediment transport computation
    • S.Wieprecht,, H.G.Tolossa,, and C.T.Yang,, 2013. A neuro-fuzzy-based modelling approach for sediment transport computation. Hydrological Sciences Journal, 58 (3), 587–599.
    • (2013) Hydrological Sciences Journal , vol.58 , Issue.3 , pp. 587-599
    • Wieprecht, S.1    Tolossa, H.G.2    Yang, C.T.3
  • 70
    • 0000279127 scopus 로고
    • Unit stream power and sediment transport
    • C.T.Yang,, 1972. Unit stream power and sediment transport. Journal of the Hydraulics Division, 98 (HY10), 1805–1836.
    • (1972) Journal of the Hydraulics Division , vol.98 , Issue.HY10 , pp. 1805-1836
    • Yang, C.T.1
  • 71
    • 17344377082 scopus 로고
    • Incipient motion and sediment transport
    • C.T.Yang,, 1973. Incipient motion and sediment transport. Journal of the Hydraulics Division, 99 (HY10), 1679–1704.
    • (1973) Journal of the Hydraulics Division , vol.99 , Issue.HY10 , pp. 1679-1704
    • Yang, C.T.1
  • 72
    • 0017369094 scopus 로고
    • The movement of sediment in rivers
    • C.T.Yang,, 1977. The movement of sediment in rivers. Surveys in Geophysics, 3 (1), 39–68.
    • (1977) Surveys in Geophysics , vol.3 , Issue.1 , pp. 39-68
    • Yang, C.T.1
  • 73
    • 0018306114 scopus 로고
    • Unit stream power equations for total load
    • C.T.Yang,, 1979. Unit stream power equations for total load. Journal of Hydrology, 40 (1–2), 123–138.
    • (1979) Journal of Hydrology , vol.40 , Issue.1-2 , pp. 123-138
    • Yang, C.T.1
  • 74
    • 0003495795 scopus 로고    scopus 로고
    • Original edition McGraw-Hill; 1996, Malabar, FL: Reprint edition by Krieger Publication Company
    • C.T.Yang,, 2003. Sediment transport: theory and practice. Original edition McGraw-Hill; 1996. Malabar, FL: Reprint edition by Krieger Publication Company.
    • (2003) Sediment transport: theory and practice
    • Yang, C.T.1
  • 76
    • 0042658013 scopus 로고    scopus 로고
    • Modeling flow and sediment transport in a river system using an artificial neural network
    • L.Yitian, and R.R.Gu,, 2003. Modeling flow and sediment transport in a river system using an artificial neural network. Environmental Management, 31 (1), 122–134.
    • (2003) Environmental Management , vol.31 , Issue.1 , pp. 122-134
    • Yitian, L.1    Gu, R.R.2
  • 78
    • 77956057286 scopus 로고    scopus 로고
    • Gene expression programming for total bed material load estimation—a case study
    • N.A.Zakaria,, et al., 2010. Gene expression programming for total bed material load estimation—a case study. Science of the Total Environment, 408 (21), 5078–5085.
    • (2010) Science of the Total Environment , vol.408 , Issue.21 , pp. 5078-5085
    • Zakaria, N.A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.