메뉴 건너뛰기




Volumn 58, Issue , 2015, Pages S203-S210

Coronary artery disease risk assessment from unstructured electronic health records using text mining

Author keywords

Coronary artery disease; EHR; Framingham risk score; Temporal data; Text mining

Indexed keywords

BLOOD PRESSURE; DISEASES; HEALTH RISKS; HEART; HOSPITAL DATA PROCESSING; RECORDS MANAGEMENT; RISK ASSESSMENT;

EID: 84940972699     PISSN: 15320464     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jbi.2015.08.003     Document Type: Article
Times cited : (66)

References (37)
  • 1
    • 0030996001 scopus 로고    scopus 로고
    • Global mortality, disability, and the contribution of risk factors: global burden of disease study
    • Murray C.J.L., Lopez A.D. Global mortality, disability, and the contribution of risk factors: global burden of disease study. Lancet 1997, 349(9063):1436-1442.
    • (1997) Lancet , vol.349 , Issue.9063 , pp. 1436-1442
    • Murray, C.J.L.1    Lopez, A.D.2
  • 2
    • 0030983708 scopus 로고    scopus 로고
    • Mortality by cause for eight regions of the world: global burden of disease study
    • Murray C.J.L., Lopez A.D. Mortality by cause for eight regions of the world: global burden of disease study. Lancet 1997, 349(9061):1269-1276.
    • (1997) Lancet , vol.349 , Issue.9061 , pp. 1269-1276
    • Murray, C.J.L.1    Lopez, A.D.2
  • 3
    • 60449094498 scopus 로고    scopus 로고
    • Heart disease and stroke statistics-2009 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee
    • Lloyd-Jones D., et al. Heart disease and stroke statistics-2009 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 2009, 119(3):480-486.
    • (2009) Circulation , vol.119 , Issue.3 , pp. 480-486
    • Lloyd-Jones, D.1
  • 4
    • 39549093148 scopus 로고    scopus 로고
    • General cardiovascular risk profile for use in primary care: the Framingham Heart Study
    • D'Agostino R.B., et al. General cardiovascular risk profile for use in primary care: the Framingham Heart Study. Circulation 2008, 117(6):743-753.
    • (2008) Circulation , vol.117 , Issue.6 , pp. 743-753
    • D'Agostino, R.B.1
  • 5
    • 33750139952 scopus 로고    scopus 로고
    • Canadian Cardiovascular Society position statement-recommendations for the diagnosis and treatment of dyslipidemia and prevention of cardiovascular disease
    • McPherson R., et al. Canadian Cardiovascular Society position statement-recommendations for the diagnosis and treatment of dyslipidemia and prevention of cardiovascular disease. Can. J. Cardiol. 2006, 22(11):913-927.
    • (2006) Can. J. Cardiol. , vol.22 , Issue.11 , pp. 913-927
    • McPherson, R.1
  • 6
    • 84877758658 scopus 로고    scopus 로고
    • (version 2012). The Fifth Joint Task Force of the European Society of Cardiology and other societies on cardiovascular disease prevention in clinical practice (constituted by representatives of nine societies and by invited experts)]. G Ital Cardiol (Rome)
    • J. Perk, et al., [European Guidelines on Cardiovascular Disease Prevention in Clinical Practice (version 2012). The Fifth Joint Task Force of the European Society of Cardiology and other societies on cardiovascular disease prevention in clinical practice (constituted by representatives of nine societies and by invited experts)]. G Ital Cardiol (Rome) 14(5) (2013) 328-392.
    • (2013) European Guidelines on Cardiovascular Disease Prevention in Clinical Practice , vol.14 , Issue.5 , pp. 328-392
    • Perk, J.1
  • 7
    • 84896114187 scopus 로고    scopus 로고
    • The Framingham Heart Study and the epidemiology of cardiovascular disease: a historical perspective
    • Mahmood S.S., et al. The Framingham Heart Study and the epidemiology of cardiovascular disease: a historical perspective. Lancet 2014, 383(9921):999-1008.
    • (2014) Lancet , vol.383 , Issue.9921 , pp. 999-1008
    • Mahmood, S.S.1
  • 8
    • 0032510639 scopus 로고    scopus 로고
    • Prediction of coronary heart disease using risk factor categories
    • Wilson P.W., et al. Prediction of coronary heart disease using risk factor categories. Circulation 1998, 97(18):1837-1847.
    • (1998) Circulation , vol.97 , Issue.18 , pp. 1837-1847
    • Wilson, P.W.1
  • 9
    • 13444278598 scopus 로고    scopus 로고
    • Cardiovascular risk calculators: understanding differences and realising economic implications
    • Quaglini S., et al. Cardiovascular risk calculators: understanding differences and realising economic implications. Int. J. Med. Inform. 2005, 74(2-4):191-199.
    • (2005) Int. J. Med. Inform. , vol.74 , Issue.2-4 , pp. 191-199
    • Quaglini, S.1
  • 10
    • 43049094057 scopus 로고    scopus 로고
    • "First-hit" heart attack risk calculators on the world wide web: implications for laypersons and healthcare practitioners
    • Roberts E.B., et al. "First-hit" heart attack risk calculators on the world wide web: implications for laypersons and healthcare practitioners. Int. J. Med. Inform. 2008, 77(6):405-412.
    • (2008) Int. J. Med. Inform. , vol.77 , Issue.6 , pp. 405-412
    • Roberts, E.B.1
  • 11
    • 69949168808 scopus 로고    scopus 로고
    • Cardiovascular risk assessment scores for people with diabetes: a systematic review
    • Chamnan P., et al. Cardiovascular risk assessment scores for people with diabetes: a systematic review. Diabetologia 2009, 52(10):2001-2014.
    • (2009) Diabetologia , vol.52 , Issue.10 , pp. 2001-2014
    • Chamnan, P.1
  • 12
    • 1942423627 scopus 로고    scopus 로고
    • Evaluating the performance of the Framingham risk equations in a population with diabetes
    • McEwan P., et al. Evaluating the performance of the Framingham risk equations in a population with diabetes. Diabet. Med. 2004, 21(4):318-323.
    • (2004) Diabet. Med. , vol.21 , Issue.4 , pp. 318-323
    • McEwan, P.1
  • 13
    • 84858634773 scopus 로고    scopus 로고
    • Using body mass index data in the electronic health record to calculate cardiovascular risk
    • Green B.B., et al. Using body mass index data in the electronic health record to calculate cardiovascular risk. Am. J. Prev. Med. 2012, 42(4):342-347.
    • (2012) Am. J. Prev. Med. , vol.42 , Issue.4 , pp. 342-347
    • Green, B.B.1
  • 14
    • 84880804037 scopus 로고    scopus 로고
    • Combining knowledge and data driven insights for identifying risk factors using electronic health records
    • Sun J., et al. Combining knowledge and data driven insights for identifying risk factors using electronic health records. AMIA Annu. Symp. Proc. 2012, 2012:901-910.
    • (2012) AMIA Annu. Symp. Proc. , vol.2012 , pp. 901-910
    • Sun, J.1
  • 18
    • 84911925951 scopus 로고    scopus 로고
    • HTNSystem: hypertension information extraction system for unstructured clinical notes
    • Springer International Publishing, S.-M. Cheng, M.-Y. Day (Eds.)
    • Jonnagaddala J., et al. HTNSystem: hypertension information extraction system for unstructured clinical notes. Technologies and Applications of Artificial Intelligence 2014, 219-227. Springer International Publishing. S.-M. Cheng, M.-Y. Day (Eds.).
    • (2014) Technologies and Applications of Artificial Intelligence , pp. 219-227
    • Jonnagaddala, J.1
  • 19
    • 84906315231 scopus 로고    scopus 로고
    • Comparison of the Framingham Risk Score, SCORE and WHO/ISH cardiovascular risk prediction models in an Asian population
    • Selvarajah S., et al. Comparison of the Framingham Risk Score, SCORE and WHO/ISH cardiovascular risk prediction models in an Asian population. Int. J. Cardiol. 2014, 176(1):211-218.
    • (2014) Int. J. Cardiol. , vol.176 , Issue.1 , pp. 211-218
    • Selvarajah, S.1
  • 20
    • 84907487248 scopus 로고    scopus 로고
    • Prediction of cardiovascular risk using Framingham, ASSIGN and QRISK2: how well do they predict individual rather than population risk?
    • van Staa T.P., et al. Prediction of cardiovascular risk using Framingham, ASSIGN and QRISK2: how well do they predict individual rather than population risk?. PLoS One 2014, 9(10):e106455.
    • (2014) PLoS One , vol.9 , Issue.10 , pp. e106455
    • van Staa, T.P.1
  • 21
    • 0034761724 scopus 로고    scopus 로고
    • Traditional Framingham risk factors fail to fully account for accelerated atherosclerosis in systemic lupus erythematosus
    • Esdaile J.M., et al. Traditional Framingham risk factors fail to fully account for accelerated atherosclerosis in systemic lupus erythematosus. Arthritis Rheum. 2001, 44(10):2331-2337.
    • (2001) Arthritis Rheum. , vol.44 , Issue.10 , pp. 2331-2337
    • Esdaile, J.M.1
  • 22
    • 79953732420 scopus 로고    scopus 로고
    • MICE: multivariate imputation by chained equations in R
    • Buuren S., Groothuis-Oudshoorn K. MICE: multivariate imputation by chained equations in R. J. Stat. Software 2011, 45(3).
    • (2011) J. Stat. Software , vol.45 , Issue.3
    • Buuren, S.1    Groothuis-Oudshoorn, K.2
  • 23
    • 2442482842 scopus 로고    scopus 로고
    • The distribution of 10-year risk for coronary heart disease among U.S. adults: findings from the National Health and Nutrition Examination Survey III
    • Ford E.S., Giles W.H., Mokdad A.H. The distribution of 10-year risk for coronary heart disease among U.S. adults: findings from the National Health and Nutrition Examination Survey III. J. Am. Coll. Cardiol. 2004, 43(10):1791-1796.
    • (2004) J. Am. Coll. Cardiol. , vol.43 , Issue.10 , pp. 1791-1796
    • Ford, E.S.1    Giles, W.H.2    Mokdad, A.H.3
  • 24
    • 33750468551 scopus 로고    scopus 로고
    • DITTO - a tool for identification of patient cohorts from the text of physician notes in the electronic medical record
    • Turchin A., Pendergrass M.L., Kohane I.S. DITTO - a tool for identification of patient cohorts from the text of physician notes in the electronic medical record. AMIA Ann. Symp. Proc. 2005, 2005:744-748.
    • (2005) AMIA Ann. Symp. Proc. , vol.2005 , pp. 744-748
    • Turchin, A.1    Pendergrass, M.L.2    Kohane, I.S.3
  • 25
    • 33750051353 scopus 로고    scopus 로고
    • Cardiovascular disease risk assessment in older women: can we improve on Framingham? British Women's Heart and Health prospective cohort study
    • May M., et al. Cardiovascular disease risk assessment in older women: can we improve on Framingham? British Women's Heart and Health prospective cohort study. Heart 2006, 92(10):1396-1401.
    • (2006) Heart , vol.92 , Issue.10 , pp. 1396-1401
    • May, M.1
  • 26
    • 0034635877 scopus 로고    scopus 로고
    • Evaluation of computer based clinical decision support system and risk chart for management of hypertension in primary care: randomised controlled trial
    • Montgomery A.A., et al. Evaluation of computer based clinical decision support system and risk chart for management of hypertension in primary care: randomised controlled trial. BMJ 2000, 320(7236):686-690.
    • (2000) BMJ , vol.320 , Issue.7236 , pp. 686-690
    • Montgomery, A.A.1
  • 27
    • 77953635924 scopus 로고    scopus 로고
    • Prediction modeling using EHR data: challenges, strategies, and a comparison of machine learning approaches
    • Wu J., Roy J., Stewart W.F. Prediction modeling using EHR data: challenges, strategies, and a comparison of machine learning approaches. Med. Care 2010, 48(Suppl. 6):S106-13.
    • (2010) Med. Care , vol.48 , pp. S106-S113
    • Wu, J.1    Roy, J.2    Stewart, W.F.3
  • 28
    • 84924295546 scopus 로고    scopus 로고
    • Incorporating temporal EHR data in predictive models for risk stratification of renal function deterioration
    • Singh A., et al. Incorporating temporal EHR data in predictive models for risk stratification of renal function deterioration. J. Biomed. Inform. 2015, 53:220-228.
    • (2015) J. Biomed. Inform. , vol.53 , pp. 220-228
    • Singh, A.1
  • 29
    • 0018341014 scopus 로고
    • Diabetes and cardiovascular risk factors: the Framingham study
    • Kannel W.B., McGee D.L. Diabetes and cardiovascular risk factors: the Framingham study. Circulation 1979, 59(1):8-13.
    • (1979) Circulation , vol.59 , Issue.1 , pp. 8-13
    • Kannel, W.B.1    McGee, D.L.2
  • 30
    • 84857067097 scopus 로고    scopus 로고
    • Prediction models for the risk of cardiovascular disease in patients with type 2 diabetes: a systematic review
    • Van Dieren S., et al. Prediction models for the risk of cardiovascular disease in patients with type 2 diabetes: a systematic review. Heart 2012, 98(5):360-369.
    • (2012) Heart , vol.98 , Issue.5 , pp. 360-369
    • Van Dieren, S.1
  • 31
    • 47149088261 scopus 로고    scopus 로고
    • Predicting cardiovascular risk in England and Wales: prospective derivation and validation of QRISK2
    • Hippisley-Cox J., et al. Predicting cardiovascular risk in England and Wales: prospective derivation and validation of QRISK2. BMJ 2008, 336(7659):1475-1482.
    • (2008) BMJ , vol.336 , Issue.7659 , pp. 1475-1482
    • Hippisley-Cox, J.1
  • 32
    • 71649114494 scopus 로고    scopus 로고
    • Clinical implications of JUPITER (Justification for the Use of statins in Prevention: an Intervention Trial Evaluating Rosuvastatin) in a U.S. population insights from the ARIC (Atherosclerosis Risk in Communities) study
    • Yang E.Y., et al. Clinical implications of JUPITER (Justification for the Use of statins in Prevention: an Intervention Trial Evaluating Rosuvastatin) in a U.S. population insights from the ARIC (Atherosclerosis Risk in Communities) study. J. Am. Coll. Cardiol. 2009, 54(25):2388-2395.
    • (2009) J. Am. Coll. Cardiol. , vol.54 , Issue.25 , pp. 2388-2395
    • Yang, E.Y.1
  • 33
    • 84899482449 scopus 로고    scopus 로고
    • A methodology for interactive mining and visual analysis of clinical event patterns using electronic health record data
    • Gotz D., Wang F., Perer A. A methodology for interactive mining and visual analysis of clinical event patterns using electronic health record data. J. Biomed. Inform. 2014, 48:148-159.
    • (2014) J. Biomed. Inform. , vol.48 , pp. 148-159
    • Gotz, D.1    Wang, F.2    Perer, A.3
  • 34
    • 84977499461 scopus 로고    scopus 로고
    • Towards actionable risk stratification: a bilinear approach
    • Wang X., et al. Towards actionable risk stratification: a bilinear approach. J. Biomed. Inform. 2014.
    • (2014) J. Biomed. Inform.
    • Wang, X.1
  • 35
    • 84921904308 scopus 로고    scopus 로고
    • Prediction of hospitalization due to heart diseases by supervised learning methods
    • Dai W., et al. Prediction of hospitalization due to heart diseases by supervised learning methods. Int. J. Med. Inform. 2015, 84(3):189-197.
    • (2015) Int. J. Med. Inform. , vol.84 , Issue.3 , pp. 189-197
    • Dai, W.1
  • 36
    • 84919839072 scopus 로고    scopus 로고
    • Limestone: high-throughput candidate phenotype generation via tensor factorization
    • Ho J.C., et al. Limestone: high-throughput candidate phenotype generation via tensor factorization. J. Biomed. Inform. 2014, 52:199-211.
    • (2014) J. Biomed. Inform. , vol.52 , pp. 199-211
    • Ho, J.C.1
  • 37
    • 73349096011 scopus 로고    scopus 로고
    • An electronic clinical decision support tool to assist primary care providers in cardiovascular disease risk management: development and mixed methods evaluation
    • Peiris P.D., et al. An electronic clinical decision support tool to assist primary care providers in cardiovascular disease risk management: development and mixed methods evaluation. J. Med. Internet Res. 2009, 11(4).
    • (2009) J. Med. Internet Res. , vol.11 , Issue.4
    • Peiris, P.D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.