메뉴 건너뛰기




Volumn 2015, Issue 8, 2015, Pages

Approximate Bayesian computation for forward modeling in cosmology

Author keywords

cosmological simulations; non gaussianity; weak gravitational lensing

Indexed keywords


EID: 84940855706     PISSN: None     EISSN: 14757516     Source Type: Journal    
DOI: 10.1088/1475-7516/2015/08/043     Document Type: Article
Times cited : (125)

References (68)
  • 1
    • 0035620757 scopus 로고    scopus 로고
    • Bayesian methods for cosmological parameter estimation from cosmic microwave background measurements
    • N. Christensen, R. Meyer, L. Knox and B. Luey, 2001 Bayesian methods for cosmological parameter estimation from cosmic microwave background measurements, Class. Quant. Grav. 18 2677 [astro-ph/0103134]
    • (2001) Class. Quant. Grav. , vol.18 , Issue.14 , pp. 2677
    • Christensen, N.1    Meyer, R.2    Knox, L.3    Luey, B.4
  • 2
    • 0001909030 scopus 로고    scopus 로고
    • The age of the universe and the cosmological constant determined from cosmic microwave background anisotropy measurements
    • L. Knox, N. Christensen and C. Skordis, 2001 The age of the universe and the cosmological constant determined from cosmic microwave background anisotropy measurements, Astrophys. J. 563 L95 [astro-ph/0109232]
    • (2001) Astrophys. J. , vol.563 , Issue.2 , pp. L95
    • Knox, L.1    Christensen, N.2    Skordis, C.3
  • 4
    • 77956890234 scopus 로고
    • Monte Carlo sampling methods using Markov chains and their applications
    • W.K. Hastings, 1970 Monte Carlo sampling methods using Markov chains and their applications, Biometrika 57 97
    • (1970) Biometrika , vol.57 , pp. 97
    • Hastings, W.K.1
  • 5
    • 0021518209 scopus 로고
    • Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images
    • S. Geman and D. Geman, 1984 Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images, IEEE Trans. Pattern Anal. Machine Intell. 6 721
    • (1984) IEEE Trans. Pattern Anal. Machine Intell. , vol.6 , pp. 721
    • Geman, S.1    Geman, D.2
  • 6
    • 33644781220 scopus 로고    scopus 로고
    • Nested sampling
    • J. Skilling, 2004 Nested sampling, in Bayesian inference and maximum entropy methods in science and engineering conference, AIP Conf. Proc. 735 395
    • (2004) AIP Conf. Proc. , vol.735 , pp. 395
    • Skilling, J.1
  • 8
    • 0001534675 scopus 로고    scopus 로고
    • Non-linear filtering: Interacting particle resolution
    • P. Del Moral, 1996 Non-linear filtering: interacting particle resolution, in Markov processes and related fields, volume 2, pg. 555
    • (1996) Markov Processes and Related Fields , pp. 555
    • Del Moral, P.1
  • 12
    • 0037113847 scopus 로고    scopus 로고
    • Cosmological parameters from CMB and other data: A Monte Carlo approach
    • A. Lewis and S. Bridle, 2002 Cosmological parameters from CMB and other data: a Monte Carlo approach, Phys. Rev. D 66 103511 [astro-ph/0205436]
    • (2002) Phys. Rev. , vol.66 , pp. 103511
    • Lewis, A.1    Bridle, S.2
  • 15
    • 70349215183 scopus 로고    scopus 로고
    • MultiNest: An efficient and robust Bayesian inference tool for cosmology and particle physics
    • F. Feroz, M.P. Hobson and M. Bridges, 2009 MultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physics, Mon. Not. Roy. Astron. Soc. 398 1601 [0809.3437]
    • (2009) Mon. Not. Roy. Astron. Soc. , vol.398 , pp. 1601
    • Feroz, F.1    Hobson, M.P.2    Bridges, M.3
  • 17
    • 84874710087 scopus 로고    scopus 로고
    • Conservative constraints on early cosmology: An illustration of the Monte Python cosmological parameter inference code
    • B. Audren, J. Lesgourgues, K. Benabed and S. Prunet, 2013 Conservative constraints on early cosmology: an illustration of the Monte Python cosmological parameter inference code J. Cosmol. Astropart. Phys. 2013 02 001 [1210.7183]
    • (2013) J. Cosmol. Astropart. Phys. , vol.2013 , Issue.2 , pp. 001
    • Audren, B.1    Lesgourgues, J.2    Benabed, K.3    Prunet, S.4
  • 18
    • 84908101026 scopus 로고    scopus 로고
    • Cosmo++: An object-oriented C++ library for cosmology
    • G. Aslanyan, 2014 Cosmo++: an object-oriented C++ library for cosmology, Comput. Phys. Commun. 185 3215 [1312.4961]
    • (2014) Comput. Phys. Commun. , vol.185 , pp. 3215
    • Aslanyan, G.1
  • 21
    • 79551594946 scopus 로고    scopus 로고
    • 21cmFAST: A fast, semi-numerical simulation of the high-redshift 21 cm signal
    • A. Mesinger, S. Furlanetto and R. Cen, 2011 21cmFAST: a fast, semi-numerical simulation of the high-redshift 21 cm signal, Mon. Not. Roy. Astron. Soc. 411 955 [1003.3878]
    • (2011) Mon. Not. Roy. Astron. Soc. , vol.411 , pp. 955
    • Mesinger, A.1    Furlanetto, S.2    Cen, R.3
  • 23
    • 84930004591 scopus 로고    scopus 로고
    • Simulation of astronomical images from optical survey telescopes using a comprehensive photon Monte Carlo approach
    • J.R. Peterson et al., 2015 Simulation of astronomical images from optical survey telescopes using a comprehensive photon Monte Carlo approach, Astrophys. J. Suppl. 218 14 [1504.06570]
    • (2015) Astrophys. J. Suppl. , vol.218 , Issue.1 , pp. 14
    • Peterson, J.R.1
  • 24
    • 84924859797 scopus 로고    scopus 로고
    • Modeling the transfer function for the Dark Energy Survey
    • DES collaboration
    • DES collaboration, C. Chang et al., 2015 Modeling the transfer function for the Dark Energy Survey, Astrophys. J. 801 73 [1411.0032]
    • (2015) Astrophys. J. , vol.801 , Issue.2 , pp. 73
    • Chang, C.1
  • 25
    • 33947614573 scopus 로고    scopus 로고
    • Cosmology with wide-field SZ cluster surveys: Selection and systematic effects
    • J.B. Juin, D. Yvon, A. Réfrégier and C. Yeche, 2007 Cosmology with wide-field SZ cluster surveys: selection and systematic effects, Astron. Astrophys. 465 57 [astro-ph/0512378]
    • (2007) Astron. Astrophys. , vol.465 , pp. 57
    • Juin, J.B.1    Yvon, D.2    Réfrégier, A.3    Yeche, C.4
  • 26
    • 65649111697 scopus 로고    scopus 로고
    • FASTLens (FAst STatistics for weak Lensing): Fast method for weak lensing statistics and map making
    • S. Pires, J.L. Starck, A. Amara, R. Teyssier, A. Réfrégier and J. Fadili, 2009 FASTLens (FAst STatistics for weak Lensing): fast method for weak lensing statistics and map making, Mon. Not. Roy. Astron. Soc. 395 1265 [0804.4068]
    • (2009) Mon. Not. Roy. Astron. Soc. , vol.395 , pp. 1265
    • Pires, S.1    Starck, J.L.2    Amara, A.3    Teyssier, R.4    Réfrégier, A.5    Fadili, J.6
  • 29
    • 33646492494 scopus 로고    scopus 로고
    • The Shear TEsting Programme. 1. Weak lensing analysis of simulated ground-based observations
    • C. Heymans et al., 2006 The Shear TEsting Programme. 1. Weak lensing analysis of simulated ground-based observations, Mon. Not. Roy. Astron. Soc. 368 1323 [astro-ph/0506112]
    • (2006) Mon. Not. Roy. Astron. Soc. , vol.368 , pp. 1323
    • Heymans, C.1
  • 30
    • 33947196378 scopus 로고    scopus 로고
    • The Shear TEsting Programme. 2. Factors affecting high precision weak lensing analyses
    • R. Massey et al., 2007 The Shear TEsting Programme. 2. Factors affecting high precision weak lensing analyses, Mon. Not. Roy. Astron. Soc. 376 13 [astro-ph/0608643]
    • (2007) Mon. Not. Roy. Astron. Soc. , vol.376 , pp. 13
    • Massey, R.1
  • 31
    • 84865395345 scopus 로고    scopus 로고
    • Handbook for the GREAT08 challenge: An image analysis competition for cosmological lensing
    • S. Bridle et al., 2009 Handbook for the GREAT08 challenge: an image analysis competition for cosmological lensing, Ann. Appl. Stat. 3 6 [0802.1214]
    • (2009) Ann. Appl. Stat. , vol.3 , pp. 6
    • Bridle, S.1
  • 32
    • 84897874483 scopus 로고    scopus 로고
    • A way forward for cosmic shear: Monte Carlo control loops
    • A. Refregier and A. Amara, 2014 A way forward for cosmic shear: Monte Carlo control loops, Phys. Dark Univ. 3 1 [1303.4739]
    • (2014) Phys. Dark Univ. , vol.3 , pp. 1
    • Refregier, A.1    Amara, A.2
  • 34
    • 0032735986 scopus 로고    scopus 로고
    • Population growth of human y chromosomes: A study of y chromosome microsatellites
    • J.K. Pritchard, M.T. Seielstad, A. Perez-Lezaun and M.W. Feldman, 1999 Population growth of human Y chromosomes: a study of Y chromosome microsatellites, http://mbe.oxfordjournals.org/content/16/12/1791.abstract Mol. Biol. Evol. 16 1791
    • (1999) Mol. Biol. Evol. , vol.16 , Issue.12 , pp. 1791
    • Pritchard, J.K.1    Seielstad, M.T.2    Perez-Lezaun, A.3    Feldman, M.W.4
  • 35
    • 0036964474 scopus 로고    scopus 로고
    • Approximate Bayesian computation in population genetics
    • M.A. Beaumont, W. Zhang and D.J. Balding, 2002 Approximate Bayesian computation in population genetics, http://www.genetics.org/content/162/4/2025.abstract Genetics 162 2025
    • (2002) Genetics , vol.162 , pp. 2025
    • Beaumont, M.A.1    Zhang, W.2    Balding, D.J.3
  • 38
    • 58149142997 scopus 로고    scopus 로고
    • Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems
    • T. Toni, D. Welch, N. Strelkowa, A. Ipsen and M.P. Stumpf, 2009 Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems, J. Roy. Soc. Interf. 6 187 [0901.1925]
    • (2009) J. Roy. Soc. Interf. , vol.6 , pp. 187
    • Toni, T.1    Welch, D.2    Strelkowa, N.3    Ipsen, A.4    Stumpf, M.P.5
  • 41
    • 78149388939 scopus 로고    scopus 로고
    • Approximate Bayesian computation in evolution and ecology
    • M.A. Beaumont, 2010 Approximate Bayesian computation in evolution and ecology, Ann. Rev. Ecol. Evolut. Systemat. 41 379
    • (2010) Ann. Rev. Ecol. Evolut. Systemat. , vol.41 , pp. 379
    • Beaumont, M.A.1
  • 42
    • 84893308174 scopus 로고    scopus 로고
    • A framework for parameter estimation and model selection from experimental data in systems biology using approximate Bayesian computation
    • J. Liepe et al., 2014 A framework for parameter estimation and model selection from experimental data in systems biology using approximate Bayesian computation, Nature Prot. 9 439
    • (2014) Nature Prot. , vol.9 , pp. 439
    • Liepe, J.1
  • 43
    • 84858767588 scopus 로고    scopus 로고
    • A tutorial on approximate Bayesian computation
    • B.M. Turner and T. Van Zandt, 2012 A tutorial on approximate Bayesian computation, J. Math. Psychol. 56 69
    • (2012) J. Math. Psychol. , vol.56 , pp. 69
    • Turner, B.M.1    Van Zandt, T.2
  • 44
    • 84857190557 scopus 로고    scopus 로고
    • An adaptive sequential Monte Carlo method for approximate Bayesian computation
    • P. Del Moral, A. Doucet and A. Jasra, 2012 An adaptive sequential Monte Carlo method for approximate Bayesian computation, Statist. Comput. 22 1009
    • (2012) Statist. Comput. , vol.22 , pp. 1009
    • Del Moral, P.1    Doucet, A.2    Jasra, A.3
  • 45
    • 84865363003 scopus 로고    scopus 로고
    • Approximate Bayesian computation for astronomical model analysis: A case study in galaxy demographics and morphological transformation at high redshift
    • E. Cameron and A.N. Pettitt, 2012 Approximate Bayesian computation for astronomical model analysis: a case study in galaxy demographics and morphological transformation at high redshift, Mon. Not. Roy. Astron. Soc. 425 44 [1202.1426]
    • (2012) Mon. Not. Roy. Astron. Soc. , vol.425 , pp. 44
    • Cameron, E.1    Pettitt, A.N.2
  • 46
    • 84896636703 scopus 로고    scopus 로고
    • Likelihood-free inference in cosmology: Potential for the estimation of luminosity functions
    • pg. 3
    • C.M. Schafer and P.E. Freeman, 2012 Likelihood-free inference in cosmology: potential for the estimation of luminosity functions, in Statistical Challenges in Modern Astronomy V, Springer, Germany, pg. 3
    • (2012) Statistical Challenges in Modern Astronomy v
    • Schafer, C.M.1    Freeman, P.E.2
  • 48
    • 84874093436 scopus 로고    scopus 로고
    • Likelihood-free cosmological inference with type Ia supernovae: Approximate Bayesian computation for a complete treatment of uncertainty
    • A. Weyant, C. Schafer and W.M. Wood-Vasey, 2013 Likelihood-free cosmological inference with type Ia supernovae: approximate Bayesian computation for a complete treatment of uncertainty, Astrophys. J. 764 116 [1206.2563]
    • (2013) Astrophys. J. , vol.764 , Issue.2 , pp. 116
    • Weyant, A.1    Schafer, C.2    Wood-Vasey, W.M.3
  • 52
    • 84877883997 scopus 로고    scopus 로고
    • An Ultra Fast Image Generator (UFIG) for wide-field astronomy
    • J. Bergé, L. Gamper, A. Réfrégier and A. Amara, 2013 An Ultra Fast Image Generator (UFIG) for wide-field astronomy, Astron. Comput. 1 23 [1209.1200]
    • (2013) Astron. Comput. , vol.1 , pp. 23
    • Bergé, J.1    Gamper, L.2    Réfrégier, A.3    Amara, A.4
  • 54
    • 69249140246 scopus 로고    scopus 로고
    • Estimation of cosmological parameters using adaptive importance sampling
    • D. Wraith, M. Kilbinger, K. Benabed, O. Cappé, J.-F. Cardoso, G. Fort et al., 2009 Estimation of cosmological parameters using adaptive importance sampling, Phys. Rev. D 80 023507 [0903.0837]
    • (2009) Phys. Rev. , vol.80 , pp. 023507
    • Wraith, D.1    Kilbinger, M.2    Benabed, K.3    Cappé, O.4    Cardoso, J.-F.5    Fort, G.6
  • 55
    • 84961288602 scopus 로고    scopus 로고
    • Sequential Monte Carlo with adaptive weights for approximate Bayesian computation
    • F.V. Bonassi et al., 2015 Sequential Monte Carlo with adaptive weights for approximate Bayesian computation, Bayesian Anal. 10 171 [1503.07791]
    • (2015) Bayesian Anal. , vol.10 , pp. 171
    • Bonassi, F.V.1
  • 56
    • 84888294601 scopus 로고    scopus 로고
    • Adaptive approximate Bayesian computation for complex models
    • M. Lenormand, F. Jabot and G. Deffuant, 2013 Adaptive approximate Bayesian computation for complex models, Computat. Statist. 28 2777 [1111.1308]
    • (2013) Computat. Statist. , vol.28 , pp. 2777
    • Lenormand, M.1    Jabot, F.2    Deffuant, G.3
  • 58
    • 84922879858 scopus 로고    scopus 로고
    • The rate of convergence for approximate Bayesian computation
    • S. Barber, J. Voss and M. Webster, 2015 The rate of convergence for approximate Bayesian computation, Electron. J. Statist. 9 80 [1311.2038]
    • (2015) Electron. J. Statist. , vol.9 , pp. 80
    • Barber, S.1    Voss, J.2    Webster, M.3
  • 59
    • 84879208026 scopus 로고    scopus 로고
    • On optimality of kernels for approximate Bayesian computation using sequential Monte Carlo
    • S. Filippi, C.P. Barnes, J. Cornebise and M.P. Stumpf, 2013 On optimality of kernels for approximate Bayesian computation using sequential Monte Carlo, Statist. Appl. Genet. Mol. Biol. 12 87 [1106.6280]
    • (2013) Statist. Appl. Genet. Mol. Biol. , vol.12 , pp. 87
    • Filippi, S.1    Barnes, C.P.2    Cornebise, J.3    Stumpf, M.P.4
  • 61
    • 84922620752 scopus 로고    scopus 로고
    • The dark energy survey and operations: Year 1
    • DES collaboration
    • DES collaboration, H. Diehl et al., 2014 The dark energy survey and operations: year 1, Proc. SPIE Int. Soc. Opt. Eng. 9149 91490V
    • (2014) Proc. SPIE Int. Soc. Opt. Eng. , vol.9149 , pp. 91490V
    • Diehl, H.1
  • 64
    • 84878991573 scopus 로고    scopus 로고
    • A comparative review of dimension reduction methods in approximate Bayesian computation
    • M.G. Blum et al., 2013 A comparative review of dimension reduction methods in approximate Bayesian computation, Statist. Sci. 28 189 [1202.3819]
    • (2013) Statist. Sci. , vol.28 , pp. 189
    • Blum, M.G.1
  • 68
    • 80051601039 scopus 로고    scopus 로고
    • On accuracy of pdf divergence estimators and their applicability to representative data sampling
    • M. Budka, B. Gabrys and K. Musial, 2011 On accuracy of pdf divergence estimators and their applicability to representative data sampling, Entropy 13 1229
    • (2011) Entropy , vol.13 , pp. 1229
    • Budka, M.1    Gabrys, B.2    Musial, K.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.