메뉴 건너뛰기




Volumn 9, Issue 2, 2014, Pages 439-456

A framework for parameter estimation and model selection from experimental data in systems biology using approximate Bayesian computation

Author keywords

[No Author keywords available]

Indexed keywords

BAYES THEOREM; MODELS, BIOLOGICAL; SOFTWARE; SYSTEMS BIOLOGY;

EID: 84893308174     PISSN: 17542189     EISSN: 17502799     Source Type: Journal    
DOI: 10.1038/nprot.2014.025     Document Type: Article
Times cited : (175)

References (69)
  • 1
    • 84881027074 scopus 로고    scopus 로고
    • Model selection in systems and synthetic biology
    • Kirk, P., Thorne, T. & Stumpf, M.P. Model selection in systems and synthetic biology. Curr. Opin. Biotechnol. 24, 767-774 (2013).
    • (2013) Curr. Opin. Biotechnol. , vol.24 , pp. 767-774
    • Kirk, P.1    Thorne, T.2    Stumpf, M.P.3
  • 2
    • 77956634296 scopus 로고    scopus 로고
    • Inferring signaling pathway topologies from multiple perturbation measurements of specifc biochemical species
    • Xu, T.-R. et al. Inferring signaling pathway topologies from multiple perturbation measurements of specifc biochemical species. Sci. Signal 3, ra20 (2010).
    • (2010) Sci. Signal , vol.3
    • Xu, T.-R.1
  • 4
    • 41849104688 scopus 로고    scopus 로고
    • Hybrid optimization method with general switching strategy for parameter estimation
    • Balsa-Canto, E., Peifer, M., Banga, J.R., Timmer, J. & Fleck, C. Hybrid optimization method with general switching strategy for parameter estimation. BMC Syst. Biol. 2, 26 (2008).
    • (2008) BMC Syst. Biol. , vol.2 , pp. 26
    • Balsa-Canto, E.1    Peifer, M.2    Banga, J.R.3    Timmer, J.4    Fleck, C.5
  • 5
    • 65549161909 scopus 로고    scopus 로고
    • Gaussian process regression bootstrapping: Exploring the effects of uncertainty in time course data
    • Kirk, P.D.W. & Stumpf, M.P.H. Gaussian process regression bootstrapping: exploring the effects of uncertainty in time course data. Bioinformatics 25, 1300-1306 (2009).
    • (2009) Bioinformatics , vol.25 , pp. 1300-1306
    • Kirk, P.D.W.1    Stumpf, M.P.H.2
  • 6
    • 84878753843 scopus 로고    scopus 로고
    • Bayes' theorem in the 21st century
    • Efron, B. Bayes' theorem in the 21st century. Science 340, 1177-1178 (2013).
    • (2013) Science , vol.340 , pp. 1177-1178
    • Efron, B.1
  • 7
    • 40749094910 scopus 로고    scopus 로고
    • Bayesian ranking of biochemical system models
    • Vyshemirsky, V. & Girolami, M.A. Bayesian ranking of biochemical system models. Bioinformatics 24, 833-839 (2008).
    • (2008) Bioinformatics , vol.24 , pp. 833-839
    • Vyshemirsky, V.1    Girolami, M.A.2
  • 9
    • 84873751778 scopus 로고
    • An invariant form for the prior probability in estimation problems
    • Jeffreys, H. An invariant form for the prior probability in estimation problems. Proc. R. Soc. Lond. A Math. Phys. Sci. 186, 453-461 (1946)
    • (1946) Proc. R. Soc. Lond. A Math. Phys. Sci. , vol.186 , pp. 453-461
    • Jeffreys, H.1
  • 12
    • 0030327756 scopus 로고    scopus 로고
    • The selection of prior distributions by formal rules
    • Kass, R.E. & Wasserman, L. The selection of prior distributions by formal rules. J. Am. Statist. Assoc. 91, 1343-1370 (1996).
    • (1996) J. Am. Statist. Assoc. , vol.91 , pp. 1343-1370
    • Kass, R.E.1    Wasserman, L.2
  • 14
    • 84862188059 scopus 로고    scopus 로고
    • Elucidating the in vivo phosphorylation dynamics of the ERK MAP kinase using quantitative proteomics data and Bayesian model selection
    • Toni, T., Ozaki, Y.-I., Kirk, P., Kuroda, S. & Stumpf, M.P.H. Elucidating the in vivo phosphorylation dynamics of the ERK MAP kinase using quantitative proteomics data and Bayesian model selection. Mol. Biosyst. 8, 1921-1929 (2012).
    • (2012) Mol. Biosyst. , vol.8 , pp. 1921-1929
    • Toni, T.1    Ozaki, Y.-I.2    Kirk, P.3    Kuroda, S.4    Stumpf, M.P.H.5
  • 16
    • 35748977901 scopus 로고    scopus 로고
    • Universally sloppy parameter sensitivities in systems biology models
    • Gutenkunst, R.N. et al. Universally sloppy parameter sensitivities in systems biology models. PLoS Comput. Biol. 3, 1871-1878 (2007).
    • (2007) PLoS Comput. Biol. , vol.3 , pp. 1871-1878
    • Gutenkunst, R.N.1
  • 17
    • 77956498018 scopus 로고    scopus 로고
    • Sloppy models, parameter uncertainty, and the role of experimental design
    • Apgar, J.F., Witmer, D.K., White, F.M. & Tidor, B. Sloppy models, parameter uncertainty, and the role of experimental design. Mol. Biosyst. 6, 1890-1900 (2010).
    • (2010) Mol. Biosyst. , vol.6 , pp. 1890-1900
    • Apgar, J.F.1    Witmer, D.K.2    White, F.M.3    Tidor, B.4
  • 18
    • 79954550872 scopus 로고    scopus 로고
    • Practical limits for reverse engineering of dynamical systems: A statistical analysis of sensitivity and parameter inferability in systems biology models
    • Erguler, K. & Stumpf, M.P.H. Practical limits for reverse engineering of dynamical systems: a statistical analysis of sensitivity and parameter inferability in systems biology models. Mol. Biosyst. 7, 1593-1602 (2011).
    • (2011) Mol. Biosyst. , vol.7 , pp. 1593-1602
    • Erguler, K.1    Stumpf, M.P.H.2
  • 19
    • 84873503481 scopus 로고    scopus 로고
    • Approximate Bayesian computation
    • Sunnåker, M. et al. Approximate Bayesian computation. PLoS Comput. Biol. 9, e1002803 (2013).
    • (2013) PLoS Comput. Biol. , vol.9
    • Sunnåker, M.1
  • 20
    • 0031014291 scopus 로고    scopus 로고
    • Inferring coalescence times from DNA sequence data
    • Tavaré, S., Balding, D.J., Griffths, R.C. & Donnelly, P. Inferring coalescence times from DNA sequence data. Genetics 145, 505-518 (1997).
    • (1997) Genetics , vol.145 , pp. 505-518
    • Tavaré, S.1    Balding, D.J.2    Griffths, R.C.3    Donnelly, P.4
  • 21
    • 0036964474 scopus 로고    scopus 로고
    • Approximate Bayesian computation in population genetics
    • Beaumont, M.A., Zhang, W. & Balding, D.J. Approximate Bayesian computation in population genetics. Genetics 162, 2025-2035 (2002).
    • (2002) Genetics , vol.162 , pp. 2025-2035
    • Beaumont, M.A.1    Zhang, W.2    Balding, D.J.3
  • 22
    • 47749140357 scopus 로고    scopus 로고
    • Parameter inference for biochemical systems that undergo a Hopf bifurcation
    • Kirk, P.D.W., Toni, T. & Stumpf, M.P. Parameter inference for biochemical systems that undergo a Hopf bifurcation. Biophys. J. 95, 540-549 (2008).
    • (2008) Biophys. J. , vol.95 , pp. 540-549
    • Kirk, P.D.W.1    Toni, T.2    Stumpf, M.P.3
  • 23
    • 27744503232 scopus 로고    scopus 로고
    • Bayesian inference for stochastic kinetic models using a diffusion approximation
    • Golightly, A. & Wilkinson, D.J. Bayesian inference for stochastic kinetic models using a diffusion approximation. Biometrics 61, 781-788 (2005).
    • (2005) Biometrics , vol.61 , pp. 781-788
    • Golightly, A.1    Wilkinson, D.J.2
  • 24
    • 84861204172 scopus 로고    scopus 로고
    • Identifying sources of variation and the fow of information in biochemical networks
    • Bowsher, C.G. & Swain, P.S. Identifying sources of variation and the fow of information in biochemical networks. Proc. Natl. Acad. Sci. USA 109, E1320-E1328 (2012).
    • (2012) Proc. Natl. Acad. Sci. USA , vol.109
    • Bowsher, C.G.1    Swain, P.S.2
  • 25
    • 79961051673 scopus 로고    scopus 로고
    • Separating intrinsic from extrinsic fuctuations in dynamic biological systems
    • Hilfnger, A. & Paulsson, J. Separating intrinsic from extrinsic fuctuations in dynamic biological systems. Proc. Natl. Acad. Sci. USA 108, 12167-12172 (2011).
    • (2011) Proc. Natl. Acad. Sci. USA , vol.108 , pp. 12167-12172
    • Hilfnger, A.1    Paulsson, J.2
  • 27
    • 58149142997 scopus 로고    scopus 로고
    • Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems
    • Toni, T., Welch, D., Strelkowa, N., Ipsen, A. & Stumpf, M.P.H. Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems. J. R. Soc. Interface 6, 187-202 (2009).
    • (2009) J. R. Soc. Interface , vol.6 , pp. 187-202
    • Toni, T.1    Welch, D.2    Strelkowa, N.3    Ipsen, A.4    Stumpf, M.P.H.5
  • 29
    • 51449104123 scopus 로고    scopus 로고
    • Approximately suffcient statistics and Bayesian computation
    • Joyce, P. & Marjoram, P. Approximately suffcient statistics and Bayesian computation. Stat. Appl. Genet. Mol. Biol. 7, 26 (2008).
    • (2008) Stat. Appl. Genet. Mol. Biol. , vol.7 , pp. 26
    • Joyce, P.1    Marjoram, P.2
  • 30
    • 77957728670 scopus 로고    scopus 로고
    • On optimal selection of summary statistics for approximate Bayesian computation
    • Nunes, M.A. & Balding, D.J. On optimal selection of summary statistics for approximate Bayesian computation. Stat. Appl. Genet. Mol. Biol. 9, 34 (2010).
    • (2010) Stat. Appl. Genet. Mol. Biol. , vol.9 , pp. 34
    • Nunes, M.A.1    Balding, D.J.2
  • 32
    • 84861111043 scopus 로고    scopus 로고
    • Constructing summary statistics for approximate Bayesian computation: Semi-automatic approximate Bayesian computation
    • Fearnhead, P. & Prangle, D. Constructing summary statistics for approximate Bayesian computation: semi-automatic approximate Bayesian computation. J. R. Stat. Soc. Ser. B Stat. Methodol. 74, 419-474 (2012).
    • (2012) J. R. Stat. Soc. Ser. B Stat. Methodol. , vol.74 , pp. 419-474
    • Fearnhead, P.1    Prangle, D.2
  • 33
    • 84867996819 scopus 로고    scopus 로고
    • Considerate approaches to constructing summary statistics for ABC model selection
    • Barnes, C.P., Filippi, S., Stumpf, M.P. & Thorne, T. Considerate approaches to constructing summary statistics for ABC model selection. Stat. Comput. 22, 1181-1197 (2012).
    • (2012) Stat. Comput. , vol.22 , pp. 1181-1197
    • Barnes, C.P.1    Filippi, S.2    Stumpf, M.P.3    Thorne, T.4
  • 34
    • 75249088572 scopus 로고    scopus 로고
    • Simulation-based model selection for dynamical systems in systems and population biology
    • Toni, T. & Stumpf, M.P.H. Simulation-based model selection for dynamical systems in systems and population biology. Bioinformatics 26, 104-110 (2010).
    • (2010) Bioinformatics , vol.26 , pp. 104-110
    • Toni, T.1    Stumpf, M.P.H.2
  • 35
    • 84881526872 scopus 로고    scopus 로고
    • Approximate Bayesian computation (ABC) gives exact results under the assumption of model error
    • Wilkinson, R.D. Approximate Bayesian computation (ABC) gives exact results under the assumption of model error. Stat. Appl. Genet. Mol. Biol. 12, 129-141 (2013).
    • (2013) Stat. Appl. Genet. Mol. Biol. , vol.12 , pp. 129-141
    • Wilkinson, R.D.1
  • 38
    • 84866249585 scopus 로고    scopus 로고
    • Graph spectral analysis of protein interaction network evolution
    • Thorne, T. & Stumpf, M.P.H. Graph spectral analysis of protein interaction network evolution. J. R. Soc. Interface 9, 2653-2666 (2012).
    • (2012) J. R. Soc. Interface , vol.9 , pp. 2653-2666
    • Thorne, T.1    Stumpf, M.P.H.2
  • 39
    • 0032735986 scopus 로고    scopus 로고
    • Population growth of human y chromosomes: A study of y chromosome microsatellites
    • Pritchard, J.K., Seielstad, M.T., Perez-Lezaun, A. & Feldman, M.W. Population growth of human Y chromosomes: a study of Y chromosome microsatellites. Mol. Biol. Evol. 16, 1791-1798 (1999).
    • (1999) Mol. Biol. Evol. , vol.16 , pp. 1791-1798
    • Pritchard, J.K.1    Seielstad, M.T.2    Perez-Lezaun, A.3    Feldman, M.W.4
  • 41
    • 77954035029 scopus 로고    scopus 로고
    • ABC: A useful Bayesian tool for the analysis of population data
    • Lopes, J.S. & Beaumont, M.A. ABC: a useful Bayesian tool for the analysis of population data. Infect. Genet. Evol. 10, 826-833 (2010).
    • (2010) Infect. Genet. Evol. , vol.10 , pp. 826-833
    • Lopes, J.S.1    Beaumont, M.A.2
  • 42
    • 79955836545 scopus 로고    scopus 로고
    • From qualitative data to quantitative models: Analysis of the phage shock protein stress response in Escherichia coli
    • Toni, T., Jovanovic, G., Huvet, M., Buck, M. & Stumpf, M.P.H. From qualitative data to quantitative models: analysis of the phage shock protein stress response in Escherichia coli. BMC Syst. Biol. 5, 69 (2011).
    • (2011) BMC Syst. Biol. , vol.5 , pp. 69
    • Toni, T.1    Jovanovic, G.2    Huvet, M.3    Buck, M.4    Stumpf, M.P.H.5
  • 43
    • 80055040254 scopus 로고    scopus 로고
    • Designing attractive models via automated identifcation of chaotic and oscillatory dynamical regimes
    • Silk, D. et al. Designing attractive models via automated identifcation of chaotic and oscillatory dynamical regimes. Nat. Commun. 2, 489 (2011).
    • (2011) Nat. Commun. , vol.2 , pp. 489
    • Silk, D.1
  • 44
    • 84863564323 scopus 로고    scopus 로고
    • Calibrating spatio-temporal models of leukocyte dynamics against in vivo live-imaging data using approximate Bayesian computation
    • Liepe, J. et al. Calibrating spatio-temporal models of leukocyte dynamics against in vivo live-imaging data using approximate Bayesian computation. Integr. Biol. 4, 335-345 (2012).
    • (2012) Integr. Biol. , vol.4 , pp. 335-345
    • Liepe, J.1
  • 46
    • 84875708161 scopus 로고    scopus 로고
    • Population dynamics of normal and leukaemia stem cells in the haematopoietic stem cell niche show distinct regimes where leukaemia will be controlled
    • Maclean, A.L., Lo Celso, C. & Stumpf, M.P.H. Population dynamics of normal and leukaemia stem cells in the haematopoietic stem cell niche show distinct regimes where leukaemia will be controlled. J. R. Soc. Interface 10, 20120968 (2013).
    • (2013) J. R. Soc. Interface , vol.10 , pp. 20120968
    • Maclean, A.L.1    Lo Celso, C.2    Stumpf, M.P.H.3
  • 48
    • 71749100925 scopus 로고    scopus 로고
    • Bayesian inference of biochemical kinetic parameters using the linear noise approximation
    • Komorowski, M., Finkenstädt, B., Harper, C.V. & Rand, D.A. Bayesian inference of biochemical kinetic parameters using the linear noise approximation. BMC Bioinformatics 10, 343 (2009).
    • (2009) BMC Bioinformatics , vol.10 , pp. 343
    • Komorowski, M.1    Finkenstädt, B.2    Harper, C.V.3    Rand, D.A.4
  • 50
    • 84860901236 scopus 로고    scopus 로고
    • Bayesian parameter inference for stochastic biochemical network models using particle Markov chain Monte Carlo
    • Golightly, A. & Wilkinson, D.J. Bayesian parameter inference for stochastic biochemical network models using particle Markov chain Monte Carlo. Interface Focus 1, 807-820 (2011).
    • (2011) Interface Focus , vol.1 , pp. 807-820
    • Golightly, A.1    Wilkinson, D.J.2
  • 51
    • 84877766748 scopus 로고    scopus 로고
    • A general moment expansion method for stochastic kinetic models
    • Ale, A., Kirk, P. & Stumpf, M.P.H. A general moment expansion method for stochastic kinetic models. J. Chem. Phys. 138, 174101 (2013).
    • (2013) J. Chem. Phys. , vol.138 , pp. 174101
    • Ale, A.1    Kirk, P.2    Stumpf, M.P.H.3
  • 52
    • 56649113038 scopus 로고    scopus 로고
    • Inferring population history with DIY ABC: A user-friendly approach to approximate Bayesian computation
    • Cornuet, J.-M. et al. Inferring population history with DIY ABC: a user-friendly approach to approximate Bayesian computation. Bioinformatics 24, 2713-2719 (2008).
    • (2008) Bioinformatics , vol.24 , pp. 2713-2719
    • Cornuet, J.-M.1
  • 53
    • 77955493069 scopus 로고    scopus 로고
    • Inference on population history and model checking using DNA sequence and microsatellite data with the software DIYABC (v1.0)
    • Cornuet, J.-M., Ravigné, V. & Estoup, A. Inference on population history and model checking using DNA sequence and microsatellite data with the software DIYABC (v1.0). BMC Bioinformatics 11, 401 (2010).
    • (2010) BMC Bioinformatics , vol.11 , pp. 401
    • Cornuet, J.-M.1    Ravigné, V.2    Estoup, A.3
  • 54
    • 77954247262 scopus 로고    scopus 로고
    • ABC as a fexible framework to estimate demography over space and time: Some cons, many pros
    • Bertorelle, G., Benazzo, A. & Mona, S. ABC as a fexible framework to estimate demography over space and time: some cons, many pros. Mol. Ecol. 19, 2609-2625 (2010).
    • (2010) Mol. Ecol. , vol.19 , pp. 2609-2625
    • Bertorelle, G.1    Benazzo, A.2    Mona, S.3
  • 55
    • 77953889259 scopus 로고    scopus 로고
    • GPU computing for systems biology
    • Dematté, L. & Prandi, D. GPU computing for systems biology. Brief. Bioinformatics 11, 323-333 (2010).
    • (2010) Brief. Bioinformatics , vol.11 , pp. 323-333
    • Dematté, L.1    Prandi, D.2
  • 57
    • 50549100597 scopus 로고    scopus 로고
    • BioBayes: A software package for Bayesian inference in systems biology
    • Vyshemirsky, V. & Girolami, M. BioBayes: a software package for Bayesian inference in systems biology. Bioinformatics 24, 1933-1934 (2008).
    • (2008) Bioinformatics , vol.24 , pp. 1933-1934
    • Vyshemirsky, V.1    Girolami, M.2
  • 59
    • 84879208026 scopus 로고    scopus 로고
    • On optimality of kernels for approximate Bayesian computation using sequential Monte Carlo
    • Filippi, S., Barnes, C.P., Cornebise, J. & Stumpf, M.P.H. On optimality of kernels for approximate Bayesian computation using sequential Monte Carlo. Stat. Appl. Genet. Mol. Biol. 12, 87-107 (2013).
    • (2013) Stat. Appl. Genet. Mol. Biol. , vol.12 , pp. 87-107
    • Filippi, S.1    Barnes, C.P.2    Cornebise, J.3    Stumpf, M.P.H.4
  • 61
    • 74249110200 scopus 로고    scopus 로고
    • Bayesian computation and model selection without likelihoods
    • Leuenberger, C. & Wegmann, D. Bayesian computation and model selection without likelihoods. Genetics 184, 243-252 (2010).
    • (2010) Genetics , vol.184 , pp. 243-252
    • Leuenberger, C.1    Wegmann, D.2
  • 63
    • 46249083801 scopus 로고    scopus 로고
    • Mapping global sensitivity of cellular network dynamics: Sensitivity heat maps and a global summation law
    • Rand, D.A. Mapping global sensitivity of cellular network dynamics: sensitivity heat maps and a global summation law. J. R. Soc. Interface 5 (suppl. 1): S59-S69 (2008).
    • (2008) J. R. Soc. Interface , vol.5 , Issue.SUPPL. 1
    • Rand, D.A.1
  • 64
    • 72949108893 scopus 로고    scopus 로고
    • The ABC of reverse engineering biological signalling systems
    • Secrier, M., Toni, T. & Stumpf, M.P.H. The ABC of reverse engineering biological signalling systems. Mol. Biosyst. 5, 1925-1935 (2009).
    • (2009) Mol. Biosyst. , vol.5 , pp. 1925-1935
    • Secrier, M.1    Toni, T.2    Stumpf, M.P.H.3
  • 65
  • 67
    • 0001811061 scopus 로고
    • ODEPACK a systematized collection of ODE solvers
    • (eds. Stepleman, R.S. et al.) IMACS Transactions on Scientifc Computation, Elsevier
    • Hindmarsh, A.C. ODEPACK, a systematized collection of ODE solvers, in Scientifc Computing (eds. Stepleman, R.S. et al.) IMACS Transactions on Scientifc Computation, Vol. 1, 55-64 (Elsevier, 1983).
    • (1983) Scientifc Computing , vol.1 , pp. 55-64
    • Hindmarsh, A.C.1
  • 69
    • 0017030517 scopus 로고
    • A general method for numerically simulating the stochastic time evolution of coupled chemical reactions
    • Gillespie, D.T. A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comput. Phys. 22, 403-434 (1976).
    • (1976) J. Comput. Phys. , vol.22 , pp. 403-434
    • Gillespie, D.T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.