메뉴 건너뛰기




Volumn 11, Issue , 2015, Pages 26-33

Using least square support vector regression with genetic algorithm to forecast beta systematic risk

Author keywords

Artificial neural network; Beta forecasting; Capital asset pricing model; Genetic algorithm; Least squares support vector regression

Indexed keywords

ALGORITHMS; ECONOMICS; FINANCIAL MARKETS; FORECASTING; GENETIC ALGORITHMS; INVESTMENTS; NEURAL NETWORKS; REGRESSION ANALYSIS;

EID: 84940757656     PISSN: 18777503     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jocs.2015.08.004     Document Type: Article
Times cited : (31)

References (49)
  • 2
    • 4043137356 scopus 로고    scopus 로고
    • A tutorial on support vector regression
    • Smola A.J., Scholkopf B. A tutorial on support vector regression. Stat. Comput. 2004, 14:199-222.
    • (2004) Stat. Comput. , vol.14 , pp. 199-222
    • Smola, A.J.1    Scholkopf, B.2
  • 5
    • 67349286180 scopus 로고    scopus 로고
    • Spatial prediction of soil properties in temperate mountain regions using support vector regression
    • Ballabio C. Spatial prediction of soil properties in temperate mountain regions using support vector regression. Geoderma 2009, 151:338-350.
    • (2009) Geoderma , vol.151 , pp. 338-350
    • Ballabio, C.1
  • 8
    • 78049369155 scopus 로고    scopus 로고
    • A support vector regression based prediction model of affective responses for product form design
    • Yang C.C., Shieh M.D. A support vector regression based prediction model of affective responses for product form design. Comput. Ind. Eng. 2010, 59:682-689.
    • (2010) Comput. Ind. Eng. , vol.59 , pp. 682-689
    • Yang, C.C.1    Shieh, M.D.2
  • 10
    • 84984426198 scopus 로고
    • On accounting-based, market-based and composite-based beta predictions: methods and implications
    • Lee C.F., Newbold P., Finnerty J.E., Chu C.C. On accounting-based, market-based and composite-based beta predictions: methods and implications. Financ. Rev. 1986, 21:51-68.
    • (1986) Financ. Rev. , vol.21 , pp. 51-68
    • Lee, C.F.1    Newbold, P.2    Finnerty, J.E.3    Chu, C.C.4
  • 13
    • 78650271180 scopus 로고    scopus 로고
    • Learning errors of linear programming support vector regression
    • Cao F., Yuan Y. Learning errors of linear programming support vector regression. Appl. Math. Model. 2011, 35:1820-1828.
    • (2011) Appl. Math. Model. , vol.35 , pp. 1820-1828
    • Cao, F.1    Yuan, Y.2
  • 14
    • 0001023715 scopus 로고    scopus 로고
    • Application of support vector machines in financial time-series forecasting
    • Tay F.E.H., Cao L. Application of support vector machines in financial time-series forecasting. Omega 2001, 29:309-317.
    • (2001) Omega , vol.29 , pp. 309-317
    • Tay, F.E.H.1    Cao, L.2
  • 15
    • 77953807827 scopus 로고    scopus 로고
    • Simultaneous chemiluminescence determination of amoxicillin and clavulanic acid using least squares support vector regression
    • Hasanpour F., Ensafi A.A., Khayamian T. Simultaneous chemiluminescence determination of amoxicillin and clavulanic acid using least squares support vector regression. Anal. Chim. Acta 2010, 670:44-50.
    • (2010) Anal. Chim. Acta , vol.670 , pp. 44-50
    • Hasanpour, F.1    Ensafi, A.A.2    Khayamian, T.3
  • 16
    • 84995186518 scopus 로고
    • Portfolio selection
    • Markowitz H. Portfolio selection. J. Finance 1952, 12:77-91.
    • (1952) J. Finance , vol.12 , pp. 77-91
    • Markowitz, H.1
  • 17
    • 79954596919 scopus 로고    scopus 로고
    • Probability-based least square support vector regression meta modeling technique for crashworthiness optimization problems
    • Wang H., Li E., Li G.Y. Probability-based least square support vector regression meta modeling technique for crashworthiness optimization problems. Comput. Mech. 2011, 47:251-263.
    • (2011) Comput. Mech. , vol.47 , pp. 251-263
    • Wang, H.1    Li, E.2    Li, G.Y.3
  • 18
    • 84860464430 scopus 로고    scopus 로고
    • A robust inverse method based on least square support vector regression for Johnson-cook material parameters
    • Wang H., Li W.Y., Li G.Y. A robust inverse method based on least square support vector regression for Johnson-cook material parameters. Comput. Mater. Contin. 2012, 28:121-146.
    • (2012) Comput. Mater. Contin. , vol.28 , pp. 121-146
    • Wang, H.1    Li, W.Y.2    Li, G.Y.3
  • 19
    • 0030143605 scopus 로고    scopus 로고
    • Using neural networks to forecast the systematic risk of stocks
    • Wittkemper H.G., Steiner M. Using neural networks to forecast the systematic risk of stocks. Eur. J. Oper. Res. 1996, 90:577-588.
    • (1996) Eur. J. Oper. Res. , vol.90 , pp. 577-588
    • Wittkemper, H.G.1    Steiner, M.2
  • 20
    • 84868384139 scopus 로고    scopus 로고
    • Network flow prediction based on wavelet kernel-based least squares SVR algorithm
    • Gao J., Wang J., Wang B., Song X. Network flow prediction based on wavelet kernel-based least squares SVR algorithm. J. Compu. Inf. Syst. 2012, 8:9011-9016.
    • (2012) J. Compu. Inf. Syst. , vol.8 , pp. 9011-9016
    • Gao, J.1    Wang, J.2    Wang, B.3    Song, X.4
  • 21
    • 0003114587 scopus 로고
    • The valuation of risk assets and the selection of risky investments in stock portfolios and capital budgets
    • Lintner J. The valuation of risk assets and the selection of risky investments in stock portfolios and capital budgets. Rev. Econ. Stat. 1965, 47:13-37.
    • (1965) Rev. Econ. Stat. , vol.47 , pp. 13-37
    • Lintner, J.1
  • 22
    • 0001238604 scopus 로고    scopus 로고
    • Equilibrium in a capital asset market
    • Mossin J. Equilibrium in a capital asset market. Econometrica 1996, 34:768-873.
    • (1996) Econometrica , vol.34 , pp. 768-873
    • Mossin, J.1
  • 24
    • 78651267218 scopus 로고    scopus 로고
    • Approximate confidence and prediction intervals for least squares support vector regression
    • Brabanter K.D., Brabanter J.D., Suykens J.A.K., Moor B.D. Approximate confidence and prediction intervals for least squares support vector regression. IEEE Trans. Neural Netw. 2011, 22:110-120.
    • (2011) IEEE Trans. Neural Netw. , vol.22 , pp. 110-120
    • Brabanter, K.D.1    Brabanter, J.D.2    Suykens, J.A.K.3    Moor, B.D.4
  • 25
    • 0001907967 scopus 로고    scopus 로고
    • Support vector machine: hype on hallelujah
    • Bennett K.P., Campbell C. Support vector machine: hype on hallelujah. SIGKDD Explor. 2000, 2:1-13.
    • (2000) SIGKDD Explor. , vol.2 , pp. 1-13
    • Bennett, K.P.1    Campbell, C.2
  • 26
    • 84866987917 scopus 로고    scopus 로고
    • A nonlinear adaptive beamforming algorithm based on least squares support vector regression
    • Wang L., Jin G., Li Z., Xu H. A nonlinear adaptive beamforming algorithm based on least squares support vector regression. Sensors 2012, 12:12424-12436.
    • (2012) Sensors , vol.12 , pp. 12424-12436
    • Wang, L.1    Jin, G.2    Li, Z.3    Xu, H.4
  • 27
    • 84944838048 scopus 로고
    • Betas and their regression tendencies
    • Blume M. Betas and their regression tendencies. J. Finance 1975, 30:785-795.
    • (1975) J. Finance , vol.30 , pp. 785-795
    • Blume, M.1
  • 28
    • 77951090353 scopus 로고    scopus 로고
    • PK a modeling and prediction of a series of pH indicators through genetic algorithm-least square support vector regression
    • Goodarzi M., Freitas M.P., Wu C.H., Duchowicz P.R. pK a modeling and prediction of a series of pH indicators through genetic algorithm-least square support vector regression. Chemom. Intell. Lab. Syst. 2010, 101:102-109.
    • (2010) Chemom. Intell. Lab. Syst. , vol.101 , pp. 102-109
    • Goodarzi, M.1    Freitas, M.P.2    Wu, C.H.3    Duchowicz, P.R.4
  • 29
    • 84891715909 scopus 로고    scopus 로고
    • Tourism demand forecasting using novel hybrid system
    • Pai P.F., Hung K.C., Lin K.P. Tourism demand forecasting using novel hybrid system. Expert Syst. Appl. 2014, 41:3691-3702.
    • (2014) Expert Syst. Appl. , vol.41 , pp. 3691-3702
    • Pai, P.F.1    Hung, K.C.2    Lin, K.P.3
  • 30
    • 34447633358 scopus 로고    scopus 로고
    • Integrating support vector machines and neural networks
    • Capparuccia R., De Leone R., Marchitto E. Integrating support vector machines and neural networks. Neural Netw. 2007, 20:590-597.
    • (2007) Neural Netw. , vol.20 , pp. 590-597
    • Capparuccia, R.1    De Leone, R.2    Marchitto, E.3
  • 31
    • 0040360986 scopus 로고    scopus 로고
    • Postwar business cycles: an empirical investigation
    • Hodrick R., Prescott E.P. Postwar business cycles: an empirical investigation. J. Money Credit Bank. 1997, 29:1-16.
    • (1997) J. Money Credit Bank. , vol.29 , pp. 1-16
    • Hodrick, R.1    Prescott, E.P.2
  • 32
    • 84944834996 scopus 로고
    • The adjustment of beta forecasts
    • Klemkosky R.C., Martin J.D. The adjustment of beta forecasts. J. Finance 1975, 30:1123-1128.
    • (1975) J. Finance , vol.30 , pp. 1123-1128
    • Klemkosky, R.C.1    Martin, J.D.2
  • 33
    • 0032319359 scopus 로고    scopus 로고
    • A decision support system for sales forecasting through fuzzy neural networks with asymmetric fuzzy weights
    • Kuo R.J., Xue K.C. A decision support system for sales forecasting through fuzzy neural networks with asymmetric fuzzy weights. Decis. Support Syst. 1998, 24:105-126.
    • (1998) Decis. Support Syst. , vol.24 , pp. 105-126
    • Kuo, R.J.1    Xue, K.C.2
  • 35
    • 84903376064 scopus 로고    scopus 로고
    • Support vector machines for prediction of futures prices in Indian stock market
    • Das S.P., Padhy S. Support vector machines for prediction of futures prices in Indian stock market. Int. J. Comput. Appl. 2012, 41:22-26.
    • (2012) Int. J. Comput. Appl. , vol.41 , pp. 22-26
    • Das, S.P.1    Padhy, S.2
  • 36
    • 84860160220 scopus 로고    scopus 로고
    • Prediction and dispatching of workshop material demand based on least squares support vector regression with genetic algorithm
    • Wang S., Wang Q. Prediction and dispatching of workshop material demand based on least squares support vector regression with genetic algorithm. Inf. Int. Interdiscip. J. 2012, 15:213-222.
    • (2012) Inf. Int. Interdiscip. J. , vol.15 , pp. 213-222
    • Wang, S.1    Wang, Q.2
  • 38
    • 0032594959 scopus 로고    scopus 로고
    • An overview of statistical learning theory
    • Vapnik V.N. An overview of statistical learning theory. IEEE Trans. Neural Netw. 1999, 10:988-999.
    • (1999) IEEE Trans. Neural Netw. , vol.10 , pp. 988-999
    • Vapnik, V.N.1
  • 41
    • 13544267510 scopus 로고    scopus 로고
    • Forecasting stock market movement direction with support vector machine
    • Huang W., Nakamori Y., Wang S.Y. Forecasting stock market movement direction with support vector machine. Comput. Oper. Res. 2005, 32:2513-2522.
    • (2005) Comput. Oper. Res. , vol.32 , pp. 2513-2522
    • Huang, W.1    Nakamori, Y.2    Wang, S.Y.3
  • 42
    • 38949150441 scopus 로고    scopus 로고
    • Comparison of support-vector machines and back propagation neural networks in forecasting the six major Asian stock markets
    • Chen W.H., Shih J.Y., Soushan Wu Comparison of support-vector machines and back propagation neural networks in forecasting the six major Asian stock markets. Int. J. Electron. Finance 2006, 1:49-67.
    • (2006) Int. J. Electron. Finance , vol.1 , pp. 49-67
    • Chen, W.H.1    Shih, J.Y.2    Soushan, Wu3
  • 43
    • 78650681132 scopus 로고    scopus 로고
    • Model selection for least squares support vector regressions based on small-world strategy
    • Mao W., Yan G., Dong L., Hu D. Model selection for least squares support vector regressions based on small-world strategy. Expert Syst. Appl. 2011, 38:3227-3237.
    • (2011) Expert Syst. Appl. , vol.38 , pp. 3227-3237
    • Mao, W.1    Yan, G.2    Dong, L.3    Hu, D.4
  • 44
    • 0001217228 scopus 로고
    • A simplified model for portfolio analysis
    • Sharpe W.F. A simplified model for portfolio analysis. Manag. Sci. 1963, 9:277-293.
    • (1963) Manag. Sci. , vol.9 , pp. 277-293
    • Sharpe, W.F.1
  • 45
    • 84980092818 scopus 로고
    • Capital asset prices: a theory of market equilibrium under conditions of risk
    • Sharpe W.F. Capital asset prices: a theory of market equilibrium under conditions of risk. J. Finance 1964, 19:425-442.
    • (1964) J. Finance , vol.19 , pp. 425-442
    • Sharpe, W.F.1
  • 46
    • 84862688046 scopus 로고    scopus 로고
    • A weighted multi-output support vector regression and its application
    • Xu Y., Lv X., Xi W. A weighted multi-output support vector regression and its application. J. Comput. Inf. Syst. 2012, 8:3807-3814.
    • (2012) J. Comput. Inf. Syst. , vol.8 , pp. 3807-3814
    • Xu, Y.1    Lv, X.2    Xi, W.3
  • 48
    • 84897657079 scopus 로고    scopus 로고
    • Enhanced artificial bee colony for training least squares support vector machines in commodity price forecasting
    • Mustaffa Z., Yusof Y., Kamaruddin S.S. Enhanced artificial bee colony for training least squares support vector machines in commodity price forecasting. J. Comput. Sci. 2014, 5:196-205.
    • (2014) J. Comput. Sci. , vol.5 , pp. 196-205
    • Mustaffa, Z.1    Yusof, Y.2    Kamaruddin, S.S.3
  • 49
    • 72049098529 scopus 로고    scopus 로고
    • Genetic algorithm-least squares support vector regression based predicting and optimizing model on carbon fiber composite integrated conductivity
    • Yang Z., Gu X.S., Liang X.Y., Ling L.C. Genetic algorithm-least squares support vector regression based predicting and optimizing model on carbon fiber composite integrated conductivity. Mater. Des. 2010, 31:1042-1049.
    • (2010) Mater. Des. , vol.31 , pp. 1042-1049
    • Yang, Z.1    Gu, X.S.2    Liang, X.Y.3    Ling, L.C.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.