메뉴 건너뛰기




Volumn 2015-October, Issue , 2015, Pages 34-42

Age and gender classification using convolutional neural networks

Author keywords

Benchmark testing; Computer architecture; Estimation; Face; Face recognition; Neurons; Training

Indexed keywords

COMPUTER ARCHITECTURE; COMPUTER TESTING; COMPUTER VISION; CONVOLUTION; DEEP NEURAL NETWORKS; ESTIMATION; NETWORK ARCHITECTURE; NEURAL NETWORKS; NEURONS; PERSONNEL TRAINING;

EID: 84940671759     PISSN: 21607508     EISSN: 21607516     Source Type: Conference Proceeding    
DOI: 10.1109/CVPRW.2015.7301352     Document Type: Conference Paper
Times cited : (1101)

References (56)
  • 1
    • 33947167478 scopus 로고    scopus 로고
    • Face description with local binary patterns: Application to face recognition
    • 2
    • T. Ahonen, A. Hadid, and M. Pietikainen. Face description with local binary patterns: Application to face recognition. Trans. Pattern Anal. Mach. Intell., 28 (12): 2037-2041, 2006. 2
    • (2006) Trans. Pattern Anal. Mach. Intell , vol.28 , Issue.12 , pp. 2037-2041
    • Ahonen, T.1    Hadid, A.2    Pietikainen, M.3
  • 2
    • 33748436837 scopus 로고    scopus 로고
    • Boosting sex identification performance
    • 2
    • S. Baluja and H. A. Rowley. Boosting sex identification performance. Int. J. Comput. Vision, 71 (1): 111-119, 2007. 2
    • (2007) Int. J. Comput. Vision , vol.71 , Issue.1 , pp. 111-119
    • Baluja, S.1    Rowley, H.A.2
  • 4
    • 84870242099 scopus 로고    scopus 로고
    • Facial age estimation based on label-sensitive learning and age-oriented regression
    • 1, 2
    • W.-L. Chao, J.-Z. Liu, and J.-J. Ding. Facial age estimation based on label-sensitive learning and age-oriented regression. Pattern Recognition, 46 (3): 628-641, 2013. 1, 2
    • (2013) Pattern Recognition , vol.46 , Issue.3 , pp. 628-641
    • Chao, W.-L.1    Liu, J.-Z.2    Ding, J.-J.3
  • 7
    • 79551519628 scopus 로고    scopus 로고
    • Age estimation using a hierarchical classifier based on global and local facial features
    • 2
    • S. E. Choi, Y. J. Lee, S. J. Lee, K. R. Park, and J. Kim. Age estimation using a hierarchical classifier based on global and local facial features. Pattern Recognition, 44 (6): 1262-1281, 2011. 2
    • (2011) Pattern Recognition , vol.44 , Issue.6 , pp. 1262-1281
    • Choi, S.E.1    Lee, Y.J.2    Lee, S.J.3    Park, K.R.4    Kim, J.5
  • 9
    • 34249753618 scopus 로고
    • Support-vector networks
    • 2
    • C. Cortes and V. Vapnik. Support-vector networks. Machine learning, 20 (3): 273-297, 1995. 2
    • (1995) Machine Learning , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 11
    • 78149281985 scopus 로고    scopus 로고
    • Age synthesis and estimation via faces: A survey
    • 2
    • Y. Fu, G. Guo, and T. S. Huang. Age synthesis and estimation via faces: A survey. Trans. Pattern Anal. Mach. Intell., 32 (11): 1955-1976, 2010. 2
    • (2010) Trans. Pattern Anal. Mach. Intell , vol.32 , Issue.11 , pp. 1955-1976
    • Fu, Y.1    Guo, G.2    Huang, T.S.3
  • 12
    • 44049107671 scopus 로고    scopus 로고
    • Human age estimation with regression on discriminative aging manifold
    • 2
    • Y. Fu and T. S. Huang. Human age estimation with regression on discriminative aging manifold. Int. Conf. Multime- dia, 10 (4): 578-584, 2008. 2
    • (2008) Int. Conf. Multime- Dia , vol.10 , Issue.4 , pp. 578-584
    • Fu, Y.1    Huang, T.S.2
  • 15
    • 69949119738 scopus 로고    scopus 로고
    • Face age classification on consumer images with gabor feature and fuzzy lda method
    • Springer, 1, 2
    • F. Gao and H. Ai. Face age classification on consumer images with gabor feature and fuzzy lda method. In Advances in biometrics, pages 132-141. Springer, 2009. 1, 2
    • (2009) Advances in Biometrics , pp. 132-141
    • Gao, F.1    Ai, H.2
  • 16
    • 36248946626 scopus 로고    scopus 로고
    • Automatic age estimation based on facial aging patterns
    • 2
    • X. Geng, Z.-H. Zhou, and K. Smith-Miles. Automatic age estimation based on facial aging patterns. Trans. Pattern Anal. Mach. Intell., 29 (12): 2234-2240, 2007. 2
    • (2007) Trans. Pattern Anal. Mach. Intell , vol.29 , Issue.12 , pp. 2234-2240
    • Geng, X.1    Zhou, Z.-H.2    Smith-Miles, K.3
  • 19
    • 45949109037 scopus 로고    scopus 로고
    • Imagebased human age estimation by manifold learning and locally adjusted robust regression
    • 2
    • G. Guo, Y. Fu, C. R. Dyer, and T. S. Huang. Imagebased human age estimation by manifold learning and locally adjusted robust regression. Trans. Image Processing, 17 (7): 1178-1188, 2008. 2
    • (2008) Trans. Image Processing , vol.17 , Issue.7 , pp. 1178-1188
    • Guo, G.1    Fu, Y.2    Dyer, C.R.3    Huang, T.S.4
  • 20
    • 77953227243 scopus 로고    scopus 로고
    • A study on automatic age estimation using a large database
    • IEEE, 2
    • G. Guo, G. Mu, Y. Fu, C. Dyer, and T. Huang. A study on automatic age estimation using a large database. In Proc. Int. Conf. Comput. Vision, pages 1986-1991. IEEE, 2009. 2
    • (2009) Proc. Int. Conf. Comput. Vision , pp. 1986-1991
    • Guo, G.1    Mu, G.2    Fu, Y.3    Dyer, C.4    Huang, T.5
  • 22
    • 84898770404 scopus 로고    scopus 로고
    • Viewing real-world faces in 3d
    • IEEE, 6
    • T. Hassner. Viewing real-world faces in 3d. In Proc. Int. Conf. Comput. Vision, pages 3607-3614. IEEE, 2013. 6
    • (2013) Proc. Int. Conf. Comput. Vision , pp. 3607-3614
    • Hassner, T.1
  • 25
    • 51849117118 scopus 로고    scopus 로고
    • Labeled faces in the wild: A database for studying face recognition in unconstrained environments
    • University of Massachusetts, Amherst, 3, 5
    • G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller. Labeled faces in the wild: A database for studying face recognition in unconstrained environments. Technical report, Technical Report 07-49, University of Massachusetts, Amherst, 2007. 3, 5
    • (2007) Technical Report, Technical Report 07-49
    • Huang, G.B.1    Ramesh, M.2    Berg, T.3    Learned-Miller, E.4
  • 28
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • 3, 4
    • A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In Neural Inform. Process. Syst., pages 1097-1105, 2012. 3, 4
    • (2012) Neural Inform. Process. Syst , pp. 1097-1105
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 32
    • 0036543747 scopus 로고    scopus 로고
    • Gabor feature based classification using the enhanced fisher linear discriminant model for face recognition
    • 1, 2
    • C. Liu and H. Wechsler. Gabor feature based classification using the enhanced fisher linear discriminant model for face recognition. Trans. Image Processing, 11 (4): 467-476, 2002. 1, 2
    • (2002) Trans. Image Processing , vol.11 , Issue.4 , pp. 467-476
    • Liu, C.1    Wechsler, H.2
  • 34
    • 39549093773 scopus 로고    scopus 로고
    • Evaluation of gender classification methods with automatically detected and aligned faces
    • 2
    • E. Makinen and R. Raisamo. Evaluation of gender classification methods with automatically detected and aligned faces. Trans. Pattern Anal. Mach. Intell., 30 (3): 541-547, 2008. 2
    • (2008) Trans. Pattern Anal. Mach. Intell , vol.30 , Issue.3 , pp. 541-547
    • Makinen, E.1    Raisamo, R.2
  • 36
    • 13444286179 scopus 로고    scopus 로고
    • Locality preserving projections
    • MIT, 2
    • X. Niyogi. Locality preserving projections. In Neural In- form. Process. Syst., volume 16, page 153. MIT, 2004. 2
    • (2004) Neural In- Form. Process. Syst , vol.16 , pp. 153
    • Niyogi, X.1
  • 37
    • 0030632418 scopus 로고    scopus 로고
    • Sex classification is better with three-dimensional head structure than with image intensity information
    • 2
    • A. J. O'toole, T. Vetter, N. F. Troje, H. H. Bülthoff, et al. Sex classification is better with three-dimensional head structure than with image intensity information. Perception, 26: 75-84, 1997. 2
    • (1997) Perception , vol.26 , pp. 75-84
    • O'Toole, A.J.1    Vetter, T.2    Troje, N.F.3    Bülthoff, H.H.4
  • 38
    • 84859509758 scopus 로고    scopus 로고
    • Gender classification from face images using mutual information and feature fusion
    • 2
    • C. Perez, J. Tapia, P. Estévez, and C. Held. Gender classification from face images using mutual information and feature fusion. International Journal of Optomechatronics, 6 (1): 92-119, 2012. 2
    • (2012) International Journal of Optomechatronics , vol.6 , Issue.1 , pp. 92-119
    • Perez, C.1    Tapia, J.2    Estévez, P.3    Held, C.4
  • 39
    • 0032045780 scopus 로고    scopus 로고
    • The feret database and evaluation procedure for face-recognition algorithms
    • 2, 3
    • P. J. Phillips, H. Wechsler, J. Huang, and P. J. Rauss. The feret database and evaluation procedure for face-recognition algorithms. Image and vision computing, 16 (5): 295-306, 1998. 2, 3
    • (1998) Image and Vision Computing , vol.16 , Issue.5 , pp. 295-306
    • Phillips, P.J.1    Wechsler, H.2    Huang, J.3    Rauss, P.J.4
  • 40
    • 0022594196 scopus 로고
    • An introduction to hidden markov models
    • 2
    • L. Rabiner and B.-H. Juang. An introduction to hidden markov models. ASSP Magazine, IEEE, 3 (1): 4-16, 1986. 2
    • (1986) ASSP Magazine IEEE , vol.3 , Issue.1 , pp. 4-16
    • Rabiner, L.1    Juang, B.-H.2
  • 44
    • 0033316361 scopus 로고    scopus 로고
    • Hierarchical models of object recognition in cortex
    • 2
    • M. Riesenhuber and T. Poggio. Hierarchical models of object recognition in cortex. Nature neuroscience, 2 (11): 1019-1025, 1999. 2
    • (1999) Nature Neuroscience , vol.2 , Issue.11 , pp. 1019-1025
    • Riesenhuber, M.1    Poggio, T.2
  • 46
    • 84855670840 scopus 로고    scopus 로고
    • Learning local binary patterns for gender classification on real-world face images
    • 3
    • C. Shan. Learning local binary patterns for gender classification on real-world face images. Pattern Recognition Letters, 33 (4): 431-437, 2012. 3
    • (2012) Pattern Recognition Letters , vol.33 , Issue.4 , pp. 431-437
    • Shan, C.1
  • 47
    • 84887364811 scopus 로고    scopus 로고
    • Deep convolutional network cascade for facial point detection
    • IEEE, 3
    • Y. Sun, X. Wang, and X. Tang. Deep convolutional network cascade for facial point detection. In Proc. Conf. Comput. Vision Pattern Recognition, pages 3476-3483. IEEE, 2013. 3
    • (2013) Proc. Conf. Comput. Vision Pattern Recognition , pp. 3476-3483
    • Sun, Y.1    Wang, X.2    Tang, X.3
  • 48
    • 84911126535 scopus 로고    scopus 로고
    • Deep learning face representation from predicting 10, 000 classes
    • IEEE, 1, 4, 5
    • Y. Sun, X. Wang, and X. Tang. Deep learning face representation from predicting 10, 000 classes. In Proc. Conf. Com- put. Vision Pattern Recognition, pages 1891-1898. IEEE, 2014. 1, 4, 5
    • (2014) Proc. Conf. Com- Put. Vision Pattern Recognition , pp. 1891-1898
    • Sun, Y.1    Wang, X.2    Tang, X.3
  • 49
    • 67650979203 scopus 로고    scopus 로고
    • Detection, localization, and sex classification of faces from arbitrary viewpoints and under occlusion
    • 2
    • M. Toews and T. Arbel. Detection, localization, and sex classification of faces from arbitrary viewpoints and under occlusion. Trans. Pattern Anal. Mach. Intell., 31 (9): 1567-1581, 2009. 2
    • (2009) Trans. Pattern Anal. Mach. Intell , vol.31 , Issue.9 , pp. 1567-1581
    • Toews, M.1    Arbel, T.2
  • 54
    • 51449101883 scopus 로고    scopus 로고
    • Extracting age information from local spatially flexible patches
    • IEEE, 2
    • S. Yan, M. Liu, and T. S. Huang. Extracting age information from local spatially flexible patches. In Acoustics, Speech and Signal Processing, pages 737-740. IEEE, 2008. 2
    • (2008) Acoustics, Speech and Signal Processing , pp. 737-740
    • Yan, S.1    Liu, M.2    Huang, T.S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.