-
1
-
-
79960497641
-
Dynamic, stochastic, computational, and scalable technologies for smart grids
-
Venayagamoorthy G. Dynamic, stochastic, computational, and scalable technologies for smart grids. IEEE Comput. Intell. Mag. 2011, 6(3):22-35. 10.1109/MCI.2011.941588.
-
(2011)
IEEE Comput. Intell. Mag.
, vol.6
, Issue.3
, pp. 22-35
-
-
Venayagamoorthy, G.1
-
2
-
-
84873178222
-
Smart grid technologies in Europe: an overview
-
Ardito L., Procaccianti G., Menga G., Morisio M. Smart grid technologies in Europe: an overview. Energies 2013, 6(1):251-281. 10.3390/en6010251.
-
(2013)
Energies
, vol.6
, Issue.1
, pp. 251-281
-
-
Ardito, L.1
Procaccianti, G.2
Menga, G.3
Morisio, M.4
-
3
-
-
84887868333
-
Demand response and smart grids - a survey
-
Siano P. Demand response and smart grids - a survey. Renew. Sustain. Energy Rev. 2014, 30:461-478. 10.1016/j.rser.2013.10.022.
-
(2014)
Renew. Sustain. Energy Rev.
, vol.30
, pp. 461-478
-
-
Siano, P.1
-
4
-
-
84888027410
-
Application of BFNN in power flow calculation in smart distribution grid
-
Sun Q., Yu Y., Luo Y., Liu X. Application of BFNN in power flow calculation in smart distribution grid. Neurocomputing 2014, 125:148-152. 10.1016/j.neucom.2012.07.044.
-
(2014)
Neurocomputing
, vol.125
, pp. 148-152
-
-
Sun, Q.1
Yu, Y.2
Luo, Y.3
Liu, X.4
-
6
-
-
84908480594
-
Computational Intelligence in Smart water and gas grids: An up-to-date overview
-
M. Fagiani, S. Squartini, L. Gabrielli, M. Pizzichini, S. Spinsante, Computational Intelligence in Smart water and gas grids: An up-to-date overview, in: 2014 International Joint Conference on Neural Networks (IJCNN), 2014, pp. 921-926. http://dx.doi.org/10.1109/IJCNN.2014.6889603.
-
(2014)
2014 International Joint Conference on Neural Networks (IJCNN)
, pp. 921-926
-
-
Fagiani, M.1
Squartini, S.2
Gabrielli, L.3
Pizzichini, M.4
Spinsante, S.5
-
7
-
-
81855198035
-
Deep belief networks for financial prediction
-
in: B.-L. Lu, L. Zhang, J. Kwok (Eds.), Springer, Berlin, Heidelberg
-
B. Ribeiro, N. Lopes, Deep belief networks for financial prediction, in: B.-L. Lu, L. Zhang, J. Kwok (Eds.), Neural Information Processing, Lecture Notes in Computer Science, vol. 7064, Springer, Berlin, Heidelberg, 2011, pp. 766-773. http://dx.doi.org/10.1007/978-3-642-24965-5_86.
-
(2011)
Neural Information Processing, Lecture Notes in Computer Science
, vol.7064
, pp. 766-773
-
-
Ribeiro, B.1
Lopes, N.2
-
8
-
-
80054768623
-
Forecasting exchange rate with deep belief networks
-
J. Chao, F. Shen, J. Zhao, Forecasting exchange rate with deep belief networks, in: The 2011 International Joint Conference on Neural Networks (IJCNN), 2011, pp. 1259-1266. http://dx.doi.org/10.1109/IJCNN.2011.6033368.
-
(2011)
The 2011 International Joint Conference on Neural Networks (IJCNN)
, pp. 1259-1266
-
-
Chao, J.1
Shen, F.2
Zhao, J.3
-
9
-
-
84899568094
-
Time series forecasting using a deep belief network with restricted Boltzmann machines
-
Kuremoto T., Kimura S., Kobayashi K., Obayashi M. Time series forecasting using a deep belief network with restricted Boltzmann machines. Neurocomputing 2014, 137:47-56. 10.1016/j.neucom.2013.03.047.
-
(2014)
Neurocomputing
, vol.137
, pp. 47-56
-
-
Kuremoto, T.1
Kimura, S.2
Kobayashi, K.3
Obayashi, M.4
-
10
-
-
84907500988
-
Deep architecture for traffic flow prediction: deep belief networks with multitask learning
-
Huang W., Song G., hong h., Xie K. Deep architecture for traffic flow prediction: deep belief networks with multitask learning. IEEE Trans. Intell. Transp. Syst. 2014, 99:1-11. 10.1109/TITS.2014.2311123.
-
(2014)
IEEE Trans. Intell. Transp. Syst.
, vol.99
, pp. 1-11
-
-
Huang, W.1
Song, G.2
Hong, H.3
Xie, K.4
-
11
-
-
84867963090
-
Design of deep belief networks for short-term prediction of drought index using data in the Huaihe River Basin
-
Chen J., Jin Q., Chao J. Design of deep belief networks for short-term prediction of drought index using data in the Huaihe River Basin. Math. Probl. Eng. 2012, 137:1-16. 10.1155/2012/235929.
-
(2012)
Math. Probl. Eng.
, vol.137
, pp. 1-16
-
-
Chen, J.1
Jin, Q.2
Chao, J.3
-
12
-
-
79959475157
-
Short term load forecasting using echo state networks
-
H. Showkati, A. Hejazi, S. Elyasi, Short term load forecasting using echo state networks, in: The 2010 International Joint Conference on Neural Networks (IJCNN), 2010, pp. 1-5. http://dx.doi.org/10.1109/IJCNN.2010.5596950.
-
(2010)
The 2010 International Joint Conference on Neural Networks (IJCNN)
, pp. 1-5
-
-
Showkati, H.1
Hejazi, A.2
Elyasi, S.3
-
13
-
-
51749116529
-
Water inflow forecasting using the echo state network: a Brazilian case study
-
IJCNN 2007
-
R. Sacchi, M. Ozturk, J. Principe, A.A.F.M. Carneiro, I. da Silva, Water inflow forecasting using the echo state network: a Brazilian case study, in: International Joint Conference on Neural Networks, 2007. IJCNN 2007, 2007, pp. 2403-2408. http://dx.doi.org/10.1109/IJCNN.2007.4371334.
-
(2007)
International Joint Conference on Neural Networks, 2007
, pp. 2403-2408
-
-
Sacchi, R.1
Ozturk, M.2
Principe, J.3
Carneiro, A.A.F.M.4
da Silva, I.5
-
14
-
-
79951579790
-
Forecasting monthly urban water demand using extended Kalman filter and genetic programming
-
Nasseri M., Moeini A., Tabesh M. Forecasting monthly urban water demand using extended Kalman filter and genetic programming. Expert Syst. Appl. 2011, 8(6):7387-7395. 10.1016/j.eswa.2010.12.087.
-
(2011)
Expert Syst. Appl.
, vol.8
, Issue.6
, pp. 7387-7395
-
-
Nasseri, M.1
Moeini, A.2
Tabesh, M.3
-
15
-
-
84930940605
-
Domestic water and natural gas demand forecasting by using heterogeneous data: a preliminary study
-
M. Fagiani, S. Squartini, L. Gabrielli, S. Spinsante, F. Piazza, Domestic water and natural gas demand forecasting by using heterogeneous data: a preliminary study, Smart Innovation, Systems and Technologies 37, 2015, pp. 185-194. doi:. http://dx.doi.org/10.1007/978-3-319-18164-6_18.
-
(2015)
Smart Innovation, Systems and Technologies
, vol.37
, pp. 185-194
-
-
Fagiani, M.1
Squartini, S.2
Gabrielli, L.3
Spinsante, S.4
Piazza, F.5
-
16
-
-
84871801369
-
Characterising performance of environmental models
-
Bennett N.D., Croke B.F., Guariso G., Guillaume J.H., Hamilton S.H., Jakeman A.J., Marsili-Libelli S., Newham L.T., Norton J.P., Perrin C., Pierce S.A., Robson B., Seppelt R., Voinov A.A., Fath B.D., Andreassian V. Characterising performance of environmental models. Environ. Model. Softw. 2013, 40:1-20. 10.1016/j.envsoft.2012.09.011.
-
(2013)
Environ. Model. Softw.
, vol.40
, pp. 1-20
-
-
Bennett, N.D.1
Croke, B.F.2
Guariso, G.3
Guillaume, J.H.4
Hamilton, S.H.5
Jakeman, A.J.6
Marsili-Libelli, S.7
Newham, L.T.8
Norton, J.P.9
Perrin, C.10
Pierce, S.A.11
Robson, B.12
Seppelt, R.13
Voinov, A.A.14
Fath, B.D.15
Andreassian, V.16
-
18
-
-
84905262884
-
Urban water demand forecasting by LS-SVM with tuning based on elitist teaching-learning-based optimization
-
G. Ji, J. Wang, Y. Ge, H. Liu, Urban water demand forecasting by LS-SVM with tuning based on elitist teaching-learning-based optimization, in: The 26th Chinese Control and Decision Conference (2014 CCDC), 2014, pp. 3997-4002. http://dx.doi.org/10.1109/CCDC.2014.6852880.
-
(2014)
The 26th Chinese Control and Decision Conference (2014 CCDC)
, pp. 3997-4002
-
-
Ji, G.1
Wang, J.2
Ge, Y.3
Liu, H.4
-
19
-
-
84885227805
-
Temporal/spatial model-based fault diagnosis vs. hidden markov models change detection method: application to the Barcelona water network
-
J. Quevedo, C. Alippi, M. Cuguero, S. Ntalampiras, V. Puig, M. Roveri, D. Garcia, Temporal/spatial model-based fault diagnosis vs. hidden markov models change detection method: application to the Barcelona water network, in: 21st Mediterranean Conference on Control Automation (MED), 2013, pp. 394-400. http://dx.doi.org/10.1109/MED.2013.6608752.
-
(2013)
21st Mediterranean Conference on Control Automation (MED)
, pp. 394-400
-
-
Quevedo, J.1
Alippi, C.2
Cuguero, M.3
Ntalampiras, S.4
Puig, V.5
Roveri, M.6
Garcia, D.7
-
21
-
-
84901319055
-
AMPds: A Public Dataset for Load Disaggregation and Eco-Feedback Research
-
IEEE, Halifax, NS
-
S. Makonin, F. Popowich, L. Bartram, B. Gill, I. V. Bajic, AMPds: A Public Dataset for Load Disaggregation and Eco-Feedback Research, in: Electrical Power and Energy Conference, IEEE, Halifax, NS, 2013, pp. 1-6. doi:. http://dx.doi.org/10.1109/EPEC.2013.6802949.
-
(2013)
Electrical Power and Energy Conference
, pp. 1-6
-
-
Makonin, S.1
Popowich, F.2
Bartram, L.3
Gill, B.4
Bajic, I.V.5
-
22
-
-
84880674319
-
Adaptive forecasting model for short-term drinking water demand
-
Bakker M., Vreeburg J., van Schagen K., Rietveld L., Fully A. Adaptive forecasting model for short-term drinking water demand. Environ. Model. Softw. 2013, 48:141-151. 10.1016/j.envsoft.2013.06.012.
-
(2013)
Environ. Model. Softw.
, vol.48
, pp. 141-151
-
-
Bakker, M.1
Vreeburg, J.2
van Schagen, K.3
Rietveld, L.4
Fully, A.5
-
23
-
-
84894063530
-
A hierarchy of change-point methods for estimating the time instant of leakages in water distribution networks
-
in: H. Papadopoulos, A. Andreou, L. Iliadis, I. Maglogiannis (Eds.), Springer, Berlin, Heidelberg.
-
G. Boracchi, V. Puig, M. Roveri, A hierarchy of change-point methods for estimating the time instant of leakages in water distribution networks, in: H. Papadopoulos, A. Andreou, L. Iliadis, I. Maglogiannis (Eds.), Artificial Intelligence Applications and Innovations, IFIP Advances in Information and Communication Technology, vol. 412, Springer, Berlin, Heidelberg, 2013, pp. 615-624. http://dx.doi.org/10.1007/978-3-642-41142-7_62.
-
(2013)
Artificial Intelligence Applications and Innovations, IFIP Advances in Information and Communication Technology
, vol.412
, pp. 615-624
-
-
Boracchi, G.1
Puig, V.2
Roveri, M.3
-
25
-
-
84901761753
-
Urban Water Consumption Forecast based on PQPSO-LSSVM
-
X. Zhu, J. Chen, Urban Water Consumption Forecast based on PQPSO-LSSVM, in: Natural Computation (ICNC), 2013 Ninth International Conference on, 2013, pp. 834-837. http://dx.doi.org/10.1109/ICNC.2013.6818091.
-
(2013)
Natural Computation (ICNC), 2013 Ninth International Conference on
, pp. 834-837
-
-
Zhu, X.1
Chen, J.2
-
26
-
-
78149352552
-
Application of the grey theory and the neural network in water demand forecast
-
J. Liu, M. Chang, Application of the grey theory and the neural network in water demand forecast, in: 2010 Sixth International Conference on Natural Computation (ICNC), vol. 2, 2010, pp. 1070-1073. http://dx.doi.org/10.1109/ICNC.2010.5582996.
-
(2010)
2010 Sixth International Conference on Natural Computation (ICNC)
, vol.2
, pp. 1070-1073
-
-
Liu, J.1
Chang, M.2
-
27
-
-
64749115329
-
Fuzzy and neuro-fuzzy models for short-term water demand forecasting in Tehran
-
Tabesh M., Dini M. Fuzzy and neuro-fuzzy models for short-term water demand forecasting in Tehran. Iran. J. Sci. Technol. Trans. B, Eng. 2009, 33(B1):61-77.
-
(2009)
Iran. J. Sci. Technol. Trans. B, Eng.
, vol.33
, Issue.B1
, pp. 61-77
-
-
Tabesh, M.1
Dini, M.2
-
28
-
-
84940615265
-
-
U.S. Energy Information Administration @ONLINE.
-
E.I.A., U.S. Energy Information Administration @ONLINE. , 2014. http://www.eia.gov.
-
(2014)
-
-
-
29
-
-
84872461263
-
Shot-term and medium-term gas demand load forecasting by neural networks
-
Azari A., Shariaty-Niassar M., Alborzi M. Shot-term and medium-term gas demand load forecasting by neural networks. Iran. J. Chem. Chem. Eng. 2012, 31(4):77-84.
-
(2012)
Iran. J. Chem. Chem. Eng.
, vol.31
, Issue.4
, pp. 77-84
-
-
Azari, A.1
Shariaty-Niassar, M.2
Alborzi, M.3
-
30
-
-
84908473968
-
The Impact of additional weather inputs on gas load forecasting
-
(Master's thesis), Electrical and Computer Engineering, Marquette University, provided by the SAO/NASA Astrophysics Data System, August
-
B. Pang, The Impact of additional weather inputs on gas load forecasting (Master's thesis), Electrical and Computer Engineering, Marquette University, provided by the SAO/NASA Astrophysics Data System, August 2012, http://www.adsabs.harvard.edu/abs/2012PhDT...29P.
-
(2012)
, pp. 29
-
-
Pang, B.1
-
31
-
-
4344586511
-
Particle swarm optimization with particles having quantum behavior
-
CEC2004
-
J. Sun, B. Feng, W. Xu, Particle swarm optimization with particles having quantum behavior, in: Congress on Evolutionary Computation, 2004. CEC2004, vol. 1, 2004, pp. 325-331. http://dx.doi.org/10.1109/CEC.2004.1330875.
-
(2004)
Congress on Evolutionary Computation, 2004
, vol.1
, pp. 325-331
-
-
Sun, J.1
Feng, B.2
Xu, W.3
-
32
-
-
70349505264
-
Time series analysis
-
John Wiley & Sons, Hoboken, N.J.
-
Box G.E.P., Jenkins G., Reinsel G.C. Time series analysis. Forecasting and Control 2007, John Wiley & Sons, Hoboken, N.J. 4th edition.
-
(2007)
Forecasting and Control
-
-
Box, G.E.P.1
Jenkins, G.2
Reinsel, G.C.3
-
33
-
-
0030646548
-
The evolution of equations from hydraulic data - Part I. Theory
-
Babovic V., Abbott M.B. The evolution of equations from hydraulic data - Part I. Theory. J. Hydraul. Res. 1997, 35(3):397-410. 10.1080/00221689709498420.
-
(1997)
J. Hydraul. Res.
, vol.35
, Issue.3
, pp. 397-410
-
-
Babovic, V.1
Abbott, M.B.2
-
35
-
-
85024429815
-
A new approach to linear filtering and prediction problems
-
R.E. Kalman, A new approach to linear filtering and prediction problems, Trans. ASME - J. Basic Eng. (82 (Series D)) (1960) 35-45.
-
(1960)
Trans. ASME - J. Basic Eng.
, Issue.82 SERIES D
, pp. 35-45
-
-
Kalman, R.E.1
-
36
-
-
77952610962
-
Optimal Filtering with Kalman Filters and Smoothers - A Manual for MATLAB Toolbox EKF/UKF Version 1.3
-
Department of Biomedical Engineering and Computational Science, Aalto University School of Science, P.O. Box 1100, FI-00076 AALTO, Espoo, Finland, August
-
J. Hartikainen, A. Solin, S. Särkkä, Optimal Filtering with Kalman Filters and Smoothers - A Manual for MATLAB Toolbox EKF/UKF Version 1.3, Department of Biomedical Engineering and Computational Science, Aalto University School of Science, P.O. Box 1100, FI-00076 AALTO, Espoo, Finland, August 2011. http://becs.aalto.fi/en/research/bayes/ekfukf/documentation.pdf.
-
(2011)
-
-
Hartikainen, J.1
Solin, A.2
Särkkä, S.3
-
37
-
-
33746600649
-
Reducing the dimensionality of data with neural networks
-
Hinton G.E., Salakhutdinov R.R. Reducing the dimensionality of data with neural networks. Science 2006, 313(5786):504-507. 10.1126/science.1127647.
-
(2006)
Science
, vol.313
, Issue.5786
, pp. 504-507
-
-
Hinton, G.E.1
Salakhutdinov, R.R.2
-
38
-
-
33745805403
-
A fast learning algorithm for deep belief nets
-
Hinton G., Osindero S., Teh Y. A fast learning algorithm for deep belief nets. Neural Comput. 2006, 18(7):1527-1554. 10.1162/neco.2006.18.7.1527.
-
(2006)
Neural Comput.
, vol.18
, Issue.7
, pp. 1527-1554
-
-
Hinton, G.1
Osindero, S.2
Teh, Y.3
-
39
-
-
84864073449
-
Greedy layer-wise training of deep networks
-
Y. Bengio, P. Lamblin, D. Popovici, H. Larochelle, Greedy layer-wise training of deep networks, Adv. Neural Inf. Process. Syst. 19 (2007) 153-160. http://www.iro.umontreal.ca/~lisa/pointeurs/BengioNips2006All.pdf.
-
(2007)
Adv. Neural Inf. Process. Syst.
, vol.19
, pp. 153-160
-
-
Bengio, Y.1
Lamblin, P.2
Popovici, D.3
Larochelle, H.4
-
41
-
-
84872506495
-
A practical guide to training restricted Boltzmann machines
-
in: G. Montavon, G. Orr, K.-R. Mller (Eds.), Springer, Berlin, Heidelberg
-
G. Hinton, A practical guide to training restricted Boltzmann machines, in: G. Montavon, G. Orr, K.-R. Mller (Eds.), Neural Networks: Tricks of the Trade, Lecture Notes in Computer Science, vol. 7700, Springer, Berlin, Heidelberg, 2012, pp. 599-619. http://dx.doi.org/10.1007/978-3-642-35289-8_32.
-
(2012)
Neural Networks: Tricks of the Trade, Lecture Notes in Computer Science
, vol.7700
, pp. 599-619
-
-
Hinton, G.1
-
42
-
-
1842436050
-
The "Echo State" Approach to Analysing and Training Recurrent Neural Networks, GMD Technical Report 148
-
German National Research Center for Information Technology, Bonn, Germany
-
H. Jaeger, The "Echo State" Approach to Analysing and Training Recurrent Neural Networks, GMD Technical Report 148, German National Research Center for Information Technology, Bonn, Germany, 2001. http://www.faculty.jacobs-university.de/hjaeger/pubs/EchoStatesTechRep.pdf.
-
(2001)
-
-
Jaeger, H.1
-
43
-
-
58049158689
-
Echo state network
-
revision 138672.
-
H. Jaeger, Echo state network, Scholarpedia (9) (2007) 2330, revision 138672. http://dx.doi.org/doi:10.4249/scholarpedia.2330.
-
(2007)
Scholarpedia
, Issue.9
, pp. 2330
-
-
Jaeger, H.1
-
44
-
-
84872502995
-
A practical guide to applying echo state networks, in: G. Montavon, G. Orr, K.-R. Mller (Eds.), Neural Networks: Tricks of the Trade, Lecture Notes in Computer Science, Vol. 7700, Springer, Berlin, Heidelberg, 2012, pp. 659-686.
-
M. Lukoševičius, A practical guide to applying echo state networks, in: G. Montavon, G. Orr, K.-R. Mller (Eds.), Neural Networks: Tricks of the Trade, Lecture Notes in Computer Science, Vol. 7700, Springer, Berlin, Heidelberg, 2012, pp. 659-686. http://dx.doi.org/10.1007/978-3-642-35289-8_36.
-
-
-
Lukoševičius, M.1
-
45
-
-
0003450542
-
-
Springer-Verlag New York, Inc., New York, NY, USA
-
Vapnik V.N. The Nature of Statistical Learning Theory 1995, Springer-Verlag New York, Inc., New York, NY, USA.
-
(1995)
The Nature of Statistical Learning Theory
-
-
Vapnik, V.N.1
-
46
-
-
34249753618
-
Support-vector networks
-
Cortes C., Vapnik V. Support-vector networks. Mach. Learn. 1995, 20(3):273-297. 10.1023/A:1022627411411.
-
(1995)
Mach. Learn.
, vol.20
, Issue.3
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
47
-
-
79955702502
-
LIBSVM: a library for support vector machines
-
C.-C. Chang, C.-J. Lin, LIBSVM: a library for support vector machines, ACM Trans. Intell. Syst. Technol. 2 (2011) 27:1-27:27, software available at. http://www.csie.ntu.edu.tw/~cjlin/libsvm.
-
(2011)
ACM Trans. Intell. Syst. Technol.
, vol.2
, pp. 1-27
-
-
Chang, C.-C.1
Lin, C.-J.2
-
48
-
-
84883712284
-
Evaluation of the wireless M-bus standard for future smart water grids
-
S. Spinsante, M. Pizzichini, M. Mencarelli, S. Squartini, E. Gambi, Evaluation of the wireless M-bus standard for future smart water grids, in: 9th International Conference on Wireless Communications and Mobile Computing, 2013, pp. 1382-1387. http://dx.doi.org/10.1109/IWCMC.2013.6583758.
-
(2013)
9th International Conference on Wireless Communications and Mobile Computing
, pp. 1382-1387
-
-
Spinsante, S.1
Pizzichini, M.2
Mencarelli, M.3
Squartini, S.4
Gambi, E.5
-
49
-
-
84883229853
-
Wireless M-bus sensor nodes in smart water grids: the energy issue
-
S. Squartini, L. Gabrielli, M. Mencarelli, M. Pizzichini, S. Spinsante, F. Piazza, Wireless M-bus sensor nodes in smart water grids: the energy issue, in: Fourth International Conference on Intelligent Control and Information Processing, 2013, pp. 614-619. http://dx.doi.org/10.1109/ICICIP.2013.6568148.
-
(2013)
Fourth International Conference on Intelligent Control and Information Processing
, pp. 614-619
-
-
Squartini, S.1
Gabrielli, L.2
Mencarelli, M.3
Pizzichini, M.4
Spinsante, S.5
Piazza, F.6
-
50
-
-
84903642831
-
Wireless M-Bus sensor networks for smart water grids: analysis and results
-
S. Spinsante, S. Squartini, L. Gabrielli, M. Pizzichini, E. Gambi, F. Piazza, Wireless M-Bus sensor networks for smart water grids: analysis and results, Int. J. Distrib. Sens. Netw. (2014) 16. (Article ID 579271. http://dx.doi.org/doi:10.1155/2014/579271.
-
(2014)
Int. J. Distrib. Sens. Netw.
, vol.16
-
-
Spinsante, S.1
Squartini, S.2
Gabrielli, L.3
Pizzichini, M.4
Gambi, E.5
Piazza, F.6
|