메뉴 건너뛰기




Volumn 170, Issue , 2015, Pages 448-465

A review of datasets and load forecasting techniques for smart natural gas and water grids: Analysis and experiments

Author keywords

Computational intelligence; Forecasting techniques; Heterogeneous data forecasting; Machine learning; Short long term load forecasting; Smart water gas grid

Indexed keywords

ARTIFICIAL INTELLIGENCE; DEEP LEARNING; ELECTRIC POWER PLANT LOADS; EXTENDED KALMAN FILTERS; GASES; GENETIC ALGORITHMS; GENETIC PROGRAMMING; INTELLIGENT COMPUTING; LEARNING SYSTEMS; NATURAL GAS; SUPPORT VECTOR REGRESSION;

EID: 84940614413     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2015.04.098     Document Type: Article
Times cited : (42)

References (50)
  • 1
    • 79960497641 scopus 로고    scopus 로고
    • Dynamic, stochastic, computational, and scalable technologies for smart grids
    • Venayagamoorthy G. Dynamic, stochastic, computational, and scalable technologies for smart grids. IEEE Comput. Intell. Mag. 2011, 6(3):22-35. 10.1109/MCI.2011.941588.
    • (2011) IEEE Comput. Intell. Mag. , vol.6 , Issue.3 , pp. 22-35
    • Venayagamoorthy, G.1
  • 2
    • 84873178222 scopus 로고    scopus 로고
    • Smart grid technologies in Europe: an overview
    • Ardito L., Procaccianti G., Menga G., Morisio M. Smart grid technologies in Europe: an overview. Energies 2013, 6(1):251-281. 10.3390/en6010251.
    • (2013) Energies , vol.6 , Issue.1 , pp. 251-281
    • Ardito, L.1    Procaccianti, G.2    Menga, G.3    Morisio, M.4
  • 3
    • 84887868333 scopus 로고    scopus 로고
    • Demand response and smart grids - a survey
    • Siano P. Demand response and smart grids - a survey. Renew. Sustain. Energy Rev. 2014, 30:461-478. 10.1016/j.rser.2013.10.022.
    • (2014) Renew. Sustain. Energy Rev. , vol.30 , pp. 461-478
    • Siano, P.1
  • 4
    • 84888027410 scopus 로고    scopus 로고
    • Application of BFNN in power flow calculation in smart distribution grid
    • Sun Q., Yu Y., Luo Y., Liu X. Application of BFNN in power flow calculation in smart distribution grid. Neurocomputing 2014, 125:148-152. 10.1016/j.neucom.2012.07.044.
    • (2014) Neurocomputing , vol.125 , pp. 148-152
    • Sun, Q.1    Yu, Y.2    Luo, Y.3    Liu, X.4
  • 7
    • 81855198035 scopus 로고    scopus 로고
    • Deep belief networks for financial prediction
    • in: B.-L. Lu, L. Zhang, J. Kwok (Eds.), Springer, Berlin, Heidelberg
    • B. Ribeiro, N. Lopes, Deep belief networks for financial prediction, in: B.-L. Lu, L. Zhang, J. Kwok (Eds.), Neural Information Processing, Lecture Notes in Computer Science, vol. 7064, Springer, Berlin, Heidelberg, 2011, pp. 766-773. http://dx.doi.org/10.1007/978-3-642-24965-5_86.
    • (2011) Neural Information Processing, Lecture Notes in Computer Science , vol.7064 , pp. 766-773
    • Ribeiro, B.1    Lopes, N.2
  • 9
    • 84899568094 scopus 로고    scopus 로고
    • Time series forecasting using a deep belief network with restricted Boltzmann machines
    • Kuremoto T., Kimura S., Kobayashi K., Obayashi M. Time series forecasting using a deep belief network with restricted Boltzmann machines. Neurocomputing 2014, 137:47-56. 10.1016/j.neucom.2013.03.047.
    • (2014) Neurocomputing , vol.137 , pp. 47-56
    • Kuremoto, T.1    Kimura, S.2    Kobayashi, K.3    Obayashi, M.4
  • 10
    • 84907500988 scopus 로고    scopus 로고
    • Deep architecture for traffic flow prediction: deep belief networks with multitask learning
    • Huang W., Song G., hong h., Xie K. Deep architecture for traffic flow prediction: deep belief networks with multitask learning. IEEE Trans. Intell. Transp. Syst. 2014, 99:1-11. 10.1109/TITS.2014.2311123.
    • (2014) IEEE Trans. Intell. Transp. Syst. , vol.99 , pp. 1-11
    • Huang, W.1    Song, G.2    Hong, H.3    Xie, K.4
  • 11
    • 84867963090 scopus 로고    scopus 로고
    • Design of deep belief networks for short-term prediction of drought index using data in the Huaihe River Basin
    • Chen J., Jin Q., Chao J. Design of deep belief networks for short-term prediction of drought index using data in the Huaihe River Basin. Math. Probl. Eng. 2012, 137:1-16. 10.1155/2012/235929.
    • (2012) Math. Probl. Eng. , vol.137 , pp. 1-16
    • Chen, J.1    Jin, Q.2    Chao, J.3
  • 14
    • 79951579790 scopus 로고    scopus 로고
    • Forecasting monthly urban water demand using extended Kalman filter and genetic programming
    • Nasseri M., Moeini A., Tabesh M. Forecasting monthly urban water demand using extended Kalman filter and genetic programming. Expert Syst. Appl. 2011, 8(6):7387-7395. 10.1016/j.eswa.2010.12.087.
    • (2011) Expert Syst. Appl. , vol.8 , Issue.6 , pp. 7387-7395
    • Nasseri, M.1    Moeini, A.2    Tabesh, M.3
  • 15
    • 84930940605 scopus 로고    scopus 로고
    • Domestic water and natural gas demand forecasting by using heterogeneous data: a preliminary study
    • M. Fagiani, S. Squartini, L. Gabrielli, S. Spinsante, F. Piazza, Domestic water and natural gas demand forecasting by using heterogeneous data: a preliminary study, Smart Innovation, Systems and Technologies 37, 2015, pp. 185-194. doi:. http://dx.doi.org/10.1007/978-3-319-18164-6_18.
    • (2015) Smart Innovation, Systems and Technologies , vol.37 , pp. 185-194
    • Fagiani, M.1    Squartini, S.2    Gabrielli, L.3    Spinsante, S.4    Piazza, F.5
  • 18
    • 84905262884 scopus 로고    scopus 로고
    • Urban water demand forecasting by LS-SVM with tuning based on elitist teaching-learning-based optimization
    • G. Ji, J. Wang, Y. Ge, H. Liu, Urban water demand forecasting by LS-SVM with tuning based on elitist teaching-learning-based optimization, in: The 26th Chinese Control and Decision Conference (2014 CCDC), 2014, pp. 3997-4002. http://dx.doi.org/10.1109/CCDC.2014.6852880.
    • (2014) The 26th Chinese Control and Decision Conference (2014 CCDC) , pp. 3997-4002
    • Ji, G.1    Wang, J.2    Ge, Y.3    Liu, H.4
  • 19
  • 21
    • 84901319055 scopus 로고    scopus 로고
    • AMPds: A Public Dataset for Load Disaggregation and Eco-Feedback Research
    • IEEE, Halifax, NS
    • S. Makonin, F. Popowich, L. Bartram, B. Gill, I. V. Bajic, AMPds: A Public Dataset for Load Disaggregation and Eco-Feedback Research, in: Electrical Power and Energy Conference, IEEE, Halifax, NS, 2013, pp. 1-6. doi:. http://dx.doi.org/10.1109/EPEC.2013.6802949.
    • (2013) Electrical Power and Energy Conference , pp. 1-6
    • Makonin, S.1    Popowich, F.2    Bartram, L.3    Gill, B.4    Bajic, I.V.5
  • 23
    • 84894063530 scopus 로고    scopus 로고
    • A hierarchy of change-point methods for estimating the time instant of leakages in water distribution networks
    • in: H. Papadopoulos, A. Andreou, L. Iliadis, I. Maglogiannis (Eds.), Springer, Berlin, Heidelberg.
    • G. Boracchi, V. Puig, M. Roveri, A hierarchy of change-point methods for estimating the time instant of leakages in water distribution networks, in: H. Papadopoulos, A. Andreou, L. Iliadis, I. Maglogiannis (Eds.), Artificial Intelligence Applications and Innovations, IFIP Advances in Information and Communication Technology, vol. 412, Springer, Berlin, Heidelberg, 2013, pp. 615-624. http://dx.doi.org/10.1007/978-3-642-41142-7_62.
    • (2013) Artificial Intelligence Applications and Innovations, IFIP Advances in Information and Communication Technology , vol.412 , pp. 615-624
    • Boracchi, G.1    Puig, V.2    Roveri, M.3
  • 26
    • 78149352552 scopus 로고    scopus 로고
    • Application of the grey theory and the neural network in water demand forecast
    • J. Liu, M. Chang, Application of the grey theory and the neural network in water demand forecast, in: 2010 Sixth International Conference on Natural Computation (ICNC), vol. 2, 2010, pp. 1070-1073. http://dx.doi.org/10.1109/ICNC.2010.5582996.
    • (2010) 2010 Sixth International Conference on Natural Computation (ICNC) , vol.2 , pp. 1070-1073
    • Liu, J.1    Chang, M.2
  • 27
    • 64749115329 scopus 로고    scopus 로고
    • Fuzzy and neuro-fuzzy models for short-term water demand forecasting in Tehran
    • Tabesh M., Dini M. Fuzzy and neuro-fuzzy models for short-term water demand forecasting in Tehran. Iran. J. Sci. Technol. Trans. B, Eng. 2009, 33(B1):61-77.
    • (2009) Iran. J. Sci. Technol. Trans. B, Eng. , vol.33 , Issue.B1 , pp. 61-77
    • Tabesh, M.1    Dini, M.2
  • 28
    • 84940615265 scopus 로고    scopus 로고
    • U.S. Energy Information Administration @ONLINE.
    • E.I.A., U.S. Energy Information Administration @ONLINE. , 2014. http://www.eia.gov.
    • (2014)
  • 29
    • 84872461263 scopus 로고    scopus 로고
    • Shot-term and medium-term gas demand load forecasting by neural networks
    • Azari A., Shariaty-Niassar M., Alborzi M. Shot-term and medium-term gas demand load forecasting by neural networks. Iran. J. Chem. Chem. Eng. 2012, 31(4):77-84.
    • (2012) Iran. J. Chem. Chem. Eng. , vol.31 , Issue.4 , pp. 77-84
    • Azari, A.1    Shariaty-Niassar, M.2    Alborzi, M.3
  • 30
    • 84908473968 scopus 로고    scopus 로고
    • The Impact of additional weather inputs on gas load forecasting
    • (Master's thesis), Electrical and Computer Engineering, Marquette University, provided by the SAO/NASA Astrophysics Data System, August
    • B. Pang, The Impact of additional weather inputs on gas load forecasting (Master's thesis), Electrical and Computer Engineering, Marquette University, provided by the SAO/NASA Astrophysics Data System, August 2012, http://www.adsabs.harvard.edu/abs/2012PhDT...29P.
    • (2012) , pp. 29
    • Pang, B.1
  • 31
    • 4344586511 scopus 로고    scopus 로고
    • Particle swarm optimization with particles having quantum behavior
    • CEC2004
    • J. Sun, B. Feng, W. Xu, Particle swarm optimization with particles having quantum behavior, in: Congress on Evolutionary Computation, 2004. CEC2004, vol. 1, 2004, pp. 325-331. http://dx.doi.org/10.1109/CEC.2004.1330875.
    • (2004) Congress on Evolutionary Computation, 2004 , vol.1 , pp. 325-331
    • Sun, J.1    Feng, B.2    Xu, W.3
  • 33
    • 0030646548 scopus 로고    scopus 로고
    • The evolution of equations from hydraulic data - Part I. Theory
    • Babovic V., Abbott M.B. The evolution of equations from hydraulic data - Part I. Theory. J. Hydraul. Res. 1997, 35(3):397-410. 10.1080/00221689709498420.
    • (1997) J. Hydraul. Res. , vol.35 , Issue.3 , pp. 397-410
    • Babovic, V.1    Abbott, M.B.2
  • 35
    • 85024429815 scopus 로고
    • A new approach to linear filtering and prediction problems
    • R.E. Kalman, A new approach to linear filtering and prediction problems, Trans. ASME - J. Basic Eng. (82 (Series D)) (1960) 35-45.
    • (1960) Trans. ASME - J. Basic Eng. , Issue.82 SERIES D , pp. 35-45
    • Kalman, R.E.1
  • 36
    • 77952610962 scopus 로고    scopus 로고
    • Optimal Filtering with Kalman Filters and Smoothers - A Manual for MATLAB Toolbox EKF/UKF Version 1.3
    • Department of Biomedical Engineering and Computational Science, Aalto University School of Science, P.O. Box 1100, FI-00076 AALTO, Espoo, Finland, August
    • J. Hartikainen, A. Solin, S. Särkkä, Optimal Filtering with Kalman Filters and Smoothers - A Manual for MATLAB Toolbox EKF/UKF Version 1.3, Department of Biomedical Engineering and Computational Science, Aalto University School of Science, P.O. Box 1100, FI-00076 AALTO, Espoo, Finland, August 2011. http://becs.aalto.fi/en/research/bayes/ekfukf/documentation.pdf.
    • (2011)
    • Hartikainen, J.1    Solin, A.2    Särkkä, S.3
  • 37
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • Hinton G.E., Salakhutdinov R.R. Reducing the dimensionality of data with neural networks. Science 2006, 313(5786):504-507. 10.1126/science.1127647.
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 38
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • Hinton G., Osindero S., Teh Y. A fast learning algorithm for deep belief nets. Neural Comput. 2006, 18(7):1527-1554. 10.1162/neco.2006.18.7.1527.
    • (2006) Neural Comput. , vol.18 , Issue.7 , pp. 1527-1554
    • Hinton, G.1    Osindero, S.2    Teh, Y.3
  • 41
    • 84872506495 scopus 로고    scopus 로고
    • A practical guide to training restricted Boltzmann machines
    • in: G. Montavon, G. Orr, K.-R. Mller (Eds.), Springer, Berlin, Heidelberg
    • G. Hinton, A practical guide to training restricted Boltzmann machines, in: G. Montavon, G. Orr, K.-R. Mller (Eds.), Neural Networks: Tricks of the Trade, Lecture Notes in Computer Science, vol. 7700, Springer, Berlin, Heidelberg, 2012, pp. 599-619. http://dx.doi.org/10.1007/978-3-642-35289-8_32.
    • (2012) Neural Networks: Tricks of the Trade, Lecture Notes in Computer Science , vol.7700 , pp. 599-619
    • Hinton, G.1
  • 42
    • 1842436050 scopus 로고    scopus 로고
    • The "Echo State" Approach to Analysing and Training Recurrent Neural Networks, GMD Technical Report 148
    • German National Research Center for Information Technology, Bonn, Germany
    • H. Jaeger, The "Echo State" Approach to Analysing and Training Recurrent Neural Networks, GMD Technical Report 148, German National Research Center for Information Technology, Bonn, Germany, 2001. http://www.faculty.jacobs-university.de/hjaeger/pubs/EchoStatesTechRep.pdf.
    • (2001)
    • Jaeger, H.1
  • 43
    • 58049158689 scopus 로고    scopus 로고
    • Echo state network
    • revision 138672.
    • H. Jaeger, Echo state network, Scholarpedia (9) (2007) 2330, revision 138672. http://dx.doi.org/doi:10.4249/scholarpedia.2330.
    • (2007) Scholarpedia , Issue.9 , pp. 2330
    • Jaeger, H.1
  • 44
    • 84872502995 scopus 로고    scopus 로고
    • A practical guide to applying echo state networks, in: G. Montavon, G. Orr, K.-R. Mller (Eds.), Neural Networks: Tricks of the Trade, Lecture Notes in Computer Science, Vol. 7700, Springer, Berlin, Heidelberg, 2012, pp. 659-686.
    • M. Lukoševičius, A practical guide to applying echo state networks, in: G. Montavon, G. Orr, K.-R. Mller (Eds.), Neural Networks: Tricks of the Trade, Lecture Notes in Computer Science, Vol. 7700, Springer, Berlin, Heidelberg, 2012, pp. 659-686. http://dx.doi.org/10.1007/978-3-642-35289-8_36.
    • Lukoševičius, M.1
  • 46
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes C., Vapnik V. Support-vector networks. Mach. Learn. 1995, 20(3):273-297. 10.1023/A:1022627411411.
    • (1995) Mach. Learn. , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 47
    • 79955702502 scopus 로고    scopus 로고
    • LIBSVM: a library for support vector machines
    • C.-C. Chang, C.-J. Lin, LIBSVM: a library for support vector machines, ACM Trans. Intell. Syst. Technol. 2 (2011) 27:1-27:27, software available at. http://www.csie.ntu.edu.tw/~cjlin/libsvm.
    • (2011) ACM Trans. Intell. Syst. Technol. , vol.2 , pp. 1-27
    • Chang, C.-C.1    Lin, C.-J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.