메뉴 건너뛰기




Volumn 8, Issue 2, 2015, Pages 128-143

A clustering algorithm based on feature weighting fuzzy compactness and separation

Author keywords

Feature weighting; Fuzzy clustering; Fuzzy compactness and separation; Hard clustering

Indexed keywords

ALGORITHMS; FUZZY CLUSTERING; SEPARATION;

EID: 84940386265     PISSN: None     EISSN: 19994893     Source Type: Journal    
DOI: 10.3390/a8020128     Document Type: Article
Times cited : (3)

References (21)
  • 5
    • 0034217632 scopus 로고    scopus 로고
    • Rival checked fuzzy c-means algorithm
    • Wei, L.M.; Xie, W.X. Rival checked fuzzy c-means algorithm. Acta Electron. Sinica 2000, 28, 63-66.
    • (2000) Acta Electron. Sinica , vol.28 , pp. 63-66
    • Wei, L.M.1    Xie, W.X.2
  • 6
    • 0037410688 scopus 로고    scopus 로고
    • Suppressed fuzzy c-means clustering algorithm
    • Fan, J.L.; Zhen, W.Z.; Xie, W.X. Suppressed fuzzy c-means clustering algorithm. Pattern Recognit. Lett. 2003, 24, 1607-1612.
    • (2003) Pattern Recognit. Lett. , vol.24 , pp. 1607-1612
    • Fan, J.L.1    Zhen, W.Z.2    Xie, W.X.3
  • 7
    • 14644429109 scopus 로고    scopus 로고
    • A novel fuzzy clustering algorithm based on a fuzzy scatter matrix with optimality tests
    • Wu, K.L.; Yu, J.; Yang M.S. A novel fuzzy clustering algorithm based on a fuzzy scatter matrix with optimality tests. Pattern Recognit. Lett. 2005, 26, 639-652.
    • (2005) Pattern Recognit. Lett. , vol.26 , pp. 639-652
    • Wu, K.L.1    Yu, J.2    Yang, M.S.3
  • 8
    • 0346847567 scopus 로고    scopus 로고
    • Unsupervised learning of prototypes and feature weights
    • Frigui, H.; Nasraoui, O. Unsupervised learning of prototypes and feature weights. Pattern Recognit. 2004, 37, 567-581.
    • (2004) Pattern Recognit. , vol.37 , pp. 567-581
    • Frigui, H.1    Nasraoui, O.2
  • 9
    • 2942534051 scopus 로고    scopus 로고
    • Improving fuzzy c-means clustering based on feature-weight learning
    • Wang, X.; Wang, Y.; Wang, L. Improving fuzzy c-means clustering based on feature-weight learning. Pattern Recognit. Lett. 2004, 25, 1123-1132.
    • (2004) Pattern Recognit. Lett. , vol.25 , pp. 1123-1132
    • Wang, X.1    Wang, Y.2    Wang, L.3
  • 10
    • 34347228671 scopus 로고    scopus 로고
    • An entropy weighting k-means algorithm for subspace clustering of high-dimensional sparse data
    • Jing, L.; Ng, M.K.; Huang, J.Z. An entropy weighting k-means algorithm for subspace clustering of high-dimensional sparse data. Knowl. Data Engin. IEEE Transactions on 2007, 19, 1026-1041.
    • (2007) Knowl. Data Engin. IEEE Transactions on , vol.19 , pp. 1026-1041
    • Jing, L.1    Ng, M.K.2    Huang, J.Z.3
  • 11
    • 51849161971 scopus 로고    scopus 로고
    • Fuzzy k-means with variable weighting in high dimensional data analysis
    • WAIM'08. The Ninth International Conference on; Hunan, China, 2008
    • Wang, Q.; Ye, Y.; Huang, J.Z. Fuzzy k-means with variable weighting in high dimensional data analysis. In Proceedings of Web-Age Information Management, 2008. WAIM'08. The Ninth International Conference on; Hunan, China, 2008; pp. 365-372.
    • (2008) Proceedings of Web-Age Information Management , pp. 365-372
    • Wang, Q.1    Ye, Y.2    Huang, J.Z.3
  • 12
    • 84867697711 scopus 로고    scopus 로고
    • Feature weighting fuzzy clustering integrating rough sets and shadowed sets
    • Wang, L.; Wang, J. Feature weighting fuzzy clustering integrating rough sets and shadowed sets. Int. J. Pattern Recognit. Artif. Intell. 2012, 26, 1769-1776.
    • (2012) Int. J. Pattern Recognit. Artif. Intell. , vol.26 , pp. 1769-1776
    • Wang, L.1    Wang, J.2
  • 13
    • 70449699648 scopus 로고    scopus 로고
    • Enhanced soft subspace clustering integrating within-cluster and between-cluster information
    • Deng, Z.; Choi, K.S., Chung, F.L.; Wang, S.T. Enhanced soft subspace clustering integrating within-cluster and between-cluster information. Pattern Recognit. 2010, 43, 767-781.
    • (2010) Pattern Recognit. , vol.43 , pp. 767-781
    • Deng, Z.1    Choi, K.S.2    Chung, F.L.3    Wang, S.T.4
  • 15
    • 84950632109 scopus 로고
    • Objective criteria for the evaluation of clustering methods
    • Rand, W.M. Objective criteria for the evaluation of clustering methods. J. Am. Stat. Assoc. 1971, 66, 846-850.
    • (1971) J. Am. Stat. Assoc. , vol.66 , pp. 846-850
    • Rand, W.M.1
  • 16
    • 0026204245 scopus 로고
    • A validity measure for fuzzy clustering. IEEE Trans
    • Xie, X.L.; Beni, G.A. A validity measure for fuzzy clustering. IEEE Trans. Pattern Anal. Mach. Intell. 1991, 13, 841-847.
    • (1991) Pattern Anal. Mach. Intell. , vol.13 , pp. 841-847
    • Xie, X.L.1    Beni, G.A.2
  • 17
    • 84905727636 scopus 로고    scopus 로고
    • WB-index: A sum-of-squares based index for cluster validity
    • Zhao, Q.; Fränti, P. WB-index: A sum-of-squares based index for cluster validity. Data Knowl. Eng. 2014, 92, 77-89.
    • (2014) Data Knowl. Eng. , vol.92 , pp. 77-89
    • Zhao, Q.1    Fränti, P.2
  • 21
    • 84908011223 scopus 로고    scopus 로고
    • A Novel Evolutionary Kernel Intuitionistic Fuzzy C-means Clustering Algorithm
    • Lin, K.P. A Novel Evolutionary Kernel Intuitionistic Fuzzy C-means Clustering Algorithm. Fuzzy Syst. IEEE Transactions on 2014, 22, 1074-1087.
    • (2014) Fuzzy Syst. IEEE Transactions on , vol.22 , pp. 1074-1087
    • Lin, K.P.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.