메뉴 건너뛰기




Volumn 72, Issue 1, 2016, Pages 272-280

Subsampling versus bootstrapping in resampling-based model selection for multivariable regression

Author keywords

Bootstrap; Model selection; Model stability; Subsampling

Indexed keywords

MULTIVARIABLE SYSTEMS; REGRESSION ANALYSIS;

EID: 84940210465     PISSN: 0006341X     EISSN: 15410420     Source Type: Journal    
DOI: 10.1111/biom.12381     Document Type: Article
Times cited : (77)

References (38)
  • 1
    • 0000501656 scopus 로고
    • Information theory and an extension of the maximum likelihood principle.
    • In 2nd International Symposium on Information Theory, Budapest: Akademiai Kiado.
    • Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In 2nd International Symposium on Information Theory, 267-281, Budapest: Akademiai Kiado.
    • (1973) , pp. 267-281
    • Akaike, H.1
  • 2
    • 0024320123 scopus 로고
    • Bootstrap investigation of the stability of a Cox regression model
    • Altman, D. G. and Andersen, P. K. (1989). Bootstrap investigation of the stability of a Cox regression model. Statistics in Medicine 8, 771-783.
    • (1989) Statistics in Medicine , vol.8 , pp. 771-783
    • Altman, D.G.1    Andersen, P.K.2
  • 3
    • 0000485156 scopus 로고
    • Some asymptotic theory for the bootstrap
    • Bickel, P. J. and Freedman, D. A. (1981). Some asymptotic theory for the bootstrap. The Annals of Statistics 7, 1196-1217.
    • (1981) The Annals of Statistics , vol.7 , pp. 1196-1217
    • Bickel, P.J.1    Freedman, D.A.2
  • 4
    • 0642310183 scopus 로고    scopus 로고
    • Resampling fewer than n observations: Gains, losses, and remedies for losses
    • Bickel, P. J., Götze, F., and van Zwet, W. R. (1997). Resampling fewer than n observations: Gains, losses, and remedies for losses. Statistica Sinica 7, 1-31.
    • (1997) Statistica Sinica , vol.7 , pp. 1-31
    • Bickel, P.J.1    Götze, F.2    van Zwet, W.R.3
  • 5
    • 53349123556 scopus 로고    scopus 로고
    • On the choice of m in the m out of n bootstrap and its application to confidence bounds for extreme percentiles
    • Bickel, P. J. and Sakov, A. (2008). On the choice of m in the m out of n bootstrap and its application to confidence bounds for extreme percentiles. Statistica Sinica 18, 967-985.
    • (2008) Statistica Sinica , vol.18 , pp. 967-985
    • Bickel, P.J.1    Sakov, A.2
  • 6
    • 38149109794 scopus 로고    scopus 로고
    • On properties of predictors derived with a two-step bootstrap model averaging approach: A simulation study in the linear regression model
    • Buchholz, A., Holländer, N., and Sauerbrei, W. (2008). On properties of predictors derived with a two-step bootstrap model averaging approach: A simulation study in the linear regression model. Computational Statistics & Data Analysis 52, 2778-2793.
    • (2008) Computational Statistics & Data Analysis , vol.52 , pp. 2778-2793
    • Buchholz, A.1    Holländer, N.2    Sauerbrei, W.3
  • 7
    • 0021958612 scopus 로고
    • The bootstrap and identification of prognostic factors via Cox's proportional hazards regression model
    • Chen, C.-H. and George, S. L. (1985). The bootstrap and identification of prognostic factors via Cox's proportional hazards regression model. Statistics in Medicine 4, 39-46.
    • (1985) Statistics in Medicine , vol.4 , pp. 39-46
    • Chen, C.-H.1    George, S.L.2
  • 9
    • 0009020169 scopus 로고
    • Estimating the residual variance in orthogonal regression with variable selection
    • Copas, J. B. and Long, T. (1991). Estimating the residual variance in orthogonal regression with variable selection. The Statistician 40, 51-59.
    • (1991) The Statistician , vol.40 , pp. 51-59
    • Copas, J.B.1    Long, T.2
  • 10
  • 11
    • 55149093651 scopus 로고    scopus 로고
    • Resampling schemes with low resampling intensity and their applications in testing hypotheses
    • del Barrio, E., Janssen, A., and Matrán, C. (2009). Resampling schemes with low resampling intensity and their applications in testing hypotheses. Journal of Statistical Planning and Inference 139, 184-202.
    • (2009) Journal of Statistical Planning and Inference , vol.139 , pp. 184-202
    • del Barrio, E.1    Janssen, A.2    Matrán, C.3
  • 12
    • 0002344794 scopus 로고
    • Bootstrap methods: Another look at the jackknife
    • Efron, B. (1979). Bootstrap methods: Another look at the jackknife. The Annals of Statistics 7, 1-26.
    • (1979) The Annals of Statistics , vol.7 , pp. 1-26
    • Efron, B.1
  • 13
    • 85153154888 scopus 로고
    • Nonlinear Multivariate Analysis. Chichester: Wiley.
    • Gifi, A. (1990). Nonlinear Multivariate Analysis. Chichester: Wiley.
    • (1990)
    • Gifi, A.1
  • 14
    • 0020498979 scopus 로고
    • Some ideas on using the bootstrap in assessing model variability.
    • In Computer Science and Statistics: Proceedings of the 14th Symposium on the Interface, New York: Springer.
    • Gong, G. (1982). Some ideas on using the bootstrap in assessing model variability. In Computer Science and Statistics: Proceedings of the 14th Symposium on the Interface, 169-173. New York: Springer.
    • (1982) , pp. 169-173
    • Gong, G.1
  • 17
    • 85153158249 scopus 로고    scopus 로고
    • Pitfalls of hypothesis tests and model selection on bootstrap samples: Causes and consequences in biometrical applications
    • to appear.
    • Janitza, S., Binder, H., and Boulesteix, A.-L. (2015). Pitfalls of hypothesis tests and model selection on bootstrap samples: Causes and consequences in biometrical applications. Biometrical Journal, to appear.
    • (2015) Biometrical Journal
    • Janitza, S.1    Binder, H.2    Boulesteix, A.-L.3
  • 18
    • 84875818068 scopus 로고    scopus 로고
    • An AUC-based permutation variable importance measure for random forests
    • Janitza, S., Strobl, C., and Boulesteix, A.-L. (2013). An AUC-based permutation variable importance measure for random forests. BMC Bioinformatics 14, 119.
    • (2013) BMC Bioinformatics , vol.14 , pp. 119
    • Janitza, S.1    Strobl, C.2    Boulesteix, A.-L.3
  • 19
    • 85153156270 scopus 로고
    • When Does Bootstrap Work? New York: Springer.
    • Mammen, E. (1992). When Does Bootstrap Work? New York: Springer.
    • (1992)
    • Mammen, E.1
  • 21
    • 33747163541 scopus 로고    scopus 로고
    • High-dimensional graphs and variable selection with the lasso
    • Meinshausen, N. and Bühlmann, P. (2006). High-dimensional graphs and variable selection with the lasso. The Annals of Statistics 34, 1436-1462.
    • (2006) The Annals of Statistics , vol.34 , pp. 1436-1462
    • Meinshausen, N.1    Bühlmann, P.2
  • 24
    • 0042986859 scopus 로고    scopus 로고
    • The Statistical Evaluation of Medical Tests for Classification and Prediction.
    • New York: Oxford University Press.
    • Pepe, M. S. (2003). The Statistical Evaluation of Medical Tests for Classification and Prediction. New York: Oxford University Press.
    • (2003)
    • Pepe, M.S.1
  • 26
    • 21844512391 scopus 로고
    • Large sample confidence regions based on subsamples under minimal assumptions
    • Politis, D. N. and Romano, J. P. (1994). Large sample confidence regions based on subsamples under minimal assumptions. The Annals of Statistics 22, 2031-2050.
    • (1994) The Annals of Statistics , vol.22 , pp. 2031-2050
    • Politis, D.N.1    Romano, J.P.2
  • 27
    • 84962660848 scopus 로고    scopus 로고
    • The effects of bootstrapping on model selection for multiple regression.
    • Technical Report 164, Department of Statistics, University of Munich.
    • Rospleszcz, S., Janitza, S., and Boulesteix, A.-L. (2014). The effects of bootstrapping on model selection for multiple regression. Technical Report 164, Department of Statistics, University of Munich.
    • (2014)
    • Rospleszcz, S.1    Janitza, S.2    Boulesteix, A.-L.3
  • 28
    • 84948184622 scopus 로고    scopus 로고
    • Multivariable Model-building: A pragmatic approach to regression anaylsis based on fractional polynomials for modelling continuous variables.
    • Chichester: Wiley.
    • Royston, P. and Sauerbrei, W. (2008). Multivariable Model-building: A pragmatic approach to regression anaylsis based on fractional polynomials for modelling continuous variables. Chichester: Wiley.
    • (2008)
    • Royston, P.1    Sauerbrei, W.2
  • 29
    • 4243675962 scopus 로고
    • Variablenselektion in Regressionsmodellen unter besonderer Berücksichtigung medizinischer Fragestellungen.
    • PhD thesis, University of Dortmund.
    • Sauerbrei, W. (1992). Variablenselektion in Regressionsmodellen unter besonderer Berücksichtigung medizinischer Fragestellungen. PhD thesis, University of Dortmund.
    • (1992)
    • Sauerbrei, W.1
  • 30
    • 0043001264 scopus 로고
    • Comparison of variable selection procedures in regression models -a simulation study and practical examples.
    • In Europäische Perspectiven der Medizinischen Informatik, Biometrie und Epidemologie, MMV Munich: Medizin.
    • Sauerbrei, W. (1993). Comparison of variable selection procedures in regression models -a simulation study and practical examples. In Europäische Perspectiven der Medizinischen Informatik, Biometrie und Epidemologie, 108-113. MMV Munich: Medizin.
    • (1993) , pp. 108-113
    • Sauerbrei, W.1
  • 33
    • 0027081755 scopus 로고
    • A bootstrap resampling procedure for model building: Application to the Cox regression model
    • Sauerbrei, W. and Schumacher, M. (1992). A bootstrap resampling procedure for model building: Application to the Cox regression model. Statistics in Medicine 11, 2093-2109.
    • (1992) Statistics in Medicine , vol.11 , pp. 2093-2109
    • Sauerbrei, W.1    Schumacher, M.2
  • 34
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics 6, 461-464.
    • (1978) The Annals of Statistics , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 35
    • 0001514453 scopus 로고
    • A general theory for jackknife variance estimation
    • Shao, J. and Wu, C. J. (1989). A general theory for jackknife variance estimation. The Annals of Statistics 17, 1176-1197.
    • (1989) The Annals of Statistics , vol.17 , pp. 1176-1197
    • Shao, J.1    Wu, C.J.2
  • 37
    • 0001673027 scopus 로고
    • Jackknife, bootstrap and other resampling methods in regression analysis
    • Wu, C.-F. J. (1986). Jackknife, bootstrap and other resampling methods in regression analysis. The Annals of Statistics 14, 1261-1295.
    • (1986) The Annals of Statistics , vol.14 , pp. 1261-1295
    • Wu, C.-F.J.1
  • 38
    • 21444434322 scopus 로고    scopus 로고
    • Bootstrap techniques for proportional hazards models with censored observations
    • Zelterman, D., Le, C. T., and Louis, T. A. (1996). Bootstrap techniques for proportional hazards models with censored observations. Statistics and Computing 6, 191-199.
    • (1996) Statistics and Computing , vol.6 , pp. 191-199
    • Zelterman, D.1    Le, C.T.2    Louis, T.A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.