메뉴 건너뛰기




Volumn 119, Issue 4, 2015, Pages 396-403

Methods to estimate aspects of physical activity and sedentary behavior from high-frequency wrist accelerometer measurements

Author keywords

ActiGraph; GT3X+; High frequency; Triaxial

Indexed keywords

ACTIMETRY; ADULT; BIOMECHANICS; BODY MASS; COMPARATIVE STUDY; DAILY LIFE ACTIVITY; DECISION TREE; DEVICE FAILURE; DEVICES; ENERGY METABOLISM; EVALUATION STUDY; FEMALE; HEALTH BEHAVIOR; HUMAN; INDIRECT CALORIMETRY; MACHINE LEARNING; MALE; MOTOR ACTIVITY; PHYSIOLOGY; REPRODUCIBILITY; SEDENTARY LIFESTYLE; SIGNAL PROCESSING; STATISTICAL MODEL; TIME FACTOR; WRIST; YOUNG ADULT;

EID: 84939802010     PISSN: 87507587     EISSN: 15221601     Source Type: Journal    
DOI: 10.1152/japplphysiol.00026.2015     Document Type: Article
Times cited : (102)

References (25)
  • 2
    • 35048842427 scopus 로고    scopus 로고
    • Activity recognition for user-annotated acceleration data
    • New York: Springer
    • Bao L, Intille SS. Activity recognition for user-annotated acceleration data. In: Pervasive Computing. New York: Springer, 2004, p. 1-17.
    • (2004) Pervasive Computing , pp. 1-17
    • Bao, L.1    Intille, S.S.2
  • 4
    • 33646370992 scopus 로고    scopus 로고
    • A novel method for using accelerometer data to predict energy expenditure
    • Crouter SE, Clowers KG, Bassett DR Jr. A novel method for using accelerometer data to predict energy expenditure. J Appl Physiol 100: 1324-1331, 2006.
    • (2006) J Appl Physiol , vol.100 , pp. 1324-1331
    • Crouter, S.E.1    Clowers, K.G.2    Bassett, D.R.3
  • 5
    • 84928113441 scopus 로고    scopus 로고
    • Estimating physical activity in youth using a wrist accelerometer
    • Crouter SE, Flynn JI, Bassett DR. Estimating physical activity in youth using a wrist accelerometer. Med Sci Sports Exerc 47: 944-951, 2015.
    • (2015) Med Sci Sports Exerc , vol.47 , pp. 944-951
    • Crouter, S.E.1    Flynn, J.I.2    Bassett, D.R.3
  • 7
    • 84908413187 scopus 로고    scopus 로고
    • A random forest classifier for the prediction of energy expenditure and type of physical activity from wrist and hip accelerometers
    • Ellis K, Kerr J, Godbole S, Lanckriet G, Wing D, Marshall S. A random forest classifier for the prediction of energy expenditure and type of physical activity from wrist and hip accelerometers. Physiol Meas 35: 2191-2203, 2014.
    • (2014) Physiol Meas , vol.35 , pp. 2191-2203
    • Ellis, K.1    Kerr, J.2    Godbole, S.3    Lanckriet, G.4    Wing, D.5    Marshall, S.6
  • 8
    • 83655203046 scopus 로고    scopus 로고
    • Evaluation of artificial neural network algorithms for predicting METs and activity type from accelerometer data: Validation on an independent sample
    • Freedson PS, Lyden K, Kozey-Keadle S, Staudenmayer J. Evaluation of artificial neural network algorithms for predicting METs and activity type from accelerometer data: Validation on an independent sample. J Appl Physiol 2011.
    • (2011) J Appl Physiol
    • Freedson, P.S.1    Lyden, K.2    Kozey-Keadle, S.3    Staudenmayer, J.4
  • 9
    • 0031894133 scopus 로고    scopus 로고
    • Calibration of the Computer Science and Applications, Inc. accelerometer
    • Freedson PS, Melanson E, Sirard J. Calibration of the Computer Science and Applications, Inc. accelerometer. Med Sci Sports Exerc 30: 777-781, 1998.
    • (1998) Med Sci Sports Exerc , vol.30 , pp. 777-781
    • Freedson, P.S.1    Melanson, E.2    Sirard, J.3
  • 10
    • 80052076109 scopus 로고    scopus 로고
    • Identifying types of physical activity with a single accelerometer: Evaluating laboratory-trained algorithms in daily life
    • Gyllensten IC, Bonomi AG. Identifying types of physical activity with a single accelerometer: evaluating laboratory-trained algorithms in daily life. IEEE Trans Biomed Eng 58: 2656-2663, 2011.
    • (2011) IEEE Trans Biomed Eng , vol.58 , pp. 2656-2663
    • Gyllensten, I.C.1    Bonomi, A.G.2
  • 12
    • 0033817363 scopus 로고    scopus 로고
    • Validity of accelerometry for the assessment of moderate intensity physical activity in the field
    • Hendelman D, Miller K, Baggett C, Debold E, Freedson P. Validity of accelerometry for the assessment of moderate intensity physical activity in the field. Med Sci Sports Exerc 32: S442-449, 2000.
    • (2000) Med Sci Sports Exerc , vol.32 , pp. S442-S449
    • Hendelman, D.1    Miller, K.2    Baggett, C.3    Debold, E.4    Freedson, P.5
  • 13
    • 84906944810 scopus 로고    scopus 로고
    • Age group comparability of raw accelerometer output from wrist- and hip-worn monitors
    • Hildebrand M, Van Hees VT, Hansen BH, Ekelund U. Age group comparability of raw accelerometer output from wrist- and hip-worn monitors. Med Sci Sports Exerc 46: 1816-1824, 2014.
    • (2014) Med Sci Sports Exerc , vol.46 , pp. 1816-1824
    • Hildebrand, M.1    Van Hees, V.T.2    Hansen, B.H.3    Ekelund, U.4
  • 15
    • 84895075368 scopus 로고    scopus 로고
    • A method to estimate free-living active and sedentary behavior from an accelerometer
    • Lyden K, Keadle SK, Staudenmayer J, Freedson PS. A method to estimate free-living active and sedentary behavior from an accelerometer. Med Sci Sports Exerc 46: 386-397, 2014.
    • (2014) Med Sci Sports Exerc , vol.46 , pp. 386-397
    • Lyden, K.1    Keadle, S.K.2    Staudenmayer, J.3    Freedson, P.S.4
  • 16
    • 84906273111 scopus 로고    scopus 로고
    • Direct observation is a valid criterion for estimating physical activity and sedentary behavior
    • Lyden K, Petruski N, Staudenmayer J, Freedson P. Direct observation is a valid criterion for estimating physical activity and sedentary behavior. J Phys Act Health 11: 860-863, 2014.
    • (2014) J Phys Act Health , vol.11 , pp. 860-863
    • Lyden, K.1    Petruski, N.2    Staudenmayer, J.3    Freedson, P.4
  • 18
    • 79958748908 scopus 로고    scopus 로고
    • Wrist actigraphy
    • Martin JL, Hakim AD. Wrist actigraphy. Chest 139: 1514-1527, 2011.
    • (2011) Chest , vol.139 , pp. 1514-1527
    • Martin, J.L.1    Hakim, A.D.2
  • 19
    • 35348971908 scopus 로고    scopus 로고
    • An artificial neural network model of energy expenditure using nonintegrated acceleration signals
    • Rothney MP, Neumann M, Beziat A, Chen KY. An artificial neural network model of energy expenditure using nonintegrated acceleration signals. J Appl Physiol 103: 1419-1427, 2007.
    • (2007) J Appl Physiol , vol.103 , pp. 1419-1427
    • Rothney, M.P.1    Neumann, M.2    Beziat, A.3    Chen, K.Y.4
  • 20
    • 70350115240 scopus 로고    scopus 로고
    • An artificial neural network to estimate physical activity energy expenditure and identify physical activity type from an accelerometer
    • Staudenmayer J, Pober D, Crouter S, Bassett D, Freedson P. An artificial neural network to estimate physical activity energy expenditure and identify physical activity type from an accelerometer. J Appl Physiol 107: 1300-1307, 2009.
    • (2009) J Appl Physiol , vol.107 , pp. 1300-1307
    • Staudenmayer, J.1    Pober, D.2    Crouter, S.3    Bassett, D.4    Freedson, P.5
  • 24
    • 84902547801 scopus 로고    scopus 로고
    • Evolution of accelerometer methods for physical activity research
    • Troiano RP, McClain JJ, Brychta RJ, Chen KY. Evolution of accelerometer methods for physical activity research. Br J Sports Med 48: 1019-1023, 2014.
    • (2014) Br J Sports Med , vol.48 , pp. 1019-1023
    • Troiano, R.P.1    McClain, J.J.2    Brychta, R.J.3    Chen, K.Y.4
  • 25
    • 84858704145 scopus 로고    scopus 로고
    • Physical activity classification using the GENEA wrist worn accelerometer
    • Zhang S, Rowlands AV, Murray P, Hurst T. Physical activity classification using the GENEA wrist worn accelerometer. Med Sci Sports Exerc 44: 742-748, 2012.
    • (2012) Med Sci Sports Exerc , vol.44 , pp. 742-748
    • Zhang, S.1    Rowlands, A.V.2    Murray, P.3    Hurst, T.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.