메뉴 건너뛰기




Volumn 46, Issue 2, 2014, Pages 386-397

A method to estimate free-living active and sedentary behavior from an accelerometer

Author keywords

ACCELEROMETERS; FREE LIVING VALIDATION; MACHINE LEARNING; PHYSICAL ACTIVITY MEASUREMENT

Indexed keywords

ACCELERATION; ACTIMETRY; ADULT; ALGORITHM; ARTIFICIAL NEURAL NETWORK; EXERCISE; FEMALE; HUMAN; MALE; METABOLIC EQUIVALENT; OBSERVATION; PHYSIOLOGY; SEDENTARY LIFESTYLE; TIME FACTOR; VALIDATION STUDY; YOUNG ADULT;

EID: 84895075368     PISSN: 01959131     EISSN: 15300315     Source Type: Journal    
DOI: 10.1249/MSS.0b013e3182a42a2d     Document Type: Article
Times cited : (123)

References (41)
  • 1
    • 79961091187 scopus 로고    scopus 로고
    • Compendium of Physical Activities: A second update of codes and MET values
    • Ainsworth BE, Haskell W, Herrmann SD, et al. Compendium of Physical Activities: a second update of codes and MET values. Med Sci Sports Exerc. 2011;43(8):1575-81.
    • (2011) Med Sci Sports Exerc , vol.43 , Issue.8 , pp. 1575-1581
    • Ainsworth, B.E.1    Haskell, W.2    Herrmann, S.D.3
  • 3
    • 35048842427 scopus 로고    scopus 로고
    • Activity recognition from user-annotated acceleration data
    • Springer-Verlag;
    • Bao L, Intille S. Activity recognition from user-annotated acceleration data. In: Pervasive. Springer-Verlag; 2004. p. 1-17.
    • (2004) Pervasive , pp. 1-17
    • Bao, L.1    Intille, S.2
  • 5
    • 69349091456 scopus 로고    scopus 로고
    • Detection of type, duration, and intensity of physical activity using an accelerometer
    • Bonomi AG, Goris AH, Yin B, Westerterp KR. Detection of type, duration, and intensity of physical activity using an accelerometer. Med Sci Sports Exerc. 2009;41(9):1770-77.
    • (2009) Med Sci Sports Exerc , vol.41 , Issue.9 , pp. 1770-1777
    • Bonomi, A.G.1    Goris, A.H.2    Yin, B.3    Westerterp, K.R.4
  • 6
    • 84859590080 scopus 로고    scopus 로고
    • Divide and conquer: Assessing energy expenditure following physical activity type classification
    • Bonomi AG Plasqui G. Divide and conquer: assessing energy expenditure following physical activity type classification. J Appl Physiol. 2012;112(5):932.
    • (2012) J Appl Physiol , vol.112 , Issue.5 , pp. 932
    • Bonomi, A.G.1    Plasqui, G.2
  • 7
    • 2442457673 scopus 로고    scopus 로고
    • Measurement and prediction of METs during household activities in 35- to 45-year-old females
    • Brooks AG, Withers RT, Gore CJ, Vogler AJ, Plummer J, Cormack J. Measurement and prediction of METs during household activities in 35- to 45-year-old females. Eur J Appl Physiol. 2004;91(5-6):638-48.
    • (2004) Eur J Appl Physiol , vol.91 , Issue.5-6 , pp. 638-648
    • Brooks, A.G.1    Withers, R.T.2    Gore, C.J.3    Vogler, A.J.4    Plummer, J.5    Cormack, J.6
  • 8
    • 57149098106 scopus 로고    scopus 로고
    • Committee PAGA. Washington (DC): U.S. Department of Health and Human Services
    • Committee PAGA. Physical Activity Guidelines Advisory Committee Report. Washington (DC): U.S. Department of Health and Human Services; 2008. p. D-8.
    • (2008) Physical Activity Guidelines Advisory Committee Report
  • 10
    • 33646370992 scopus 로고    scopus 로고
    • A novel method for using accelerometer data to predict energy expenditure
    • Crouter SE, Clowers K, Bassett DR Jr. A novel method for using accelerometer data to predict energy expenditure. J Appl Physiol. 2006;100(4):1324-31.
    • (2006) J Appl Physiol , vol.100 , Issue.4 , pp. 1324-1331
    • Crouter, S.E.1    Clowers, K.2    Bassett Jr., D.R.3
  • 13
    • 80053904505 scopus 로고    scopus 로고
    • Accuracy of a novel multi-sensor board for measuring physical activity and energy expenditure
    • Duncan GE, Lester J, Migotsky S, Goh J, Higgins L, Borriello G. Accuracy of a novel multi-sensor board for measuring physical activity and energy expenditure. Eur J Appl Physiol. 2011;111(9): 2025-32.
    • (2011) Eur J Appl Physiol , vol.111 , Issue.9 , pp. 2025-2032
    • Duncan, G.E.1    Lester, J.2    Migotsky, S.3    Goh, J.4    Higgins, L.5    Borriello, G.6
  • 14
    • 39449090035 scopus 로고    scopus 로고
    • Detection of daily activities and sports with wearable sensors in controlled and uncontrolled conditions
    • Ermes M Parkka J, Mantyjarvi J, Korhonen I. Detection of daily activities and sports with wearable sensors in controlled and uncontrolled conditions. IEEE Trans Inf Technol Biomed. 2008; 12(1):20-6.
    • (2008) IEEE Trans Inf Technol Biomed , vol.12 , Issue.1 , pp. 20-26
    • Ermes Parkka M, J.1    Mantyjarvi, J.2    Korhonen, I.3
  • 15
    • 0032680130 scopus 로고    scopus 로고
    • Detection of posture and motion by accelerometry: A validation study in ambulatory monitoring
    • Foerster FSM, Fahrenberg J. Detection of posture and motion by accelerometry: a validation study in ambulatory monitoring. Comput Human Behav. 1999;15:571-83.
    • (1999) Comput Human Behav , vol.15 , pp. 571-583
    • Foerster, F.S.M.1    Fahrenberg, J.2
  • 16
    • 83455203430 scopus 로고    scopus 로고
    • Assessment of physical activity using wearable monitors: Recommendations for monitor calibration and use in the field
    • Freedson P, Bowles HR, Troiano R, Haskell W. Assessment of physical activity using wearable monitors: recommendations for monitor calibration and use in the field. Med Sci Sports Exerc. 2012;44(1 Suppl):S1-4.
    • (2012) Med Sci Sports Exerc , vol.44 , Issue.1 SUPPL.
    • Freedson, P.1    Bowles, H.R.2    Troiano, R.3    Haskell, W.4
  • 17
    • 83655203046 scopus 로고    scopus 로고
    • Evaluation of artificial neural network algorithms for predicting METs and activity type from accelerometer data: Validation on an independent sample
    • Freedson PS, Lyden K, Kozey-Keadle S, Staudenmayer J. Evaluation of artificial neural network algorithms for predicting METs and activity type from accelerometer data: validation on an independent sample. J Appl Physiol. 2011;111(6):1804-12.
    • (2011) J Appl Physiol , vol.111 , Issue.6 , pp. 1804-1812
    • Freedson, P.S.1    Lyden, K.2    Kozey-Keadle, S.3    Staudenmayer, J.4
  • 18
    • 0031894133 scopus 로고    scopus 로고
    • Calibration of the Computer Science and Application Inc. Accelerometer
    • Freedson PS, Melanson E, Sirard J. Calibration of the Computer Science and Application Inc. Accelerometer. Med Sci Sports Exerc. 1998;30(5):777-81.
    • (1998) Med Sci Sports Exerc , vol.30 , Issue.5 , pp. 777-781
    • Freedson, P.S.1    Melanson, E.2    Sirard, J.3
  • 19
    • 80052076109 scopus 로고    scopus 로고
    • Identifying types of physical activity with a single accelerometer: Evaluating laboratory-trained algorithms in daily life
    • Gyllensten IC, Bonomi AG. Identifying types of physical activity with a single accelerometer: evaluating laboratory-trained algorithms in daily life. IEEE Trans Biomed Eng. 2011;58:2656-63.
    • (2011) IEEE Trans Biomed Eng , vol.58 , pp. 2656-2663
    • Gyllensten, I.C.1    Bonomi, A.G.2
  • 20
    • 33645791615 scopus 로고    scopus 로고
    • Predicting activity energy expenditure using the Actical activity monitor
    • Heil DP. Predicting activity energy expenditure using the Actical activity monitor. Res Q Exerc Sports. 2006;77(1):64-80.
    • (2006) Res Q Exerc Sports , vol.77 , Issue.1 , pp. 64-80
    • Heil, D.P.1
  • 24
    • 79651473592 scopus 로고    scopus 로고
    • A comprehensive evaluation of commonly used accelerometer energy expenditure and MET prediction equations
    • Lyden K, Kozey SL, Staudenmeyer JW, Freedson PS. A comprehensive evaluation of commonly used accelerometer energy expenditure and MET prediction equations. Eur J Appl Physiol. 2011; 111(2):187-201.
    • (2011) Eur J Appl Physiol , vol.111 , Issue.2 , pp. 187-201
    • Lyden, K.1    Kozey, S.L.2    Staudenmeyer, J.W.3    Freedson, P.S.4
  • 25
    • 77950247206 scopus 로고    scopus 로고
    • Machine learning methods for classifying human physical activity from on-body accelerometers
    • Mannini A, Sabatini AM. Machine learning methods for classifying human physical activity from on-body accelerometers. Sensors (Basel). 2010;10:1154-75.
    • (2010) Sensors (Basel) , vol.10 , pp. 1154-1175
    • Mannini, A.1    Sabatini, A.M.2
  • 26
    • 2342539792 scopus 로고    scopus 로고
    • Accelerometry: Providing an integrated, practical method for long-term, ambulatory monitoring of human movement
    • Mathie MJ, Coster AC, Lovell NH, Celler BG. Accelerometry: providing an integrated, practical method for long-term, ambulatory monitoring of human movement. Physio Meas. 2004; 25(2):R1-20.
    • (2004) Physio Meas , vol.25 , Issue.2
    • Mathie, M.J.1    Coster, A.C.2    Lovell, N.H.3    Celler, B.G.4
  • 27
    • 6344237275 scopus 로고    scopus 로고
    • Classification of basic daily movements using a triaxial accelerometer
    • Mathie MJ, Celler BG, Lovell NH, Coster ACF. Classification of basic daily movements using a triaxial accelerometer. Med Biol Eng Comput. 2004;42(5):679-87.
    • (2004) Med Biol Eng Comput , vol.42 , Issue.5 , pp. 679-687
    • Mathie, M.J.1    Celler, B.G.2    Lovell, N.H.3    Coster, A.C.F.4
  • 28
    • 39149110596 scopus 로고    scopus 로고
    • Evaluation of low intensity physical activity by triaxial accelerometry
    • Midorikawa T, Tanaka S, Kaneko K, et al. Evaluation of low intensity physical activity by triaxial accelerometry. Obesity (Silver Spring). 2007;25(12):3031-38.
    • (2007) Obesity (Silver Spring) , vol.25 , Issue.12 , pp. 3031-3038
    • Midorikawa, T.1    Tanaka, S.2    Kaneko, K.3
  • 30
    • 33744527362 scopus 로고    scopus 로고
    • Classification of gait patterns in the time frequency domain
    • Nyan MN, Tay FE, Seah KH, Sitoh YY. Classification of gait patterns in the time frequency domain. J Biomech. 2006;39(14):2647-56.
    • (2006) J Biomech , vol.39 , Issue.14 , pp. 2647-2656
    • Nyan, M.N.1    Tay, F.E.2    Seah, K.H.3    Sitoh, Y.Y.4
  • 32
    • 33748577353 scopus 로고    scopus 로고
    • Development of novel techniques to classify physical activity mode using accelerometers
    • Pober DM, Staudenmayer J, Raphael C, Freedson PS. Development of novel techniques to classify physical activity mode using accelerometers. Med Sci Sports Exerc. 2006;38(9):1626-34.
    • (2006) Med Sci Sports Exerc , vol.38 , Issue.9 , pp. 1626-1634
    • Pober, D.M.1    Staudenmayer, J.2    Raphael, C.3    Freedson, P.S.4
  • 34
    • 35348971908 scopus 로고    scopus 로고
    • An artificial neural network model of energy expenditure using nonintegrated acceleration signals
    • Rothney MP, Neumann M, Beziat A, Chen KY. An artificial neural network model of energy expenditure using nonintegrated acceleration signals. J Appl Physiol. 2007;103(4):1419-27.
    • (2007) J Appl Physiol , vol.103 , Issue.4 , pp. 1419-1427
    • Rothney, M.P.1    Neumann, M.2    Beziat, A.3    Chen, K.Y.4
  • 35
    • 48749105828 scopus 로고    scopus 로고
    • Validity of physical activity intensity predictions by ActiGraph, Actical, and RT3 accelerometers
    • Rothney MP, Schaefer EV, Neumann MM, Choi L, Chen KY. Validity of physical activity intensity predictions by ActiGraph, Actical, and RT3 accelerometers. Obesity (Silver Spring). 2008; 16(8):1946-52.
    • (2008) Obesity (Silver Spring) , vol.16 , Issue.8 , pp. 1946-1952
    • Rothney, M.P.1    Schaefer, E.V.2    Neumann, M.M.3    Choi, L.4    Chen, K.Y.5
  • 37
    • 70350115240 scopus 로고    scopus 로고
    • An artificial neural network to estimate physical activity energy expenditure and identify physical activity type from an accelerometer
    • Staudenmayer J, Pober D, Crouter S, Bassett D, Freedson P. An artificial neural network to estimate physical activity energy expenditure and identify physical activity type from an accelerometer. J Appl Physiol. 2009;107(4):1300-7.
    • (2009) J Appl Physiol , vol.107 , Issue.4 , pp. 1300-1307
    • Staudenmayer, J.1    Pober, D.2    Crouter, S.3    Bassett, D.4    Freedson, P.5
  • 41
    • 84858704145 scopus 로고    scopus 로고
    • Physical activity classification using the GENEA wrist worn accelerometer
    • Zhang S, Rowlands AV, Murray P, Hurst T. Physical activity classification using the GENEA wrist worn accelerometer. Med Sci Sports Exerc. 2012;44(4):742-8.
    • (2012) Med Sci Sports Exerc , vol.44 , Issue.4 , pp. 742-748
    • Zhang, S.1    Rowlands, A.V.2    Murray, P.3    Hurst, T.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.