메뉴 건너뛰기




Volumn 35, Issue 11, 2014, Pages 2191-2203

A random forest classifier for the prediction of energy expenditure and type of physical activity from wrist and hip accelerometers

Author keywords

heart rate; machine learning; random forest

Indexed keywords

ARTIFICIAL INTELLIGENCE; BICYCLES; DECISION TREES; FORECASTING; HEART; LEARNING SYSTEMS; MEAN SQUARE ERROR; STAIRS; WALKING AIDS;

EID: 84908413187     PISSN: 09673334     EISSN: 13616579     Source Type: Journal    
DOI: 10.1088/0967-3334/35/11/2191     Document Type: Article
Times cited : (241)

References (28)
  • 2
    • 79960984111 scopus 로고    scopus 로고
    • Sensor positioning for activity recognition using wearable accelerometers
    • Atallah L, Lo B, King R and Yang G 2011 Sensor positioning for activity recognition using wearable accelerometers IEEE Trans. Biomed. Circuits Sys. 5 320-9
    • (2011) IEEE Trans. Biomed. Circuits Sys. , vol.5 , pp. 320-329
    • Atallah, L.1    Lo, B.2    King, R.3    Yang, G.4
  • 3
    • 35048842427 scopus 로고    scopus 로고
    • Activity recognition from user-annotated acceleration data
    • Bao L and Intille S 2004 Activity recognition from user-annotated acceleration data Pervasive Comput. 3001 1-17
    • (2004) Pervasive Comput. , vol.3001 , pp. 1-17
    • Bao, L.1    Intille, S.2
  • 4
    • 69349091456 scopus 로고    scopus 로고
    • Detection of type, duration, and intensity of physical activity using an accelerometer
    • Bonomi A G, Goris A H, Yin B and Westerterp K R 2009a Detection of type, duration, and intensity of physical activity using an accelerometer Med. Sci. Sports Exerc. 41 1770-7
    • (2009) Med. Sci. Sports Exerc. , vol.41 , Issue.9 , pp. 1770-1777
    • Bonomi, A.G.1    Goris, A.H.2    Yin, B.3    Westerterp, K.R.4
  • 5
    • 69749105447 scopus 로고    scopus 로고
    • Improving assessment of daily energy expenditure by identifying types of physical activity with a single accelerometer
    • Bonomi A G, Plasqui G, Goris H C and Westerterp K R 2009b Improving assessment of daily energy expenditure by identifying types of physical activity with a single accelerometer J. Appl. Physiol. 107 655-61
    • (2009) J. Appl. Physiol. , vol.107 , Issue.3 , pp. 655-661
    • Bonomi, A.G.1    Plasqui, G.2    Goris, H.C.3    Westerterp, K.R.4
  • 6
    • 0346102463 scopus 로고    scopus 로고
    • Branched equation modeling of simultaneous accelerometry and heart rate monitoring improves estimate of directly measured physical activity energy expenditure
    • Brage S, Brage N, Franks P W, Ekelund U, Wong M Y, Andersen L B, Froberg K and Wareham N J 2004 Branched equation modeling of simultaneous accelerometry and heart rate monitoring improves estimate of directly measured physical activity energy expenditure J. Appl. Physiol. 96 343-51
    • (2004) J. Appl. Physiol. , vol.96 , Issue.1 , pp. 343-351
    • Brage, S.1    Brage, N.2    Franks, P.W.3    Ekelund, U.4    Wong, M.Y.5    Andersen, L.B.6    Froberg, K.7    Wareham, N.J.8
  • 7
    • 33745161871 scopus 로고    scopus 로고
    • Resistance exercise training its role in the prevention of cardiovascular disease
    • Braith R W and Stewart K J 2006 Resistance exercise training its role in the prevention of cardiovascular disease Circulation 113 2642-50
    • (2006) Circulation , vol.113 , pp. 2642-2650
    • Braith, R.W.1    Stewart, K.J.2
  • 8
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L 2001 Random forests Mach. Learn. 45 5-32
    • (2001) Mach. Learn. , vol.45 , pp. 5-32
    • Breiman, L.1
  • 9
    • 79957947145 scopus 로고    scopus 로고
    • Sleep duration predicts cardiovascular outcomes: A systematic review and meta-analysis of prospective studies
    • Cappuccio F P, Cooper D, D'Elia L, Strazzullo P and Miller M A 2011 Sleep duration predicts cardiovascular outcomes: a systematic review and meta-analysis of prospective studies Eur. Heart J. 32 1484-92
    • (2011) Eur. Heart J. , vol.32 , pp. 1484-1492
    • Cappuccio, F.P.1    Cooper, D.2    D'Elia, L.3    Strazzullo, P.4    Miller, M.A.5
  • 10
    • 0021798918 scopus 로고
    • Physical activity, exercise, and physical fitness: Definitions and distinctions for health-related research
    • Caspersen C J, Powell K E and Christenson G M 1985 Physical activity, exercise, and physical fitness: definitions and distinctions for health-related research Public Health Rep. 100 126
    • (1985) Public Health Rep. , vol.100 , pp. 126
    • Caspersen, C.J.1    Powell, K.E.2    Christenson, G.M.3
  • 12
    • 84978522404 scopus 로고    scopus 로고
    • Identifying active travel behaviors in challenging environments using GPS, accelerometers, and machine learning algorithms
    • Ellis K, Godbole S, Marshall S, Lanckriet G, Staudenmayer J and Kerr J 2014 Identifying active travel behaviors in challenging environments using GPS, accelerometers, and machine learning algorithms Front. Public Health 2 36
    • (2014) Front. Public Health , vol.236
    • Ellis, K.1    Godbole, S.2    Marshall, S.3    Lanckriet, G.4    Staudenmayer, J.5    Kerr, J.6
  • 15
    • 0031894133 scopus 로고    scopus 로고
    • Calibration of the Computer Science and Applications, Inc. Accelerometer
    • Freedson P S, Melanson E and Sirard J 1998 Calibration of the Computer Science and Applications, Inc. accelerometer Med Sci. Sports Exerc. 30 777-81
    • (1998) Med Sci. Sports Exerc. , vol.30 , pp. 777-781
    • Freedson, P.S.1    Melanson, E.2    Sirard, J.3
  • 16
    • 80052076109 scopus 로고    scopus 로고
    • Identifying types of physical activity with a single accelerometer: Evaluating laboratory-trained algorithms in daily life
    • Gyllensten I C and Bonomi A G 2011 Identifying types of physical activity with a single accelerometer: evaluating laboratory-trained algorithms in daily life IEEE Trans. Biomed. Eng. 58 2656-63
    • (2011) IEEE Trans. Biomed. Eng. , vol.58 , pp. 2656-2663
    • Gyllensten, I.C.1    Bonomi, A.G.2
  • 18
    • 84868328524 scopus 로고    scopus 로고
    • Wrist-worn accelerometers in assessment of energy expenditure during intensive training
    • Kinnunen H, Tanskanen M, Kyrolainen H and Westerterp K R 2012 Wrist-worn accelerometers in assessment of energy expenditure during intensive training Phys. Meas. 33 1841-54
    • (2012) Phys. Meas. , vol.33 , Issue.11 , pp. 1841-1854
    • Kinnunen, H.1    Tanskanen, M.2    Kyrolainen, H.3    Westerterp, K.R.4
  • 21
    • 2342539792 scopus 로고    scopus 로고
    • Accelerometry: Providing an integrated, practical method for long-term, ambulatory monitoring of human movement
    • Mathie M J, Coster A C F, Lovell N H and Celler B G 2004 Accelerometry: providing an integrated, practical method for long-term, ambulatory monitoring of human movement Physiol. Meas. 25 1-20
    • (2004) Physiol. Meas. , vol.25 , Issue.1 , pp. 1-20
    • Mathie, M.J.1    Coster, A.C.F.2    Lovell, N.H.3    Celler, B.G.4
  • 23
    • 84887091229 scopus 로고    scopus 로고
    • Neural network versus activity-specific prediction equations for energy expenditure estimation in children
    • Ruch N, Joss F, Jimmy G, Melzer K, Hänggi J and Mäder U 2013 Neural network versus activity-specific prediction equations for energy expenditure estimation in children J. Appl. Physiol. 115 1229-36
    • (2013) J. Appl. Physiol. , vol.115 , pp. 1229-1236
    • Ruch, N.1    Joss, F.2    Jimmy, G.3    Melzer, K.4    Hänggi, J.5    Mäder, U.6
  • 25
    • 70350115240 scopus 로고    scopus 로고
    • An artificial neural network to estimate physical activity energy expenditure and identify physical activity type from an accelerometer
    • Staudenmayer J, Pober D, Crouter S, Bassett D and Freedson P 2009 An artificial neural network to estimate physical activity energy expenditure and identify physical activity type from an accelerometer J. Appl. Physiol. 107 1300-7
    • (2009) J. Appl. Physiol. , vol.107 , Issue.4 , pp. 1300-1307
    • Staudenmayer, J.1    Pober, D.2    Crouter, S.3    Bassett, D.4    Freedson, P.5
  • 26
    • 0035208852 scopus 로고    scopus 로고
    • Simultaneous heart-rate motion sensor technique to estimate energy expenditure
    • Strath S J, Bassett D R Jr, Swartz A M and Thompson D L 2001 Simultaneous heart-rate motion sensor technique to estimate energy expenditure Med. Sci. Sports Exerc. 33 2118-23
    • (2001) Med. Sci. Sports Exerc. , vol.33 , pp. 2118-2123
    • Strath, S.J.1    Bassett, D.R.2    Swartz, A.M.3    Thompson, D.L.4
  • 27
    • 84887102223 scopus 로고    scopus 로고
    • Objective measures of physical activity, sleep, and strength in U.S. National Health and Nutrition Examination Survey 2011-2014
    • Troiano R and Mc Clain J 2012 Objective measures of physical activity, sleep, and strength in U.S. National Health and Nutrition Examination Survey 2011-2014 Proc. 8th Int. Conf. on Diet and Activity Methods 24
    • (2012) Proc. 8th Int. Conf. on Diet and Activity Methods , pp. 24
    • Troiano, R.1    Mc Clain, J.2
  • 28
    • 84858704145 scopus 로고    scopus 로고
    • Physical activity classification using the GENEA wrist-worn accelerometer
    • Zhang S, Rowlands A V, Murray P and Hurst T L 2012 Physical activity classification using the GENEA wrist-worn accelerometer Med. Sci. Sports Exerc. 44 742-8
    • (2012) Med. Sci. Sports Exerc. , vol.44 , pp. 742-748
    • Zhang, S.1    Rowlands, A.V.2    Murray, P.3    Hurst, T.L.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.