메뉴 건너뛰기




Volumn 18, Issue 9, 2015, Pages 1611-1628

Predicting wind power variability events using different statistical methods driven by regional atmospheric model output

Author keywords

classification; forecasting; gradient boosting; machine learning; numerical weather prediction; random forests; reliability; ROC; support vector machines

Indexed keywords

ADAPTIVE BOOSTING; CLASSIFICATION (OF INFORMATION); DECISION TREES; ELECTRIC POWER SYSTEM INTERCONNECTION; ELECTRIC UTILITIES; FORECASTING; LEARNING SYSTEMS; ORTHOGONAL FUNCTIONS; RANDOM FORESTS; RELIABILITY; SUPPORT VECTOR MACHINES; WIND; WIND POWER;

EID: 84939792593     PISSN: 10954244     EISSN: 10991824     Source Type: Journal    
DOI: 10.1002/we.1779     Document Type: Article
Times cited : (21)

References (45)
  • 1
    • 84940246224 scopus 로고    scopus 로고
    • Danish Energy Agency. (Accessed September 2013)
    • Danish Energy Agency. Monthly Energy Statistics, summary table. http://www.ens.dk/sites/ens.dk/files/dokumenter/side/el-maanedsstatistik.xls (Accessed September 2013)
    • Monthly Energy Statistics, Summary Table
  • 3
    • 84940224512 scopus 로고    scopus 로고
    • Australian Energy Market Operator. (Accessed September 2013)
    • Australian Energy Market Operator. 2011 National Transmission Network Development Plan, Australian Energy Market Operator, 2011. http://www.aemo.com.au/Reports-and-Documents/DevelopmentPlans/~/media/Files/Other/planning/ntndp/NTNDP2011-CD/documents/NTNDP-2011%20pdf.ashx. (Accessed September 2013)
    • (2011) 2011 National Transmission Network Development Plan, Australian Energy Market Operator
  • 4
    • 14344256967 scopus 로고    scopus 로고
    • Grid integration of wind farms
    • Tande JOG,. Grid integration of wind farms. Wind Energy 2003; 6: 281-295. DOI: 10.1002/we.91
    • (2003) Wind Energy , vol.6 , pp. 281-295
    • Tande, J.O.G.1
  • 6
    • 79961126223 scopus 로고    scopus 로고
    • Current methods and advances in forecasting of wind power generation
    • Foley AM, Leahy PG, Marvuglia A, McKeogh EJ,. Current methods and advances in forecasting of wind power generation. Renewable Energy 2012; 37: 1-8. DOI: 10.1016/j.renene.2011.05.033.
    • (2012) Renewable Energy , vol.37 , pp. 1-8
    • Foley, A.M.1    Leahy, P.G.2    Marvuglia, A.3    McKeogh, E.J.4
  • 8
    • 0036504289 scopus 로고    scopus 로고
    • Short-term prediction of the aggregated power output of wind farms - A statistical analysis of the reduction of the prediction error by spatial smoothing effects
    • Focken U, Lange M, Mönnich K, Waldl HP, Beyer HG, Luig A,. Short-term prediction of the aggregated power output of wind farms-a statistical analysis of the reduction of the prediction error by spatial smoothing effects. Journal of Wind Engineering and Industrial Aerodynamics 2002; 90: 231-246.
    • (2002) Journal of Wind Engineering and Industrial Aerodynamics , vol.90 , pp. 231-246
    • Focken, U.1    Lange, M.2    Mönnich, K.3    Waldl, H.P.4    Beyer, H.G.5    Luig, A.6
  • 9
    • 0037253037 scopus 로고    scopus 로고
    • Using weather ensemble predictions in electricity demand forecasting
    • Taylor JW, Buizza R,. Using weather ensemble predictions in electricity demand forecasting. International Journal of Forecasting 2003; 19: 57-70.
    • (2003) International Journal of Forecasting , vol.19 , pp. 57-70
    • Taylor, J.W.1    Buizza, R.2
  • 11
    • 84872946665 scopus 로고    scopus 로고
    • Forecasting ramps of wind power production with numerical weather prediction ensembles
    • Bossavy A, Girard R, Kariniotakis G,. Forecasting ramps of wind power production with numerical weather prediction ensembles. Wind Energy 2013; 16: 51-63. DOI: 10.1002/we.526.
    • (2013) Wind Energy , vol.16 , pp. 51-63
    • Bossavy, A.1    Girard, R.2    Kariniotakis, G.3
  • 12
    • 70349336962 scopus 로고    scopus 로고
    • Characterizing future large, rapid changes in aggregated wind power using numerical weather prediction spatial fields
    • Cutler NJ, Outhred HR, MacGill IF, Kay MJ, Kepert JD,. Characterizing future large, rapid changes in aggregated wind power using numerical weather prediction spatial fields. Wind Energy 2009; 12: 542-555. DOI: 10.1002/we.312.
    • (2009) Wind Energy , vol.12 , pp. 542-555
    • Cutler, N.J.1    Outhred, H.R.2    MacGill, I.F.3    Kay, M.J.4    Kepert, J.D.5
  • 13
    • 70350414413 scopus 로고    scopus 로고
    • Temporal forecast uncertainty for ramp events
    • Greaves B, Collins J, Parkes J, Tindal A,. Temporal forecast uncertainty for ramp events. Wind Engineering 2009; 33: 309-319. DOI: 10.1260/030952409789685681.
    • (2009) Wind Engineering , vol.33 , pp. 309-319
    • Greaves, B.1    Collins, J.2    Parkes, J.3    Tindal, A.4
  • 14
    • 77952420350 scopus 로고    scopus 로고
    • Statistical downscaling of wind variability from meteorological fields
    • Davy RJ, Woods MJ, Russell CJ, Coppin PA,. Statistical downscaling of wind variability from meteorological fields. Boundary-Layer Meteorology 2010; 135: 161-175. DOI: 10.1007/s10546-009-9462-7.
    • (2010) Boundary-Layer Meteorology , vol.135 , pp. 161-175
    • Davy, R.J.1    Woods, M.J.2    Russell, C.J.3    Coppin, P.A.4
  • 16
    • 84940296521 scopus 로고    scopus 로고
    • Minimizing the risk in offshore wind power integration induced by severe wind power fluctuations
    • European Academy of Wind Energy: Crete
    • Von Bremen L, Saleck N,. Minimizing the risk in offshore wind power integration induced by severe wind power fluctuations. In The Science of Making Torque from Wind. European Academy of Wind Energy: Crete, 2010.
    • (2010) The Science of Making Torque from Wind
    • Von Bremen, L.1    Saleck, N.2
  • 18
    • 84940225920 scopus 로고    scopus 로고
    • Australian Energy Market Operator. (Accessed September 2013)
    • Australian Energy Market Operator. http://www.nemweb.com.au/REPORTS/CURRENT/Next-Day-Actual-Gen. (Accessed September 2013)
  • 19
    • 31744451232 scopus 로고    scopus 로고
    • Short-term prediction of wind energy production
    • Sanchez I,. Short-term prediction of wind energy production. International Journal of Forecasting 2006; 22: 43-56. DOI: 10.1016/j.ijforecast.2005.05.003.
    • (2006) International Journal of Forecasting , vol.22 , pp. 43-56
    • Sanchez, I.1
  • 20
    • 84874753088 scopus 로고    scopus 로고
    • Quantile forecasting of wind power using variability indices
    • Anastasiades G, McSharry P,. Quantile forecasting of wind power using variability indices. Energies 2013; 6: 662-695.
    • (2013) Energies , vol.6 , pp. 662-695
    • Anastasiades, G.1    McSharry, P.2
  • 21
    • 34447637985 scopus 로고    scopus 로고
    • Uncertainty and Inference for verification measures
    • Jolliffe IT,. Uncertainty and Inference for verification measures. Weather and Forecasting 2007; 22: 637-650. DOI: 10.1175/WAF989.1.
    • (2007) Weather and Forecasting , vol.22 , pp. 637-650
    • Jolliffe, I.T.1
  • 23
    • 0022891638 scopus 로고
    • Rotation of principal components
    • Richman MB,. Rotation of principal components. Journal of Climatology 1986; 6: 293-335. DOI: 10.1002/joc.3370060305.
    • (1986) Journal of Climatology , vol.6 , pp. 293-335
    • Richman, M.B.1
  • 24
    • 79251510626 scopus 로고    scopus 로고
    • Statistical modelling
    • Troccoli A. Harrison M. Anderson D.L.T. Mason S.J. (eds). Springer: Netherlands
    • Mason SJ, Baddour O,. Statistical modelling. In Seasonal Climate: Forecasting and Managing Risk, Troccoli A, Harrison M, Anderson DLT, Mason SJ, (eds). Springer: Netherlands, 2008; 163-201.
    • (2008) Seasonal Climate: Forecasting and Managing Risk , pp. 163-201
    • Mason, S.J.1    Baddour, O.2
  • 26
    • 84863304598 scopus 로고    scopus 로고
    • R Foundation for Statistical Computing, Vienna, Austria R Development Core Team. (Accessed September 2013)
    • R Development Core Team. R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, 2011. http://www.R-project.org/. (Accessed September 2013)
    • (2011) R: A Language and Environment for Statistical Computing
  • 27
    • 78650192426 scopus 로고    scopus 로고
    • A comparison between raw ensemble output, (modified) Bayesian model averaging, and extended logistic regression using ECMWF ensemble precipitation reforecasts
    • Schmeits MJ, Kok KJ,. A comparison between raw ensemble output, (modified) Bayesian model averaging, and extended logistic regression using ECMWF ensemble precipitation reforecasts. Monthly Weather Review 2010; 138: 4199-4211.
    • (2010) Monthly Weather Review , vol.138 , pp. 4199-4211
    • Schmeits, M.J.1    Kok, K.J.2
  • 28
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L,. Random forests. Machine Learning 2001; 45: 5-32. DOI: 10.1023/A:1010933404324.
    • (2001) Machine Learning , vol.45 , pp. 5-32
    • Breiman, L.1
  • 29
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L,. Bagging predictors. Machine Learning 1996; 24: 123-140. DOI: 10.1007/BF00058655.
    • (1996) Machine Learning , vol.24 , pp. 123-140
    • Breiman, L.1
  • 31
    • 48549094895 scopus 로고    scopus 로고
    • A comprehensive comparison of random forests and support vector machines for microarray-based cancer classification
    • Statnikov A, Wang L, Aliferis CF,. A comprehensive comparison of random forests and support vector machines for microarray-based cancer classification. BMC Bioinformatics 2008; 9. DOI: 10.1186/1471-2105-9-319.
    • (2008) BMC Bioinformatics , pp. 9
    • Statnikov, A.1    Wang, L.2    Aliferis, C.F.3
  • 32
    • 0035470889 scopus 로고    scopus 로고
    • Greedy function approximation: A gradient boosting machine
    • Friedman JH,. Greedy function approximation: a gradient boosting machine. Annals of Statistics 2001; 29: 1189-1232.
    • (2001) Annals of Statistics , vol.29 , pp. 1189-1232
    • Friedman, J.H.1
  • 33
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes C, Vapnik V,. Support-vector networks. Machine Learning 1995; 20: 273-297. DOI: 10.1007/BF00994018.
    • (1995) Machine Learning , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 36
  • 37
    • 0016355478 scopus 로고
    • A new look at the statistical model identification
    • Akaike H,. A new look at the statistical model identification. IEEE Transactions on Automatic Control 1974; 19: 716-723. DOI: 10.1109/TAC.1974.1100705.
    • (1974) IEEE Transactions on Automatic Control , vol.19 , pp. 716-723
    • Akaike, H.1
  • 41
    • 0000918735 scopus 로고
    • A New Vector Partition of the Probability Score
    • Murphy AH,. A New Vector Partition of the Probability Score. Journal of Applied Meteorology 1973; 12: 595-600. DOI: 10.1175/1520-0450(1973)012<0595:ANVPOT>2.0.CO;2.
    • (1973) Journal of Applied Meteorology , vol.12 , pp. 595-600
    • Murphy, A.H.1
  • 42
    • 77956807349 scopus 로고    scopus 로고
    • How do we know whether seasonal climate forecasts are any good?
    • Springer: Dordrecht
    • Mason S, Stephenson D,. How do we know whether seasonal climate forecasts are any good? In Seasonal Climate: Forecasting and Managing Risk. Springer: Dordrecht, 2007; 265-296.
    • (2007) Seasonal Climate: Forecasting and Managing Risk , pp. 265-296
    • Mason, S.1    Stephenson, D.2
  • 43
    • 77649277022 scopus 로고    scopus 로고
    • Cold events over southern Australia: Synoptic climatology and hemispheric structure
    • Ashcroft LC, Pezza AB, Simmonds I,. Cold events over southern Australia: synoptic climatology and hemispheric structure. Journal of Climate 2009; 22: 6679-6698.
    • (2009) Journal of Climate , vol.22 , pp. 6679-6698
    • Ashcroft, L.C.1    Pezza, A.B.2    Simmonds, I.3
  • 45
    • 84863352005 scopus 로고    scopus 로고
    • Operational implementation of the ACCESS numerical weather prediction systems
    • Operational implementation of the ACCESS numerical weather prediction systems. NMOC Operations Bulletin 2010; 83: 1-34.
    • (2010) NMOC Operations Bulletin , vol.83 , pp. 1-34


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.