-
1
-
-
84940246224
-
-
Danish Energy Agency. (Accessed September 2013)
-
Danish Energy Agency. Monthly Energy Statistics, summary table. http://www.ens.dk/sites/ens.dk/files/dokumenter/side/el-maanedsstatistik.xls (Accessed September 2013)
-
Monthly Energy Statistics, Summary Table
-
-
-
3
-
-
84940224512
-
-
Australian Energy Market Operator. (Accessed September 2013)
-
Australian Energy Market Operator. 2011 National Transmission Network Development Plan, Australian Energy Market Operator, 2011. http://www.aemo.com.au/Reports-and-Documents/DevelopmentPlans/~/media/Files/Other/planning/ntndp/NTNDP2011-CD/documents/NTNDP-2011%20pdf.ashx. (Accessed September 2013)
-
(2011)
2011 National Transmission Network Development Plan, Australian Energy Market Operator
-
-
-
4
-
-
14344256967
-
Grid integration of wind farms
-
Tande JOG,. Grid integration of wind farms. Wind Energy 2003; 6: 281-295. DOI: 10.1002/we.91
-
(2003)
Wind Energy
, vol.6
, pp. 281-295
-
-
Tande, J.O.G.1
-
5
-
-
84940279038
-
-
Golden, CO 80401-3393, Golden, CO, USA, (Accessed September 2013)
-
Ela E, Kirby B,. ERCOT Event on February 26, 2008: lessons learned, national renewable energy laboratory 1617 Cole Blvd. Golden, CO 80401-3393, Golden, CO, USA, 2008. http://www.nrel.gov/docs/fy08osti/43373.pdf. (Accessed September 2013)
-
(2008)
ERCOT Event on February 26, 2008: Lessons Learned, National Renewable Energy Laboratory 1617 Cole Blvd
-
-
Ela, E.1
Kirby, B.2
-
6
-
-
79961126223
-
Current methods and advances in forecasting of wind power generation
-
Foley AM, Leahy PG, Marvuglia A, McKeogh EJ,. Current methods and advances in forecasting of wind power generation. Renewable Energy 2012; 37: 1-8. DOI: 10.1016/j.renene.2011.05.033.
-
(2012)
Renewable Energy
, vol.37
, pp. 1-8
-
-
Foley, A.M.1
Leahy, P.G.2
Marvuglia, A.3
McKeogh, E.J.4
-
7
-
-
49749138923
-
Improvements in wind speed forecasts for wind power prediction purposes using Kalman filtering
-
Louka P, Galanis G, Siebert N, Kariniotakis G, Katsafados P, Pytharoulis I, Kallos G,. Improvements in wind speed forecasts for wind power prediction purposes using Kalman filtering. Journal of Wind Engineering and Industrial Aerodynamics 2008; 96: 2348-2362.
-
(2008)
Journal of Wind Engineering and Industrial Aerodynamics
, vol.96
, pp. 2348-2362
-
-
Louka, P.1
Galanis, G.2
Siebert, N.3
Kariniotakis, G.4
Katsafados, P.5
Pytharoulis, I.6
Kallos, G.7
-
8
-
-
0036504289
-
Short-term prediction of the aggregated power output of wind farms - A statistical analysis of the reduction of the prediction error by spatial smoothing effects
-
Focken U, Lange M, Mönnich K, Waldl HP, Beyer HG, Luig A,. Short-term prediction of the aggregated power output of wind farms-a statistical analysis of the reduction of the prediction error by spatial smoothing effects. Journal of Wind Engineering and Industrial Aerodynamics 2002; 90: 231-246.
-
(2002)
Journal of Wind Engineering and Industrial Aerodynamics
, vol.90
, pp. 231-246
-
-
Focken, U.1
Lange, M.2
Mönnich, K.3
Waldl, H.P.4
Beyer, H.G.5
Luig, A.6
-
9
-
-
0037253037
-
Using weather ensemble predictions in electricity demand forecasting
-
Taylor JW, Buizza R,. Using weather ensemble predictions in electricity demand forecasting. International Journal of Forecasting 2003; 19: 57-70.
-
(2003)
International Journal of Forecasting
, vol.19
, pp. 57-70
-
-
Taylor, J.W.1
Buizza, R.2
-
11
-
-
84872946665
-
Forecasting ramps of wind power production with numerical weather prediction ensembles
-
Bossavy A, Girard R, Kariniotakis G,. Forecasting ramps of wind power production with numerical weather prediction ensembles. Wind Energy 2013; 16: 51-63. DOI: 10.1002/we.526.
-
(2013)
Wind Energy
, vol.16
, pp. 51-63
-
-
Bossavy, A.1
Girard, R.2
Kariniotakis, G.3
-
12
-
-
70349336962
-
Characterizing future large, rapid changes in aggregated wind power using numerical weather prediction spatial fields
-
Cutler NJ, Outhred HR, MacGill IF, Kay MJ, Kepert JD,. Characterizing future large, rapid changes in aggregated wind power using numerical weather prediction spatial fields. Wind Energy 2009; 12: 542-555. DOI: 10.1002/we.312.
-
(2009)
Wind Energy
, vol.12
, pp. 542-555
-
-
Cutler, N.J.1
Outhred, H.R.2
MacGill, I.F.3
Kay, M.J.4
Kepert, J.D.5
-
13
-
-
70350414413
-
Temporal forecast uncertainty for ramp events
-
Greaves B, Collins J, Parkes J, Tindal A,. Temporal forecast uncertainty for ramp events. Wind Engineering 2009; 33: 309-319. DOI: 10.1260/030952409789685681.
-
(2009)
Wind Engineering
, vol.33
, pp. 309-319
-
-
Greaves, B.1
Collins, J.2
Parkes, J.3
Tindal, A.4
-
14
-
-
77952420350
-
Statistical downscaling of wind variability from meteorological fields
-
Davy RJ, Woods MJ, Russell CJ, Coppin PA,. Statistical downscaling of wind variability from meteorological fields. Boundary-Layer Meteorology 2010; 135: 161-175. DOI: 10.1007/s10546-009-9462-7.
-
(2010)
Boundary-Layer Meteorology
, vol.135
, pp. 161-175
-
-
Davy, R.J.1
Woods, M.J.2
Russell, C.J.3
Coppin, P.A.4
-
16
-
-
84940296521
-
Minimizing the risk in offshore wind power integration induced by severe wind power fluctuations
-
European Academy of Wind Energy: Crete
-
Von Bremen L, Saleck N,. Minimizing the risk in offshore wind power integration induced by severe wind power fluctuations. In The Science of Making Torque from Wind. European Academy of Wind Energy: Crete, 2010.
-
(2010)
The Science of Making Torque from Wind
-
-
Von Bremen, L.1
Saleck, N.2
-
17
-
-
84940249752
-
-
(Accessed September 2013)
-
Vincent CL, Giebel G, Russell CJ, Woods MJ, Davy RJ,. Documentation of the severity index for wind variability and its application to wind power forecasting, SafeWind Collaborative project funded by the European Commission under the 7th Framework Program, Theme 2007-2.3.2: Energy, 2011. http://www.safewind.eu/images/Articles/Deliverables/swind-deliverable-dp-4.7-severityindexes-v1.0.pdf. (Accessed September 2013)
-
(2011)
Documentation of the Severity Index for Wind Variability and Its Application to Wind Power Forecasting, SafeWind Collaborative Project Funded by the European Commission under the 7th Framework Program, Theme 2007-2.3.2: Energy
-
-
Vincent, C.L.1
Giebel, G.2
Russell, C.J.3
Woods, M.J.4
Davy, R.J.5
-
18
-
-
84940225920
-
-
Australian Energy Market Operator. (Accessed September 2013)
-
Australian Energy Market Operator. http://www.nemweb.com.au/REPORTS/CURRENT/Next-Day-Actual-Gen. (Accessed September 2013)
-
-
-
-
19
-
-
31744451232
-
Short-term prediction of wind energy production
-
Sanchez I,. Short-term prediction of wind energy production. International Journal of Forecasting 2006; 22: 43-56. DOI: 10.1016/j.ijforecast.2005.05.003.
-
(2006)
International Journal of Forecasting
, vol.22
, pp. 43-56
-
-
Sanchez, I.1
-
20
-
-
84874753088
-
Quantile forecasting of wind power using variability indices
-
Anastasiades G, McSharry P,. Quantile forecasting of wind power using variability indices. Energies 2013; 6: 662-695.
-
(2013)
Energies
, vol.6
, pp. 662-695
-
-
Anastasiades, G.1
McSharry, P.2
-
21
-
-
34447637985
-
Uncertainty and Inference for verification measures
-
Jolliffe IT,. Uncertainty and Inference for verification measures. Weather and Forecasting 2007; 22: 637-650. DOI: 10.1175/WAF989.1.
-
(2007)
Weather and Forecasting
, vol.22
, pp. 637-650
-
-
Jolliffe, I.T.1
-
23
-
-
0022891638
-
Rotation of principal components
-
Richman MB,. Rotation of principal components. Journal of Climatology 1986; 6: 293-335. DOI: 10.1002/joc.3370060305.
-
(1986)
Journal of Climatology
, vol.6
, pp. 293-335
-
-
Richman, M.B.1
-
24
-
-
79251510626
-
Statistical modelling
-
Troccoli A. Harrison M. Anderson D.L.T. Mason S.J. (eds). Springer: Netherlands
-
Mason SJ, Baddour O,. Statistical modelling. In Seasonal Climate: Forecasting and Managing Risk, Troccoli A, Harrison M, Anderson DLT, Mason SJ, (eds). Springer: Netherlands, 2008; 163-201.
-
(2008)
Seasonal Climate: Forecasting and Managing Risk
, pp. 163-201
-
-
Mason, S.J.1
Baddour, O.2
-
26
-
-
84863304598
-
-
R Foundation for Statistical Computing, Vienna, Austria R Development Core Team. (Accessed September 2013)
-
R Development Core Team. R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, 2011. http://www.R-project.org/. (Accessed September 2013)
-
(2011)
R: A Language and Environment for Statistical Computing
-
-
-
27
-
-
78650192426
-
A comparison between raw ensemble output, (modified) Bayesian model averaging, and extended logistic regression using ECMWF ensemble precipitation reforecasts
-
Schmeits MJ, Kok KJ,. A comparison between raw ensemble output, (modified) Bayesian model averaging, and extended logistic regression using ECMWF ensemble precipitation reforecasts. Monthly Weather Review 2010; 138: 4199-4211.
-
(2010)
Monthly Weather Review
, vol.138
, pp. 4199-4211
-
-
Schmeits, M.J.1
Kok, K.J.2
-
28
-
-
0035478854
-
Random forests
-
Breiman L,. Random forests. Machine Learning 2001; 45: 5-32. DOI: 10.1023/A:1010933404324.
-
(2001)
Machine Learning
, vol.45
, pp. 5-32
-
-
Breiman, L.1
-
29
-
-
0030211964
-
Bagging predictors
-
Breiman L,. Bagging predictors. Machine Learning 1996; 24: 123-140. DOI: 10.1007/BF00058655.
-
(1996)
Machine Learning
, vol.24
, pp. 123-140
-
-
Breiman, L.1
-
31
-
-
48549094895
-
A comprehensive comparison of random forests and support vector machines for microarray-based cancer classification
-
Statnikov A, Wang L, Aliferis CF,. A comprehensive comparison of random forests and support vector machines for microarray-based cancer classification. BMC Bioinformatics 2008; 9. DOI: 10.1186/1471-2105-9-319.
-
(2008)
BMC Bioinformatics
, pp. 9
-
-
Statnikov, A.1
Wang, L.2
Aliferis, C.F.3
-
32
-
-
0035470889
-
Greedy function approximation: A gradient boosting machine
-
Friedman JH,. Greedy function approximation: a gradient boosting machine. Annals of Statistics 2001; 29: 1189-1232.
-
(2001)
Annals of Statistics
, vol.29
, pp. 1189-1232
-
-
Friedman, J.H.1
-
33
-
-
34249753618
-
Support-vector networks
-
Cortes C, Vapnik V,. Support-vector networks. Machine Learning 1995; 20: 273-297. DOI: 10.1007/BF00994018.
-
(1995)
Machine Learning
, vol.20
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
36
-
-
77958144053
-
Genetic algorithm-piecewise support vector machine model for short term wind power prediction
-
Jinan, China
-
Shi J, Yang Y, Wang P, Liu Y, Han S,. Genetic algorithm-piecewise support vector machine model for short term wind power prediction. In 8th World Congress on Intelligent Control and Automation. Jinan, China, 2010; 2254-2258.
-
(2010)
8th World Congress on Intelligent Control and Automation
, pp. 2254-2258
-
-
Shi, J.1
Yang, Y.2
Wang, P.3
Liu, Y.4
Han, S.5
-
37
-
-
0016355478
-
A new look at the statistical model identification
-
Akaike H,. A new look at the statistical model identification. IEEE Transactions on Automatic Control 1974; 19: 716-723. DOI: 10.1109/TAC.1974.1100705.
-
(1974)
IEEE Transactions on Automatic Control
, vol.19
, pp. 716-723
-
-
Akaike, H.1
-
39
-
-
0003684449
-
-
(2nd edn). Springer: New York, NY
-
Hastie T, Tibshirani R, Friedman JH,. The elements of statistical learning: data mining, inference, and prediction (2nd edn). Springer: New York, NY, 2009.
-
(2009)
The Elements of Statistical Learning: Data Mining, Inference, and Prediction
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.H.3
-
41
-
-
0000918735
-
A New Vector Partition of the Probability Score
-
Murphy AH,. A New Vector Partition of the Probability Score. Journal of Applied Meteorology 1973; 12: 595-600. DOI: 10.1175/1520-0450(1973)012<0595:ANVPOT>2.0.CO;2.
-
(1973)
Journal of Applied Meteorology
, vol.12
, pp. 595-600
-
-
Murphy, A.H.1
-
42
-
-
77956807349
-
How do we know whether seasonal climate forecasts are any good?
-
Springer: Dordrecht
-
Mason S, Stephenson D,. How do we know whether seasonal climate forecasts are any good? In Seasonal Climate: Forecasting and Managing Risk. Springer: Dordrecht, 2007; 265-296.
-
(2007)
Seasonal Climate: Forecasting and Managing Risk
, pp. 265-296
-
-
Mason, S.1
Stephenson, D.2
-
43
-
-
77649277022
-
Cold events over southern Australia: Synoptic climatology and hemispheric structure
-
Ashcroft LC, Pezza AB, Simmonds I,. Cold events over southern Australia: synoptic climatology and hemispheric structure. Journal of Climate 2009; 22: 6679-6698.
-
(2009)
Journal of Climate
, vol.22
, pp. 6679-6698
-
-
Ashcroft, L.C.1
Pezza, A.B.2
Simmonds, I.3
-
45
-
-
84863352005
-
Operational implementation of the ACCESS numerical weather prediction systems
-
Operational implementation of the ACCESS numerical weather prediction systems. NMOC Operations Bulletin 2010; 83: 1-34.
-
(2010)
NMOC Operations Bulletin
, vol.83
, pp. 1-34
-
-
|