-
2
-
-
84896513155
-
-
Y.-M. Wang, A. D. Lackner, F. D. Toste, Acc. Chem. Res. 2014, 47, 889-901.
-
(2014)
Acc. Chem. Res.
, vol.47
, pp. 889-901
-
-
Wang, Y.-M.1
Lackner, A.D.2
Toste, F.D.3
-
3
-
-
77950202999
-
-
For a review on phosphoramidites, see
-
For a review on phosphoramidites, see:, J. F. Teichert, B. L. Feringa, Angew. Chem. Int. Ed. 2010, 49, 2486-2528
-
(2010)
Angew. Chem. Int. Ed.
, vol.49
, pp. 2486-2528
-
-
Teichert, J.F.1
Feringa, B.L.2
-
4
-
-
78650403767
-
-
Angew. Chem. 2010, 122, 2538-2582.
-
(2010)
Angew. Chem.
, vol.122
, pp. 2538-2582
-
-
-
5
-
-
77949418593
-
-
H. Teller, S. Flügge, R. Goddard, A. Fürstner, Angew. Chem. Int. Ed. 2010, 49, 1949-1953
-
(2010)
Angew. Chem. Int. Ed.
, vol.49
, pp. 1949-1953
-
-
Teller, H.1
Flügge, S.2
Goddard, R.3
Fürstner, A.4
-
6
-
-
77950260496
-
-
Angew. Chem. 2010, 122, 1993-1997.
-
(2010)
Angew. Chem.
, vol.122
, pp. 1993-1997
-
-
-
8
-
-
84866510167
-
-
H. Teller, M. Corbet, L. Mantilli, G. Gopakumar, R. Goddard, W. Thiel, A. Fürstner, J. Am. Chem. Soc. 2012, 134, 15331-15342.
-
(2012)
J. Am. Chem. Soc.
, vol.134
, pp. 15331-15342
-
-
Teller, H.1
Corbet, M.2
Mantilli, L.3
Gopakumar, G.4
Goddard, R.5
Thiel, W.6
Fürstner, A.7
-
11
-
-
34547504770
-
-
Angew. Chem. 2007, 119, 287-289
-
(2007)
Angew. Chem.
, vol.119
, pp. 287-289
-
-
-
12
-
-
34547567515
-
-
G. L. Hamilton, E. J. Kang, M. Mba, F. D. Toste, Science 2007, 317, 496-499
-
(2007)
Science
, vol.317
, pp. 496-499
-
-
Hamilton, G.L.1
Kang, E.J.2
Mba, M.3
Toste, F.D.4
-
13
-
-
84876526534
-
-
N. Cox, M. R. Uehling, K. T. Haelsig, G. Lalic, Angew. Chem. Int. Ed. 2013, 52, 4878-4882
-
(2013)
Angew. Chem. Int. Ed.
, vol.52
, pp. 4878-4882
-
-
Cox, N.1
Uehling, M.R.2
Haelsig, K.T.3
Lalic, G.4
-
14
-
-
84887129192
-
-
7d
-
7d Angew. Chem. 2013, 125, 4978-4982
-
(2013)
Angew. Chem.
, vol.125
, pp. 4978-4982
-
-
-
15
-
-
84883272118
-
-
D. H. Miles, M. Veguillas, F. D. Toste, Chem. Sci. 2013, 4, 3427-3431
-
(2013)
Chem. Sci.
, vol.4
, pp. 3427-3431
-
-
Miles, D.H.1
Veguillas, M.2
Toste, F.D.3
-
16
-
-
78650407265
-
-
corrigendum
-
K. Aikawa, M. Kojima, K. Mikami, Adv. Synth. Catal. 2010, 352, 3131-3135; corrigendum
-
(2010)
Adv. Synth. Catal.
, vol.352
, pp. 3131-3135
-
-
Aikawa, K.1
Kojima, M.2
Mikami, K.3
-
17
-
-
81555222966
-
-
7f
-
7f, K. Aikawa, M. Kojima, K. Mikami, Adv. Synth. Catal. 2011, 353, 2882
-
(2011)
Adv. Synth. Catal.
, vol.353
, pp. 2882
-
-
Aikawa, K.1
Kojima, M.2
Mikami, K.3
-
18
-
-
33746048429
-
-
for the importance of the proper choice of counterion even in the racemic variant, see.
-
for the importance of the proper choice of counterion even in the racemic variant, see:, Z. Zhang, C. Liu, R. E. Kinder, X. Han, H. Qian, R. A. Widenhoefer, J. Am. Chem. Soc. 2006, 128, 9066-9073.
-
(2006)
J. Am. Chem. Soc.
, vol.128
, pp. 9066-9073
-
-
Zhang, Z.1
Liu, C.2
Kinder, R.E.3
Han, X.4
Qian, H.5
Widenhoefer, R.A.6
-
20
-
-
34548635326
-
-
Angew. Chem. 2007, 119, 3478-3519
-
(2007)
Angew. Chem.
, vol.119
, pp. 3478-3519
-
-
-
22
-
-
84939466040
-
-
For a more comprehensive data set and a selection of other substrates, see the Supporting Information
-
For a more comprehensive data set and a selection of other substrates, see the Supporting Information.
-
-
-
-
23
-
-
84939473197
-
-
For example, in THF at 22 °C the ee was (+)-23 %; if the Arrhenius activation energy Ea were constant, the equation Ea=RT ln[(1+ee)/(1-ee)] predicts an ee=(+)-31 % for -60 °C, but (+)-86 % was recorded
-
For example, in THF at 22 °C the ee was (+)-23 %; if the Arrhenius activation energy Ea were constant, the equation Ea=RT ln[(1+ee)/(1-ee)] predicts an ee=(+)-31 % for -60 °C, but (+)-86 % was recorded.
-
-
-
-
24
-
-
1242313761
-
-
G. Zanoni, F. Castronovo, M. Franzini, G. Vidari, E. Giannini, Chem. Soc. Rev. 2003, 32, 115-129
-
(2003)
Chem. Soc. Rev.
, vol.32
, pp. 115-129
-
-
Zanoni, G.1
Castronovo, F.2
Franzini, M.3
Vidari, G.4
Giannini, E.5
-
26
-
-
63049099517
-
-
G. Cainelli, P. Galletti, D. Giacomini, Chem. Soc. Rev. 2009, 38, 990-1001
-
(2009)
Chem. Soc. Rev.
, vol.38
, pp. 990-1001
-
-
Cainelli, G.1
Galletti, P.2
Giacomini, D.3
-
27
-
-
77949627101
-
-
M. Bartõk, Chem. Rev. 2010, 110, 1663-1705
-
(2010)
Chem. Rev.
, vol.110
, pp. 1663-1705
-
-
Bartõk, M.1
-
28
-
-
84878636019
-
-
J. Escorihuela, M. I. Burguete, S. V. Luis, Chem. Soc. Rev. 2013, 42, 5595-5617.
-
(2013)
Chem. Soc. Rev.
, vol.42
, pp. 5595-5617
-
-
Escorihuela, J.1
Burguete, M.I.2
Luis, S.V.3
-
29
-
-
0025780257
-
-
H. Buschmann, H.-D. Scharf, N. Hoffmann, P. Esser, Angew. Chem. Int. Ed. Engl. 1991, 30, 477-515
-
(1991)
Angew. Chem. Int. Ed. Engl.
, vol.30
, pp. 477-515
-
-
Buschmann, H.1
Scharf, H.-D.2
Hoffmann, N.3
Esser, P.4
-
30
-
-
0001101060
-
-
Angew. Chem. 1991, 103, 480-518.
-
(1991)
Angew. Chem.
, vol.103
, pp. 480-518
-
-
-
31
-
-
84924423469
-
-
For a very recent example, see the following and literature therein
-
For a very recent example, see the following and literature therein:, G. Storch, O. Trapp, Angew. Chem. Int. Ed. 2015, 54, 3580-3586
-
(2015)
Angew. Chem. Int. Ed.
, vol.54
, pp. 3580-3586
-
-
Storch, G.1
Trapp, O.2
-
32
-
-
84930220638
-
-
Angew. Chem. 2015, 127, 3650-3656.
-
(2015)
Angew. Chem.
, vol.127
, pp. 3650-3656
-
-
-
33
-
-
84939468678
-
-
We are aware of only two manifestations of counterion-induced enantioinversion in gold catalysis
-
We are aware of only two manifestations of counterion-induced enantioinversion in gold catalysis
-
-
-
-
34
-
-
84885099953
-
-
M. Chiarucci, R. Mocci, L.-D. Syntrivanis, G. Cera, A. Mazzanti, M. Bandini, Angew. Chem. Int. Ed. 2013, 52, 10850-10853
-
(2013)
Angew. Chem. Int. Ed.
, vol.52
, pp. 10850-10853
-
-
Chiarucci, M.1
Mocci, R.2
Syntrivanis, L.-D.3
Cera, G.4
Mazzanti, A.5
Bandini, M.6
-
35
-
-
84897631101
-
-
Angew. Chem. 2013, 125, 11050-11053
-
(2013)
Angew. Chem.
, vol.125
, pp. 11050-11053
-
-
-
36
-
-
78651246887
-
-
M. Bandini, M. Monari, A. Romaniello, M. Tragni, Chem. Eur. J. 2010, 16, 14272-14277.
-
(2010)
Chem. Eur. J.
, vol.16
, pp. 14272-14277
-
-
Bandini, M.1
Monari, M.2
Romaniello, A.3
Tragni, M.4
-
37
-
-
66149185302
-
-
For a switch in regioselectivity of a gold catalyzed reaction by the choice of either solvent or counterion, see.
-
For a switch in regioselectivity of a gold catalyzed reaction by the choice of either solvent or counterion, see:, P. W. Davies, N. Martin, Org. Lett. 2009, 11, 2293-2296.
-
(2009)
Org. Lett.
, vol.11
, pp. 2293-2296
-
-
Davies, P.W.1
Martin, N.2
-
38
-
-
84924263403
-
-
Counterion effects in gold catalysis.
-
Counterion effects in gold catalysis:, M. Jia, M. Bandini, ACS Catal. 2015, 5, 1638-1652.
-
(2015)
ACS Catal.
, vol.5
, pp. 1638-1652
-
-
Jia, M.1
Bandini, M.2
-
39
-
-
84939471080
-
-
Attempts at further improving the S-selectivity by running the reaction at higher temperature were thwarted by the limited stability of the chiral gold catalyst
-
Attempts at further improving the S-selectivity by running the reaction at higher temperature were thwarted by the limited stability of the chiral gold catalyst.
-
-
-
-
40
-
-
84939473083
-
-
Although CH2Cl2 gives somewhat lower ee's than EtOAc, it was used in all mechanistic investigations because it is more readily dried; recall that trace amounts of water in EtOAc exert a massive influence (Table 2, entries 1 and 2)
-
Although CH2Cl2 gives somewhat lower ee's than EtOAc, it was used in all mechanistic investigations because it is more readily dried; recall that trace amounts of water in EtOAc exert a massive influence (Table 2, entries 1 and 2).
-
-
-
-
41
-
-
79955767991
-
-
For an enantiodivergent catalyst showing non-linear effects, see
-
For an enantiodivergent catalyst showing non-linear effects, see:, Z. Wang, Z. Yang, D. Chen, X. Liu, L. Lin, X. Feng, Angew. Chem. Int. Ed. 2011, 50, 4928-4932
-
(2011)
Angew. Chem. Int. Ed.
, vol.50
, pp. 4928-4932
-
-
Wang, Z.1
Yang, Z.2
Chen, D.3
Liu, X.4
Lin, L.5
Feng, X.6
-
42
-
-
80051725623
-
-
higher catalyst aggregation states have also been inferred by other methods, see
-
Angew. Chem. 2011, 123, 5030-5034; higher catalyst aggregation states have also been inferred by other methods, see
-
(2011)
Angew. Chem.
, vol.123
, pp. 5030-5034
-
-
-
43
-
-
79955494420
-
-
G. Lu, T. Yoshino, H. Morimoto, S. Matsunaga, M. Shibasaki, Angew. Chem. Int. Ed. 2011, 50, 4382-4385
-
(2011)
Angew. Chem. Int. Ed.
, vol.50
, pp. 4382-4385
-
-
Lu, G.1
Yoshino, T.2
Morimoto, H.3
Matsunaga, S.4
Shibasaki, M.5
-
44
-
-
84255195634
-
-
Angew. Chem. 2011, 123, 4474-4477
-
(2011)
Angew. Chem.
, vol.123
, pp. 4474-4477
-
-
-
45
-
-
68949089085
-
-
A. Nojiri, N. Kumagai, M. Shibasaki, J. Am. Chem. Soc. 2009, 131, 3779-3784
-
(2009)
J. Am. Chem. Soc.
, vol.131
, pp. 3779-3784
-
-
Nojiri, A.1
Kumagai, N.2
Shibasaki, M.3
-
46
-
-
41549113413
-
-
F. Lutz, T. Igarashi, T. Kinoshita, M. Asahina, K. Tsukiyama, T. Kawasaki, K. Soai, J. Am. Chem. Soc. 2008, 130, 2956-2958.
-
(2008)
J. Am. Chem. Soc.
, vol.130
, pp. 2956-2958
-
-
Lutz, F.1
Igarashi, T.2
Kinoshita, T.3
Asahina, M.4
Tsukiyama, K.5
Kawasaki, T.6
Soai, K.7
-
47
-
-
84861900998
-
-
T. J. Brown, D. Weber, M. R. Gagné, R. A. Widenhoefer, J. Am. Chem. Soc. 2012, 134, 9134-9137.
-
(2012)
J. Am. Chem. Soc.
, vol.134
, pp. 9134-9137
-
-
Brown, T.J.1
Weber, D.2
Gagné, M.R.3
Widenhoefer, R.A.4
-
48
-
-
78149425384
-
-
G. Seidel, C. W. Lehmann, A. Fürstner, Angew. Chem. Int. Ed. 2010, 49, 8466-8470
-
(2010)
Angew. Chem. Int. Ed.
, vol.49
, pp. 8466-8470
-
-
Seidel, G.1
Lehmann, C.W.2
Fürstner, A.3
-
49
-
-
79952266862
-
-
Angew. Chem. 2010, 122, 8644-8648.
-
(2010)
Angew. Chem.
, vol.122
, pp. 8644-8648
-
-
-
50
-
-
58249102296
-
-
T. Satyanarayana, S. Abraham, H. B. Kagan, Angew. Chem. Int. Ed. 2009, 48, 456-494
-
(2009)
Angew. Chem. Int. Ed.
, vol.48
, pp. 456-494
-
-
Satyanarayana, T.1
Abraham, S.2
Kagan, H.B.3
-
51
-
-
66749185945
-
-
Angew. Chem. 2009, 121, 464-503.
-
(2009)
Angew. Chem.
, vol.121
, pp. 464-503
-
-
-
52
-
-
33744723131
-
-
the entropic component was ascribed to a large activation volume
-
R. Saito, S. Naruse, K. Takano, K. Fukuda, A. Katoh, Y. Inoue, Org. Lett. 2006, 8, 2067-2070; the entropic component was ascribed to a large activation volume
-
(2006)
Org. Lett.
, vol.8
, pp. 2067-2070
-
-
Saito, R.1
Naruse, S.2
Takano, K.3
Fukuda, K.4
Katoh, A.5
Inoue, Y.6
-
53
-
-
69949190011
-
-
the observed reversal [] arises from a temperature-dependent interchange of the enantiodetermining mechanism"
-
V. S. Chan, M. Chiu, R. G. Bergman, F. D. Toste, J. Am. Chem. Soc. 2009, 131, 6021-6032; "the observed reversal [] arises from a temperature-dependent interchange of the enantiodetermining mechanism"
-
(2009)
J. Am. Chem. Soc.
, vol.131
, pp. 6021-6032
-
-
Chan, V.S.1
Chiu, M.2
Bergman, R.G.3
Toste, F.D.4
-
54
-
-
78649588441
-
-
for a case of enantioinversion ascribed to the entropy of activation, see
-
for a case of enantioinversion ascribed to the entropy of activation, see:, Y. Sohtome, S. Tanaka, K. Takada, T. Yamaguchi, K. Nagasawa, Angew. Chem. Int. Ed. 2010, 49, 9254-9257
-
(2010)
Angew. Chem. Int. Ed.
, vol.49
, pp. 9254-9257
-
-
Sohtome, Y.1
Tanaka, S.2
Takada, K.3
Yamaguchi, T.4
Nagasawa, K.5
-
55
-
-
80051761265
-
-
Angew. Chem. 2010, 122, 9440-9443.
-
(2010)
Angew. Chem.
, vol.122
, pp. 9440-9443
-
-
-
56
-
-
84939466741
-
-
See the Supporting Information for details; the PBE0-D3//TPSS-D3 combination was shown to provide realistic geometries and energies for related gold systems in benchmark studies, cf
-
See the Supporting Information for details; the PBE0-D3//TPSS-D3 combination was shown to provide realistic geometries and energies for related gold systems in benchmark studies, cf
-
-
-
-
57
-
-
83455224898
-
-
R. Kang, H. Chen, S. Shaik, J. Yao, J. Chem. Theory Comput. 2011, 7, 4002-4011
-
(2011)
J. Chem. Theory Comput.
, vol.7
, pp. 4002-4011
-
-
Kang, R.1
Chen, H.2
Shaik, S.3
Yao, J.4
-
58
-
-
84939472410
-
-
G. Ciancaleoni, S. Rampino, D. Zuccaccia, F. Tarantelli, P. Belanzoni, L. Belpassi, J. Chem. Theory Comput. 2013, 9, 1021-1034
-
(2013)
J. Chem. Theory Comput.
, vol.9
, pp. 1021-1034
-
-
Ciancaleoni, G.1
Rampino, S.2
Zuccaccia, D.3
Tarantelli, F.4
Belanzoni, P.5
Belpassi, L.6
-
60
-
-
84939467780
-
-
For the sake of CPU-time, the second substrate molecule was modeled by 2,2-dimethyl-1-propanol. The branching at the β position to the hydroxyl group is similar to that in the substrate. The structural differences beyond the β position are outside the catalyst cavity and are thus not anticipated to lead to qualitatively different results
-
For the sake of CPU-time, the second substrate molecule was modeled by 2,2-dimethyl-1-propanol. The branching at the β position to the hydroxyl group is similar to that in the substrate. The structural differences beyond the β position are outside the catalyst cavity and are thus not anticipated to lead to qualitatively different results.
-
-
-
-
61
-
-
84939470137
-
-
For the corresponding energy profiles of the pathways in a protic medium, with an explicit methanol molecule included at each stationary point, see the Supporting Information
-
For the corresponding energy profiles of the pathways in a protic medium, with an explicit methanol molecule included at each stationary point, see the Supporting Information.
-
-
-
-
62
-
-
84939463649
-
-
For studies on gold catalyzed reactions featuring counterion participation in proton transfer, see
-
For studies on gold catalyzed reactions featuring counterion participation in proton transfer, see
-
-
-
-
63
-
-
84962424989
-
-
G. Kovács, G. Ujaque, A. Lledõs, J. Am. Chem. Soc. 2008, 130, 853-864
-
(2008)
J. Am. Chem. Soc.
, vol.130
, pp. 853-864
-
-
Kovács, G.1
Ujaque, G.2
Lledõs, A.3
-
64
-
-
84871600511
-
-
M. Bandini, A. Bottoni, M. Chiarucci, G. Cera, G. P. Miscione, J. Am. Chem. Soc. 2012, 134, 20690-20700
-
(2012)
J. Am. Chem. Soc.
, vol.134
, pp. 20690-20700
-
-
Bandini, M.1
Bottoni, A.2
Chiarucci, M.3
Cera, G.4
Miscione, G.P.5
-
65
-
-
84861602561
-
-
for a case of enantioinversion ascribed to the participation of the counterion in proton transfer, see
-
for a case of enantioinversion ascribed to the participation of the counterion in proton transfer, see:, Z.-Y. Ding, F. Chen, J. Qin, Y.-M. He, Q.-H. Fan, Angew. Chem. Int. Ed. 2012, 51, 5706-5710
-
(2012)
Angew. Chem. Int. Ed.
, vol.51
, pp. 5706-5710
-
-
Ding, Z.-Y.1
Chen, F.2
Qin, J.3
He, Y.-M.4
Fan, Q.-H.5
-
66
-
-
84870617615
-
-
Angew. Chem. 2012, 124, 5804-5808.
-
(2012)
Angew. Chem.
, vol.124
, pp. 5804-5808
-
-
-
67
-
-
18244398432
-
-
For striking salt effects, see the following and literature cited therein.
-
For striking salt effects, see the following and literature cited therein:, S. Arseniyadis, P. V. Subhash, A. Valleix, S. P. Mathew, D. G. Blackmond, A. Wagner, C. Mioskowski, J. Am. Chem. Soc. 2005, 127, 6138-6139.
-
(2005)
J. Am. Chem. Soc.
, vol.127
, pp. 6138-6139
-
-
Arseniyadis, S.1
Subhash, P.V.2
Valleix, A.3
Mathew, S.P.4
Blackmond, D.G.5
Wagner, A.6
Mioskowski, C.7
-
68
-
-
84939466513
-
-
Attempts to underpin this assumption by NMR using the methyl ether 2-OMe as a dummy substrate were inconclusive but certainly not in contradiction. For BF4-, 19F/1H HOESY experiments with different mixing times and over a broad temperature range showed no detectable intermolecular cross-relaxation correlations, which suggests that there is no tight association of the escorting counterion; in contrast, heteronuclear NOEs between F3CCOO- (19F) and the ligand (1H) show that this anion resides in the binding pocket, at or closely associated to the gold atom. Unfortunately, the dynamic nature of this system prohibits detection and structural analysis of the loaded complex by NMR
-
Attempts to underpin this assumption by NMR using the methyl ether 2-OMe as a dummy substrate were inconclusive but certainly not in contradiction. For BF4-, 19F/1H HOESY experiments with different mixing times and over a broad temperature range showed no detectable intermolecular cross-relaxation correlations, which suggests that there is no tight association of the escorting counterion; in contrast, heteronuclear NOEs between F3CCOO- (19F) and the ligand (1H) show that this anion resides in the binding pocket, at or closely associated to the gold atom. Unfortunately, the dynamic nature of this system prohibits detection and structural analysis of the loaded complex by NMR.
-
-
-
-
69
-
-
84939469043
-
-
2-OMe is not totally unreactive but eventually rearranges to a mixture of 1,3-diene isomers
-
2-OMe is not totally unreactive but eventually rearranges to a mixture of 1,3-diene isomers.
-
-
-
-
70
-
-
77957683253
-
-
T. J. Brown, A. Sugie, M. G. Dickens, R. A. Widenhoefer, Organometallics 2010, 29, 4207-4209
-
(2010)
Organometallics
, vol.29
, pp. 4207-4209
-
-
Brown, T.J.1
Sugie, A.2
Dickens, M.G.3
Widenhoefer, R.A.4
-
71
-
-
84878854468
-
-
R. E. M. Brooner, T. J. Brown, R. A. Widenhoefer, Chem. Eur. J. 2013, 19, 8276-8284.
-
(2013)
Chem. Eur. J.
, vol.19
, pp. 8276-8284
-
-
Brooner, R.E.M.1
Brown, T.J.2
Widenhoefer, R.A.3
-
72
-
-
84939470101
-
-
Boltzmann averaging of the computed chemical shifts for C(1), C(2) and C(3) of the allene moiety leads to much better agreement with the experimental values than comparisons for any individual isomer; for details see the Supporting Information
-
Boltzmann averaging of the computed chemical shifts for C(1), C(2) and C(3) of the allene moiety leads to much better agreement with the experimental values than comparisons for any individual isomer; for details see the Supporting Information.
-
-
-
-
73
-
-
84939465681
-
-
The pathway via complexation of the much less accessible π-faces has also been computed but can safely be disregarded; for details see the Supporting Information
-
The pathway via complexation of the much less accessible π-faces has also been computed but can safely be disregarded; for details see the Supporting Information.
-
-
-
-
76
-
-
84864446948
-
-
M. Suginome, T. Yamamoto, Y. Nagata, T. Yamada, Y. Akai, Pure Appl. Chem. 2012, 84, 1759-1769.
-
(2012)
Pure Appl. Chem.
, vol.84
, pp. 1759-1769
-
-
Suginome, M.1
Yamamoto, T.2
Nagata, Y.3
Yamada, T.4
Akai, Y.5
-
77
-
-
84939465529
-
-
Independent of this naphthyl flip is an additional rotameric process involving the amine part of the phosphoramidite ligand scaffold which is fast (ms time scale at -20 °C) and obviously quite unhindered by the naphthyl groups or the bound allenol. We had already previously implied such a process in the loading of the chiral complexes, where the rotational freedom of the P-N bond allows the amine to give way to the incoming substrate, see ref. [5]
-
Independent of this naphthyl flip is an additional rotameric process involving the amine part of the phosphoramidite ligand scaffold which is fast (ms time scale at -20 °C) and obviously quite unhindered by the naphthyl groups or the bound allenol. We had already previously implied such a process in the loading of the chiral complexes, where the rotational freedom of the P-N bond allows the amine to give way to the incoming substrate, see ref. [5].
-
-
-
-
78
-
-
84862532803
-
-
For enantioreversion by solvent change using a phosphoramidite with a biphenyl backbone, see
-
For enantioreversion by solvent change using a phosphoramidite with a biphenyl backbone, see:, H. Yu, F. Xie, Z. Ma, Y. Liu, W. Zhang, Org. Biomol. Chem. 2012, 10, 5137-5142.
-
(2012)
Org. Biomol. Chem.
, vol.10
, pp. 5137-5142
-
-
Yu, H.1
Xie, F.2
Ma, Z.3
Liu, Y.4
Zhang, W.5
-
79
-
-
84858080916
-
-
K. Aplander, U. M. Lindström, J. Wennerberg, Synthesis 2012, 44, 848-856
-
(2012)
Synthesis
, vol.44
, pp. 848-856
-
-
Aplander, K.1
Lindström, U.M.2
Wennerberg, J.3
-
80
-
-
77957347790
-
-
Y. Sohtome, B. Shin, N. Horitsugi, R. Takagi, K. Noguchi, K. Nagasawa, Angew. Chem. Int. Ed. 2010, 49, 7299-7303
-
(2010)
Angew. Chem. Int. Ed.
, vol.49
, pp. 7299-7303
-
-
Sohtome, Y.1
Shin, B.2
Horitsugi, N.3
Takagi, R.4
Noguchi, K.5
Nagasawa, K.6
-
81
-
-
78649532165
-
-
Angew. Chem. 2010, 122, 7457-7461.
-
(2010)
Angew. Chem.
, vol.122
, pp. 7457-7461
-
-
|