-
1
-
-
38949102073
-
Building better batteries
-
Armand, M.; Tarascon, J. M. Building better batteries. Nature2008, 451, 652–657.
-
(2008)
Nature
, vol.451
, pp. 652-657
-
-
Armand, M.1
Tarascon, J.M.2
-
2
-
-
79954525029
-
Functional materials for rechargeable batteries
-
Cheng, F. Y.; Liang, J.; Tao, Z. L.; Chen, J. Functional materials for rechargeable batteries. Adv. Mater.2011, 23, 1695–1715.
-
(2011)
Adv. Mater.
, vol.23
, pp. 1695-1715
-
-
Cheng, F.Y.1
Liang, J.2
Tao, Z.L.3
Chen, J.4
-
3
-
-
77952344844
-
Porous Si anode materials for lithium rechargeable batteries
-
Cho, J. Porous Si anode materials for lithium rechargeable batteries. J. Mater. Chem.2010, 20, 4009–4014.
-
(2010)
J. Mater. Chem.
, vol.20
, pp. 4009-4014
-
-
Cho, J.1
-
4
-
-
78650828671
-
Nanostructured silicon for high capacity lithium battery anodes
-
Szczech, J. R.; Jin, S. Nanostructured silicon for high capacity lithium battery anodes. Energy Environ. Sci.2011, 4, 56–72.
-
(2011)
Energy Environ. Sci.
, vol.4
, pp. 56-72
-
-
Szczech, J.R.1
Jin, S.2
-
5
-
-
77950021498
-
High-performance lithium-ion anodes using a hierarchical bottom-up approach
-
Magasinki, A.; Dixon, P.; Hertzberg, B.; Kvit, A.; Ayala, J.; Yushin, G. High-performance lithium-ion anodes using a hierarchical bottom-up approach. Nat. Mater.2010, 9, 353–358.
-
(2010)
Nat. Mater.
, vol.9
, pp. 353-358
-
-
Magasinki, A.1
Dixon, P.2
Hertzberg, B.3
Kvit, A.4
Ayala, J.5
Yushin, G.6
-
6
-
-
84884907143
-
25th anniversary article: Understanding the lithiation of silicon and other alloying anodes for lithium-ion batteries
-
McDowell, M. T.; Lee, S. W.; Nix, W. D.; Cui, Y. 25th anniversary article: Understanding the lithiation of silicon and other alloying anodes for lithium-ion batteries. Adv. Mater.2013, 25, 4966–4984.
-
(2013)
Adv. Mater.
, vol.25
, pp. 4966-4984
-
-
McDowell, M.T.1
Lee, S.W.2
Nix, W.D.3
Cui, Y.4
-
7
-
-
84867030978
-
Challenges facing lithium batteries and electrical double-layer capacitors
-
Choi, N. S.; Chen, Z. h.; Freunberger, S. A.; Ji, X. l.; Sun, Y. K.; Amine, K.; Yushin, G.; Nazar, L. F.; Cho, J.; Bruce, P. G. Challenges facing lithium batteries and electrical double-layer capacitors. Angew. Chem. Int. Ed.2012, 51, 9994–10024.
-
(2012)
Angew. Chem. Int. Ed.
, vol.51
, pp. 9994-10024
-
-
Choi, N.S.1
Chen, Z.2
Freunberger, S.A.3
Ji, X.4
Sun, Y.K.5
Amine, K.6
Yushin, G.7
Nazar, L.F.8
Cho, J.9
Bruce, P.G.10
-
8
-
-
84867672114
-
Designing nanostructured Si anodes for high energy lithium ion batteries
-
Wu, H.; Cui, Y. Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today2012, 7, 414–429.
-
(2012)
Nano Today
, vol.7
, pp. 414-429
-
-
Wu, H.1
Cui, Y.2
-
9
-
-
84884229093
-
Managing voids of Si anodes in lithium ion batteries
-
Li, X. L.; Zhi, L. J. Managing voids of Si anodes in lithium ion batteries. Nanoscale2013, 5, 8864–8873.
-
(2013)
Nanoscale
, vol.5
, pp. 8864-8873
-
-
Li, X.L.1
Zhi, L.J.2
-
10
-
-
84891883895
-
Silicon-based nanomaterials for lithium-ion batteries: A review
-
Su, X.; Wu, Q. L.; Li, J. C.; Xiao, X. C.; Lott, A.; Lu, W. Q.; Sheldon, B. W.; Wu, J. Silicon-based nanomaterials for lithium-ion batteries: A review. Adv. Energy Mater.2014, 4, 1300882.
-
(2014)
Adv. Energy Mater.
, vol.4
-
-
Su, X.1
Wu, Q.L.2
Li, J.C.3
Xiao, X.C.4
Lott, A.5
Lu, W.Q.6
Sheldon, B.W.7
Wu, J.8
-
11
-
-
84863229783
-
Size-dependent fracture of silicon nanoparticles during lithiation
-
Liu, X. H.; Zhong, L.; Huang, S.; Mao, S. X.; Zhu, T.; Huang, J. Y. Size-dependent fracture of silicon nanoparticles during lithiation. ACS Nano2012, 6, 1522–1531.
-
(2012)
ACS Nano
, vol.6
, pp. 1522-1531
-
-
Liu, X.H.1
Zhong, L.2
Huang, S.3
Mao, S.X.4
Zhu, T.5
Huang, J.Y.6
-
12
-
-
84903691628
-
Controllable synthesis of hollow Si anode for long-cycle-life lithium-ion batteries
-
Huang, X. K.; Yang, J.; Mao, S.; Chang, J. B.; Hallac, P. B.; Fell, C. R.; Metz, B.; Jiang, J. W.; Hurley, P. T.; Chen, J. H. Controllable synthesis of hollow Si anode for long-cycle-life lithium-ion batteries. Adv. Mater.2014, 26, 4326–4332.
-
(2014)
Adv. Mater.
, vol.26
, pp. 4326-4332
-
-
Huang, X.K.1
Yang, J.2
Mao, S.3
Chang, J.B.4
Hallac, P.B.5
Fell, C.R.6
Metz, B.7
Jiang, J.W.8
Hurley, P.T.9
Chen, J.H.10
-
13
-
-
84939253291
-
Hydrothermal synthesis of nano-silicon from silica sol and its lithium ion batteries property
-
Liang, J. W.; Li, X. N.; Zhu, Y. C.; Guo, C.; Qian, Y. T. Hydrothermal synthesis of nano-silicon from silica sol and its lithium ion batteries property. Nano Res.2015, 8, 1497–1504.
-
(2015)
Nano Res.
, vol.8
, pp. 1497-1504
-
-
Liang, J.W.1
Li, X.N.2
Zhu, Y.C.3
Guo, C.4
Qian, Y.T.5
-
14
-
-
84861321990
-
Hollow core-shell structured porous Si-C nanocomposites for Li-ion battery anodes
-
Li, X. L.; Meduri, P.; Chen, X. L.; Qi, W.; Engelhard, M. H.; Xu, W.; Ding, F.; Xiao, J.; Wang, W.; Wang, C. M. et al. Hollow core-shell structured porous Si-C nanocomposites for Li-ion battery anodes. J. Mater. Chem.2012, 22, 11014–11017.
-
(2012)
J. Mater. Chem.
, vol.22
, pp. 11014-11017
-
-
Li, X.L.1
Meduri, P.2
Chen, X.L.3
Qi, W.4
Engelhard, M.H.5
Xu, W.6
Ding, F.7
Xiao, J.8
Wang, W.9
Wang, C.M.10
-
15
-
-
84895920205
-
A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes
-
Liu, N.; Lu, Z. D.; Zhao, J.; McDowell, M. T.; Lee, H. W.; Zhao, W. T.; Cui, Y. A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nat. Nanotechnol.2014, 9, 187–192.
-
(2014)
Nat. Nanotechnol.
, vol.9
, pp. 187-192
-
-
Liu, N.1
Lu, Z.D.2
Zhao, J.3
McDowell, M.T.4
Lee, H.W.5
Zhao, W.T.6
Cui, Y.7
-
16
-
-
84876512734
-
Si-encapsulating hollow carbon electrodes via electroless etching for lithium-ion batteries
-
Park, Y.; Choi, N. S.; Park, S.; Woo, S. H.; Sim, S.; Jang, B. Y.; Oh, S. M.; Park, S.; Cho, J.; Lee, K. T. Si-encapsulating hollow carbon electrodes via electroless etching for lithium-ion batteries. Adv. Energy Mater.2013, 3, 206–212.
-
(2013)
Adv. Energy Mater.
, vol.3
, pp. 206-212
-
-
Park, Y.1
Choi, N.S.2
Park, S.3
Woo, S.H.4
Sim, S.5
Jang, B.Y.6
Oh, S.M.7
Park, S.8
Cho, J.9
Lee, K.T.10
-
17
-
-
84884949396
-
Hoop-strong nanotubes for battery electrodes
-
Karki, K.; Zhu, Y. J.; Liu, Y.H.; Sun, C. F.; Hu, L. B.; Wang, Y. H.; Wang, C. S.; Cumings, J. Hoop-strong nanotubes for battery electrodes. ACS Nano2013, 7, 8295–8302.
-
(2013)
ACS Nano
, vol.7
, pp. 8295-8302
-
-
Karki, K.1
Zhu, Y.J.2
Liu, Y.H.3
Sun, C.F.4
Hu, L.B.5
Wang, Y.H.6
Wang, C.S.7
Cumings, J.8
-
18
-
-
72849145531
-
Silicon nanotube battery anodes
-
Park, M. H.; Kim, M. G.; Joo, J.; Kim, K.; Kim, J.; Ahn, S.; Cui, Y.; Cho, J. Silicon nanotube battery anodes. Nano Lett.2009, 9, 3844–3847.
-
(2009)
Nano Lett.
, vol.9
, pp. 3844-3847
-
-
Park, M.H.1
Kim, M.G.2
Joo, J.3
Kim, K.4
Kim, J.5
Ahn, S.6
Cui, Y.7
Cho, J.8
-
19
-
-
84861091085
-
Porous doped silicon nanowires for lithium ion battery anode with long cycle life
-
Ge, M. Y.; Rong, J. P.; Fang, X.; Zhou, C. W. Porous doped silicon nanowires for lithium ion battery anode with long cycle life. Nano Lett.2012, 12, 2318–2323.
-
(2012)
Nano Lett.
, vol.12
, pp. 2318-2323
-
-
Ge, M.Y.1
Rong, J.P.2
Fang, X.3
Zhou, C.W.4
-
20
-
-
84874934850
-
Scalable preparation of porous silicon nanoparticles and their application for lithium-ion battery anodes
-
Ge, M. Y.; Rong, J. P.; Fang, X.; Zhang, A. Y.; Lu, Y. H.; Zhou, C. W. Scalable preparation of porous silicon nanoparticles and their application for lithium-ion battery anodes. Nano Res.2013, 6, 174–181.
-
(2013)
Nano Res.
, vol.6
, pp. 174-181
-
-
Ge, M.Y.1
Rong, J.P.2
Fang, X.3
Zhang, A.Y.4
Lu, Y.H.5
Zhou, C.W.6
-
21
-
-
84867536075
-
Scalable fabrication of silicon nanotubes and their application to energy storage
-
Yoo, J. K.; Kim, J.; Jung, Y. S.; Kang, K. Scalable fabrication of silicon nanotubes and their application to energy storage. Adv. Mater.2012, 24, 5452–5456.
-
(2012)
Adv. Mater.
, vol.24
, pp. 5452-5456
-
-
Yoo, J.K.1
Kim, J.2
Jung, Y.S.3
Kang, K.4
-
22
-
-
33845622840
-
Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells
-
Kasavajjula, U.; Wang, C. S.; Appleby, A. J. Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells. J. Power Sources2007, 163, 1003–1039.
-
(2007)
J. Power Sources
, vol.163
, pp. 1003-1039
-
-
Kasavajjula, U.1
Wang, C.S.2
Appleby, A.J.3
-
23
-
-
84860499950
-
Preparation and characterization of flake graphite/silicon/carbon spherical composite as anode materials for lithium-ion batteries
-
Lai, J.; Guo, H. J.; Wang, Z. X.; Li, X. H.; Zhang, X. P.; Wu, F. X.; Yue, P. Preparation and characterization of flake graphite/silicon/carbon spherical composite as anode materials for lithium-ion batteries. J. Alloys Compd.2012, 530, 30–35.
-
(2012)
J. Alloys Compd.
, vol.530
, pp. 30-35
-
-
Lai, J.1
Guo, H.J.2
Wang, Z.X.3
Li, X.H.4
Zhang, X.P.5
Wu, F.X.6
Yue, P.7
-
24
-
-
17444388522
-
A new type of nano-sized silicon/carbon composite electrode for reversible lithium insertion
-
Holzapfel, M.; Buqa, H.; Scheifele, W.; Novák, P.; Petrat, F. M. A new type of nano-sized silicon/carbon composite electrode for reversible lithium insertion. Chem. Commun.2005, 1566–1568.
-
(2005)
Chem. Commun.
, pp. 1566-1568
-
-
Holzapfel, M.1
Buqa, H.2
Scheifele, W.3
Novák, P.4
Petrat, F.M.5
-
25
-
-
0037293825
-
High capacity silicon/carbon composite anode materials for lithium ion batteries
-
Wen, Z. S.; Yang, J.; Wang, B. F.; Wang, K.; Liu, Y. High capacity silicon/carbon composite anode materials for lithium ion batteries. Electrochem. Commun.2003, 5, 165–168.
-
(2003)
Electrochem. Commun.
, vol.5
, pp. 165-168
-
-
Wen, Z.S.1
Yang, J.2
Wang, B.F.3
Wang, K.4
Liu, Y.5
-
26
-
-
77950349866
-
2@C nanocomposites as anode materials for Li-ion batteries
-
2@C nanocomposites as anode materials for Li-ion batteries. Chem. Commun.2010, 46, 2590–2592.
-
(2010)
Chem. Commun.
, vol.46
, pp. 2590-2592
-
-
Su, L.W.1
Zhou, Z.2
Ren, M.M.3
-
27
-
-
84902690181
-
Mesoporous carbon/silicon composite anodes with enhanced performance for lithium-ion batteries
-
Xu, Y. H.; Zhu, Y. J.; Wang, C. S. Mesoporous carbon/silicon composite anodes with enhanced performance for lithium-ion batteries. J. Mater. Chem. A2014, 2, 9751–9757.
-
(2014)
J. Mater. Chem. A
, vol.2
, pp. 9751-9757
-
-
Xu, Y.H.1
Zhu, Y.J.2
Wang, C.S.3
-
28
-
-
84877257015
-
Spray drying method for large-scale and high-performance silicon negative electrodes in Li-ion batteries
-
Jung, D. S.; Hwang, T. H.; Park, S. B.; Choi, J. W. Spray drying method for large-scale and high-performance silicon negative electrodes in Li-ion batteries. Nano Lett.2013, 13, 2092–2097.
-
(2013)
Nano Lett.
, vol.13
, pp. 2092-2097
-
-
Jung, D.S.1
Hwang, T.H.2
Park, S.B.3
Choi, J.W.4
-
29
-
-
78650512541
-
High capacity graphite-silicon composite anode material for lithium-ion batteries
-
Fuchsbichler, B.; Stangl, C.; Kren, H.; Uhlig, F.; Koller, S. High capacity graphite-silicon composite anode material for lithium-ion batteries. J. Power Sources2011, 196, 2889–2892.
-
(2011)
J. Power Sources
, vol.196
, pp. 2889-2892
-
-
Fuchsbichler, B.1
Stangl, C.2
Kren, H.3
Uhlig, F.4
Koller, S.5
-
30
-
-
84899516636
-
Si/C composite lithium-ion battery anodes synthesized using silicon nanoparticles from porous silicon
-
Park, J. B.; Lee, K. H.; Jeon, Y. J.; Lim, S. H.; Lee, S. M. Si/C composite lithium-ion battery anodes synthesized using silicon nanoparticles from porous silicon. Electrochim. Acta2014, 133, 73–81.
-
(2014)
Electrochim. Acta
, vol.133
, pp. 73-81
-
-
Park, J.B.1
Lee, K.H.2
Jeon, Y.J.3
Lim, S.H.4
Lee, S.M.5
-
31
-
-
84874432208
-
Adaptable silicon-carbon nanocables sandwiched between reduced graphene oxide sheets as lithium ion battery anodes
-
Wang, B.; Li, X. L.; Zhang, X. F.; Luo, B.; Jin, M. H.; Liang, M. H.; Dayeh, S. A.; Picraux, S. T.; Zhi, L. Adaptable silicon-carbon nanocables sandwiched between reduced graphene oxide sheets as lithium ion battery anodes. ACS Nano2013, 7, 1437–1445.
-
(2013)
ACS Nano
, vol.7
, pp. 1437-1445
-
-
Wang, B.1
Li, X.L.2
Zhang, X.F.3
Luo, B.4
Jin, M.H.5
Liang, M.H.6
Dayeh, S.A.7
Picraux, S.T.8
Zhi, L.9
-
32
-
-
84906782405
-
Silicon decorated cone shaped carbon nanotube clusters for lithium ion battery anodes
-
Wang, W.; Ruiz, I.; Ahmed, K.; Bay, H. H.; George, A. S.; Wang, J.; Butler, J.; Ozkan, M.; Ozkan, C. S. Silicon decorated cone shaped carbon nanotube clusters for lithium ion battery anodes. Small2014, 10, 3389–3396.
-
(2014)
Small
, vol.10
, pp. 3389-3396
-
-
Wang, W.1
Ruiz, I.2
Ahmed, K.3
Bay, H.H.4
George, A.S.5
Wang, J.6
Butler, J.7
Ozkan, M.8
Ozkan, C.S.9
-
33
-
-
84894475762
-
Twisted aligned carbon nanotube/silicon composite fiber anode for flexible wire-shaped lithium-ion battery
-
Lin, H. J.; Weng, W.; Ren, J.; Qiu, L. B.; Zhang, Z. T.; Chen, P. N.; Chen, X. L.; Deng, J.; Wang, Y. G.; Peng, H. S. Twisted aligned carbon nanotube/silicon composite fiber anode for flexible wire-shaped lithium-ion battery. Adv. Mater.2014, 26, 1217–1222.
-
(2014)
Adv. Mater.
, vol.26
, pp. 1217-1222
-
-
Lin, H.J.1
Weng, W.2
Ren, J.3
Qiu, L.B.4
Zhang, Z.T.5
Chen, P.N.6
Chen, X.L.7
Deng, J.8
Wang, Y.G.9
Peng, H.S.10
-
34
-
-
84895059729
-
Multilayered Si nanoparticle/reduced graphene oxide hybrid as a high-performance lithium-ion battery anode
-
Chang, J. B.; Huang, X. K.; Zhou, G. H.; Cui, S. M.; Hallac, P. B.; Jiang, J. W.; Hurley, P. T.; Chen, J. H. Multilayered Si nanoparticle/reduced graphene oxide hybrid as a high-performance lithium-ion battery anode. Adv. Mater.2014, 26, 758–764.
-
(2014)
Adv. Mater.
, vol.26
, pp. 758-764
-
-
Chang, J.B.1
Huang, X.K.2
Zhou, G.H.3
Cui, S.M.4
Hallac, P.B.5
Jiang, J.W.6
Hurley, P.T.7
Chen, J.H.8
-
35
-
-
84863629371
-
Crumpled graphene-encapsulated Si nanoparticles for lithium ion battery anodes
-
Luo, J. Y.; Zhao, X.; Wu, J. S.; Jang, H. D.; Kung, H. H.; Huang, J. X. Crumpled graphene-encapsulated Si nanoparticles for lithium ion battery anodes. J. Phys. Chem. Lett.2012, 3, 1824–1829.
-
(2012)
J. Phys. Chem. Lett.
, vol.3
, pp. 1824-1829
-
-
Luo, J.Y.1
Zhao, X.2
Wu, J.S.3
Jang, H.D.4
Kung, H.H.5
Huang, J.X.6
-
36
-
-
84862281347
-
A yolk-shell design for stabilized and scalable Li-ion battery alloy anodes
-
Liu, N.; Wu, H.; McDowell, M. T.; Yao, Y.; Wang, C. M.; Cui, Y. A yolk-shell design for stabilized and scalable Li-ion battery alloy anodes. Nano Lett.2012, 12, 3315–3321.
-
(2012)
Nano Lett.
, vol.12
, pp. 3315-3321
-
-
Liu, N.1
Wu, H.2
McDowell, M.T.3
Yao, Y.4
Wang, C.M.5
Cui, Y.6
-
37
-
-
84877687451
-
Metal oxides and oxysalts as anode materials for Li ion batteries
-
Reddy, M. V.; Rao, G. V. S.; Chowdari, B. V. R. Metal oxides and oxysalts as anode materials for Li ion batteries. Chem. Rev.2013, 113, 5364–5457.
-
(2013)
Chem. Rev.
, vol.113
, pp. 5364-5457
-
-
Reddy, M.V.1
Rao, G.V.S.2
Chowdari, B.V.R.3
-
38
-
-
84867079777
-
Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage
-
Jiang, J.; Li, Y. Y.; Liu, J. P.; Huang, X. T.; Yuan, C. Z.; Lou, X. W. Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage. Adv. Mater.2012, 24, 5166–5180.
-
(2012)
Adv. Mater.
, vol.24
, pp. 5166-5180
-
-
Jiang, J.1
Li, Y.Y.2
Liu, J.P.3
Huang, X.T.4
Yuan, C.Z.5
Lou, X.W.6
-
39
-
-
77956958084
-
Beyond intercalation-based Li-ion batteries: The state of the art and challenges of electrode materials reacting through conversion reactions
-
Cabana, J.; Monconduit, L.; Larcher, D.; Palacín, M. R. Beyond intercalation-based Li-ion batteries: The state of the art and challenges of electrode materials reacting through conversion reactions. Adv. Mater.2010, 22, E170–E192.
-
(2010)
Adv. Mater.
, vol.22
, pp. 170-192
-
-
Cabana, J.1
Monconduit, L.2
Larcher, D.3
Palacín, M.R.4
-
40
-
-
84892479867
-
Evaluating the performance of nanostructured materials as lithium-ion battery electrodes
-
Armstrong, M. J.; O’Dwyer, C.; Macklin, W. J.; Holmes, J. D. Evaluating the performance of nanostructured materials as lithium-ion battery electrodes. Nano Res.2014, 7, 1–62.
-
(2014)
Nano Res.
, vol.7
, pp. 1-62
-
-
Armstrong, M.J.1
O’Dwyer, C.2
Macklin, W.J.3
Holmes, J.D.4
-
41
-
-
84910107813
-
4/graphene nanowires as a high-rate lithium storage anode
-
4/graphene nanowires as a high-rate lithium storage anode. Nano Lett.2014, 14, 6250–6256.
-
(2014)
Nano Lett.
, vol.14
, pp. 6250-6256
-
-
An, Q.Y.1
Lv, F.2
Liu, Q.Q.3
Han, C.H.4
Zhao, K.N.5
Sheng, J.Z.6
Wei, Q.L.7
Yan, M.Y.8
Mai, L.Q.9
-
42
-
-
84901854768
-
Graphene and graphene-like layered transition metal dichalcogenides in energy conversion and storage
-
Wang, H.; Feng, H. B.; Li, J. H. Graphene and graphene-like layered transition metal dichalcogenides in energy conversion and storage. Small2014, 10, 2165–2181.
-
(2014)
Small
, vol.10
, pp. 2165-2181
-
-
Wang, H.1
Feng, H.B.2
Li, J.H.3
-
43
-
-
84897973630
-
25th anniversary article: Hybrid nanostructures based on two-dimensional nanomaterials
-
Huang, X.; Tan, C. L.; Yin, Z. Y.; Zhang, H. 25th anniversary article: Hybrid nanostructures based on two-dimensional nanomaterials. Adv. Mater.2014, 26, 2185–2204.
-
(2014)
Adv. Mater.
, vol.26
, pp. 2185-2204
-
-
Huang, X.1
Tan, C.L.2
Yin, Z.Y.3
Zhang, H.4
-
45
-
-
84893860567
-
2 embedded in carbon nanofibers with excellent electrochemical performance for lithium and sodium storage
-
2 embedded in carbon nanofibers with excellent electrochemical performance for lithium and sodium storage. Angew. Chem. Int. Ed.2014, 53, 2152–2156.
-
(2014)
Angew. Chem. Int. Ed.
, vol.53
, pp. 2152-2156
-
-
Zhu, C.B.1
Mu, X.K.2
van Aken, P.A.3
Yu, Y.4
Maier, J.5
-
46
-
-
80755125655
-
2 nanoplates consisting of disordered graphene-like layers for high rate lithium battery anode materials
-
2 nanoplates consisting of disordered graphene-like layers for high rate lithium battery anode materials. Nano Lett.2011, 11, 4826–4830.
-
(2011)
Nano Lett.
, vol.11
, pp. 4826-4830
-
-
Hwang, H.1
Kim, H.2
Cho, J.3
-
47
-
-
84876590946
-
2-graphene composites as anode materials of Li-ion batteries
-
2-graphene composites as anode materials of Li-ion batteries. J. Mater. Chem. A2013, 1, 2202–2210.
-
(2013)
J. Mater. Chem. A
, vol.1
, pp. 2202-2210
-
-
Wang, Z.1
Chen, T.2
Chen, W.X.3
Chang, K.4
Ma, L.5
Huang, G.C.6
Chen, D.Y.7
Lee, J.Y.8
-
48
-
-
70350686913
-
Rattle-type silica colloidal particles prepared by a surface-protected etching process
-
Zhang, Q.; Ge, J. P.; Goebl, J.; Hu, Y. X.; Lu, Z. D.; Yin, Y. D. Rattle-type silica colloidal particles prepared by a surface-protected etching process. Nano Res.2009, 2, 583–591.
-
(2009)
Nano Res.
, vol.2
, pp. 583-591
-
-
Zhang, Q.1
Ge, J.P.2
Goebl, J.3
Hu, Y.X.4
Lu, Z.D.5
Yin, Y.D.6
-
49
-
-
84862777330
-
2/graphene nanosheets as highly reversible anode materials for lithium ion batteries
-
2/graphene nanosheets as highly reversible anode materials for lithium ion batteries. Carbon2012, 50, 1897–1903.
-
(2012)
Carbon
, vol.50
, pp. 1897-1903
-
-
Zhang, C.F.1
Peng, X.2
Guo, Z.P.3
Cai, C.B.4
Chen, Z.X.5
Wexler, D.6
Li, S.7
Liu, H.K.8
-
50
-
-
84858182487
-
2 thin layers on insulating substrates
-
2 thin layers on insulating substrates. Nano Lett.2012, 12, 1538–1544.
-
(2012)
Nano Lett.
, vol.12
, pp. 1538-1544
-
-
Liu, K.K.1
Zhang, W.J.2
Lee, Y.H.3
Lin, Y.C.4
Chang, M.T.5
Su, C.Y.6
Chang, C.S.7
Li, H.8
Shi, Y.M.9
Zhang, H.10
-
51
-
-
33847392449
-
2 overlayers supported on coaxial carbon nanotubes
-
2 overlayers supported on coaxial carbon nanotubes. J. Phys. Chem. C2007, 111, 1675–1682.
-
(2007)
J. Phys. Chem. C
, vol.111
, pp. 1675-1682
-
-
Wang, Q.1
Li, J.H.2
-
53
-
-
84887245438
-
2/nitrogen-doped graphene nanosheets with highly reversible lithium storage
-
2/nitrogen-doped graphene nanosheets with highly reversible lithium storage. Adv. Energy Mater.2013, 3, 839–844.
-
(2013)
Adv. Energy Mater.
, vol.3
, pp. 839-844
-
-
Chang, K.1
Geng, D.S.2
Li, X.F.3
Yang, J.L.4
Tang, Y.J.5
Cai, M.6
Li, R.Y.7
Sun, X.L.8
-
54
-
-
84887370437
-
2/graphene composites: Cationic surfactant-assisted hydrothermal synthesis and electrochemical reversible storage of lithium
-
2/graphene composites: Cationic surfactant-assisted hydrothermal synthesis and electrochemical reversible storage of lithium. Small2013, 9, 3693–3703.
-
(2013)
Small
, pp. 3693-3703
-
-
Huang, G.C.1
Chen, T.2
Chen, W.X.3
Wang, Z.4
Chang, K.5
Ma, L.6
Huang, F.H.7
Chen, D.Y.8
Lee, J.Y.9
-
55
-
-
84867310395
-
2 with expanded spacing of the (002) crystal plane for ultrafast lithium ion storage
-
2 with expanded spacing of the (002) crystal plane for ultrafast lithium ion storage. Adv. Energy Mater.2012, 2, 970–975.
-
(2012)
Adv. Energy Mater.
, vol.2
, pp. 970-975
-
-
Liu, H.1
Su, D.W.2
Zhou, R.F.3
Sun, B.4
Wang, G.X.5
Qiao, S.Z.6
-
56
-
-
84881139398
-
Graphene-network-backboned architectures for high-performance lithium storage
-
Gong, Y. J.; Yang, S. B.; Liu, Z.; Ma, L. L.; Vajtai, R.; Ajayan, P. M. Graphene-network-backboned architectures for high-performance lithium storage. Adv. Mater.2013, 25, 3979–3984.
-
(2013)
Adv. Mater.
, vol.25
, pp. 3979-3984
-
-
Gong, Y.J.1
Yang, S.B.2
Liu, Z.3
Ma, L.L.4
Vajtai, R.5
Ajayan, P.M.6
-
57
-
-
84878718267
-
Rice husks as a sustainable source of nanostructured silicon for high performance Li-ion battery anodes
-
Liu, N. A.; Huo, K. F.; McDowell, M. T.; Zhao, J.; Cui, Y. Rice husks as a sustainable source of nanostructured silicon for high performance Li-ion battery anodes. Sci. Rep.2013, 3, 1919.
-
(2013)
Sci. Rep.
, vol.3
, pp. 1919
-
-
Liu, N.A.1
Huo, K.F.2
McDowell, M.T.3
Zhao, J.4
Cui, Y.5
-
58
-
-
84887527022
-
4 powders: Preparation using a simple one-pot process and application in lithium-ion batteries
-
4 powders: Preparation using a simple one-pot process and application in lithium-ion batteries. ChemSusChem2013, 6, 2111–2116.
-
(2013)
ChemSusChem
, vol.6
, pp. 2111-2116
-
-
Choi, S.H.1
Kang, Y.C.2
-
59
-
-
84906782046
-
2-carbon composite microspheres for fast and stable lithium storage performance
-
2-carbon composite microspheres for fast and stable lithium storage performance. Small2014, 10, 3240–3245.
-
(2014)
Small
, vol.10
, pp. 3240-3245
-
-
Ko, Y.N.1
Park, S.B.2
Kang, Y.C.3
|