-
2
-
-
0032170064
-
Continuous and discrete mathematical models of tumor-induced angiogenesis
-
COI: 1:CAS:528:DyaK1cXmtFKntLY%3D, PID: 9739618
-
Anderson, A. R. A., and M. A. J. Chaplain. Continuous and discrete mathematical models of tumor-induced angiogenesis. Bull. Math. Biol. 60(5):857–899, 1998.
-
(1998)
Bull. Math. Biol.
, vol.60
, Issue.5
, pp. 857-899
-
-
Anderson, A.R.A.1
Chaplain, M.A.J.2
-
3
-
-
0033529618
-
Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization
-
COI: 1:CAS:528:DyaK1MXltFGgs7Y%3D, PID: 10436164
-
Asahara, T., et al. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ. Res. 85(3):221–228, 1999.
-
(1999)
Circ. Res.
, vol.85
, Issue.3
, pp. 221-228
-
-
Asahara, T.1
-
4
-
-
34247569970
-
A cell-based model exhibiting branching and anastomosis during tumor-induced angiogenesis
-
COI: 1:CAS:528:DC%2BD2sXkvVSmtbw%3D, PID: 17277180
-
Bauer, A. L., T. L. Jackson, and Y. Jiang. A cell-based model exhibiting branching and anastomosis during tumor-induced angiogenesis. Biophys. J. 92(9):3105–3121, 2007.
-
(2007)
Biophys. J.
, vol.92
, Issue.9
, pp. 3105-3121
-
-
Bauer, A.L.1
Jackson, T.L.2
Jiang, Y.3
-
5
-
-
68249103288
-
Topography of extracellular matrix mediates vascular morphogenesis and migration speeds in angiogenesis
-
PID: 19629173
-
Bauer, A. L., T. L. Jackson, and Y. Jiang. Topography of extracellular matrix mediates vascular morphogenesis and migration speeds in angiogenesis. PLoS Comput. Biol. 5(7):e1000445, 2009.
-
(2009)
PLoS Comput. Biol.
, vol.5
, Issue.7
, pp. e1000445
-
-
Bauer, A.L.1
Jackson, T.L.2
Jiang, Y.3
-
6
-
-
78649640874
-
Using sequence-specific chemical and structural properties of DNA to predict transcription factor binding sites
-
PID: 21124945
-
Bauer, A. L., et al. Using sequence-specific chemical and structural properties of DNA to predict transcription factor binding sites. PLoS Comput. Biol. 6(11):e1001007, 2010.
-
(2010)
PLoS Comput. Biol.
, vol.6
, Issue.11
, pp. e1001007
-
-
Bauer, A.L.1
-
7
-
-
77952671109
-
Receptor cross-talk in angiogenesis: mapping environmental cues to cell phenotype using a stochastic, Boolean signaling network model
-
COI: 1:CAS:528:DC%2BC3cXlslyrs7g%3D, PID: 20307549
-
Bauer, A. L., et al. Receptor cross-talk in angiogenesis: mapping environmental cues to cell phenotype using a stochastic, Boolean signaling network model. J. Theor. Biol. 264(3):838–846, 2010.
-
(2010)
J. Theor. Biol.
, vol.264
, Issue.3
, pp. 838-846
-
-
Bauer, A.L.1
-
8
-
-
84877123237
-
Predicting the future: towards symbiotic computational and experimental angiogenesis research
-
COI: 1:CAS:528:DC%2BC3sXjtl2ju7o%3D, PID: 23415766
-
Bentley, K., M. Jones, and B. Cruys. Predicting the future: towards symbiotic computational and experimental angiogenesis research. Exp. Cell Res. 319(9):1240–1246, 2013.
-
(2013)
Exp. Cell Res.
, vol.319
, Issue.9
, pp. 1240-1246
-
-
Bentley, K.1
Jones, M.2
Cruys, B.3
-
9
-
-
85050957699
-
Computational modeling of angiogenesis: towards a multi-scale understanding of cell-cell and cell-matrix interactions
-
Springer, Berlin
-
Boas, S. E. M., et al. Computational modeling of angiogenesis: towards a multi-scale understanding of cell-cell and cell-matrix interactions. Mechanical and Chemical Signaling in Angiogenesis, Berlin: Springer, 2013, pp. 161–183.
-
(2013)
Mechanical and Chemical Signaling in Angiogenesis
, pp. 161-183
-
-
Boas, S.E.M.1
-
10
-
-
36849053301
-
Integrated approach to designing growth factor delivery systems
-
COI: 1:CAS:528:DC%2BD2sXhsVahtbrM, PID: 17644610
-
Chen, R. R., et al. Integrated approach to designing growth factor delivery systems. FASEB J. 21(14):3896–3903, 2007.
-
(2007)
FASEB J.
, vol.21
, Issue.14
, pp. 3896-3903
-
-
Chen, R.R.1
-
11
-
-
62749175785
-
Cell migration into scaffolds under co-culture conditions in a microfluidic platform
-
COI: 1:CAS:528:DC%2BD1cXhsFakurzJ, PID: 19107284
-
Chung, S., et al. Cell migration into scaffolds under co-culture conditions in a microfluidic platform. Lab Chip 9(2):269–275, 2009.
-
(2009)
Lab Chip
, vol.9
, Issue.2
, pp. 269-275
-
-
Chung, S.1
-
12
-
-
77957307766
-
Dense type I collagen matrices that support cellular remodeling and microfabrication for studies of tumor angiogenesis and vasculogenesis in vitro
-
COI: 1:CAS:528:DC%2BC3cXht1ehtLnM, PID: 20727585
-
Cross, V. L., et al. Dense type I collagen matrices that support cellular remodeling and microfabrication for studies of tumor angiogenesis and vasculogenesis in vitro. Biomaterials 31(33):8596–8607, 2010.
-
(2010)
Biomaterials
, vol.31
, Issue.33
, pp. 8596-8607
-
-
Cross, V.L.1
-
13
-
-
84881368916
-
A cell-based model of extracellular-matrix-guided endothelial cell migration during angiogenesis
-
COI: 1:CAS:528:DC%2BC3sXht1Glsr3N, PID: 23494144
-
Daub, J. T., and R. M. H. Merks. A cell-based model of extracellular-matrix-guided endothelial cell migration during angiogenesis. Bull. Math. Biol. 75(8):1377–1399, 2013.
-
(2013)
Bull. Math. Biol.
, vol.75
, Issue.8
, pp. 1377-1399
-
-
Daub, J.T.1
Merks, R.M.H.2
-
14
-
-
0036829020
-
Molecular basis of endothelial cell morphogenesis in three-dimensional extracellular matrices
-
COI: 1:CAS:528:DC%2BD38Xosl2qs7o%3D, PID: 12382323
-
Davis, G. E., K. J. Bayless, and A. Mavila. Molecular basis of endothelial cell morphogenesis in three-dimensional extracellular matrices. Anat. Rec. 268(3):252–275, 2002.
-
(2002)
Anat. Rec.
, vol.268
, Issue.3
, pp. 252-275
-
-
Davis, G.E.1
Bayless, K.J.2
Mavila, A.3
-
15
-
-
84887456534
-
Role of endothelial cell metabolism in vessel sprouting
-
PID: 23973331
-
De Bock, K., M. Georgiadou, and P. Carmeliet. Role of endothelial cell metabolism in vessel sprouting. Cell Metab. 18(5):634–647, 2013.
-
(2013)
Cell Metab.
, vol.18
, Issue.5
, pp. 634-647
-
-
De Bock, K.1
Georgiadou, M.2
Carmeliet, P.3
-
16
-
-
84893933629
-
Extracellular matrix density regulates the rate of neovessel growth and branching in sprouting angiogenesis
-
PID: 24465500
-
Edgar, L. T., et al. Extracellular matrix density regulates the rate of neovessel growth and branching in sprouting angiogenesis. PLoS One 9(1):e85178, 2014.
-
(2014)
PLoS One
, vol.9
, Issue.1
, pp. e85178
-
-
Edgar, L.T.1
-
17
-
-
84893936418
-
Mechanical interaction of angiogenic microvessels with the extracellular matrix
-
PID: 24441831
-
Edgar, L. T., et al. Mechanical interaction of angiogenic microvessels with the extracellular matrix. J. Biomech. Eng. 136(2):021001, 2014.
-
(2014)
J. Biomech. Eng.
, vol.136
, Issue.2
, pp. 021001
-
-
Edgar, L.T.1
-
18
-
-
84861467738
-
Ensemble analysis of angiogenic growth in three-dimensional microfluidic cell cultures
-
COI: 1:CAS:528:DC%2BC38Xot1Cqu7c%3D, PID: 22662145
-
Farahat, W. A., et al. Ensemble analysis of angiogenic growth in three-dimensional microfluidic cell cultures. PLoS One 7(5):e37333, 2012.
-
(2012)
PLoS One
, vol.7
, Issue.5
, pp. e37333
-
-
Farahat, W.A.1
-
19
-
-
0037699954
-
The biology of VEGF and its receptors
-
COI: 1:CAS:528:DC%2BD3sXktFOnur4%3D, PID: 12778165
-
Ferrara, N., H.-P. Gerber, and J. LeCouter. The biology of VEGF and its receptors. Nat. Med. 9(6):669–676, 2003.
-
(2003)
Nat. Med.
, vol.9
, Issue.6
, pp. 669-676
-
-
Ferrara, N.1
Gerber, H.-P.2
LeCouter, J.3
-
20
-
-
0028929803
-
Angiogenesis in cancer, vascular, rheumatoid and other disease
-
COI: 1:CAS:528:DyaK2MXjs1KnsLk%3D, PID: 7584949
-
Folkman, J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat. Med. 1(1):27–30, 1995.
-
(1995)
Nat. Med.
, vol.1
, Issue.1
, pp. 27-30
-
-
Folkman, J.1
-
21
-
-
0030448814
-
Blood vessel formation: what is its molecular basis?
-
COI: 1:CAS:528:DyaK2sXit1ClsA%3D%3D, PID: 8980221
-
Folkman, J., and P. A. D’Amore. Blood vessel formation: what is its molecular basis? Cell 87(7):1153–1155, 1996.
-
(1996)
Cell
, vol.87
, Issue.7
, pp. 1153-1155
-
-
Folkman, J.1
D’Amore, P.A.2
-
22
-
-
0033952145
-
The biology of cell locomotion within three-dimensional extracellular matrix
-
COI: 1:CAS:528:DC%2BD3cXhslOrsrY%3D, PID: 10949580
-
Friedl, P., and E. B. Bröcker. The biology of cell locomotion within three-dimensional extracellular matrix. Cell. Mol. Life Sci. CMLS 57(1):41–64, 2000.
-
(2000)
Cell. Mol. Life Sci. CMLS
, vol.57
, Issue.1
, pp. 41-64
-
-
Friedl, P.1
Bröcker, E.B.2
-
23
-
-
0037815292
-
VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia
-
COI: 1:CAS:528:DC%2BD3sXkvFCmsrc%3D, PID: 12810700
-
Gerhardt, H., et al. VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J. Cell Biol. 161(6):1163–1177, 2003.
-
(2003)
J. Cell Biol.
, vol.161
, Issue.6
, pp. 1163-1177
-
-
Gerhardt, H.1
-
24
-
-
33846434142
-
Mesenchymal stem cells enhance angiogenesis in mechanically viable prevascularized tissues via early matrix metalloproteinase upregulation
-
COI: 1:CAS:528:DC%2BD28XhtFSht7bF, PID: 17518656
-
Ghajar, C. M., et al. Mesenchymal stem cells enhance angiogenesis in mechanically viable prevascularized tissues via early matrix metalloproteinase upregulation. Tissue Eng. 12(10):2875–2888, 2006.
-
(2006)
Tissue Eng.
, vol.12
, Issue.10
, pp. 2875-2888
-
-
Ghajar, C.M.1
-
25
-
-
41449114479
-
The effect of matrix density on the regulation of 3-D capillary morphogenesis
-
COI: 1:CAS:528:DC%2BD1cXit1yqu70%3D, PID: 17993494
-
Ghajar, C. M., et al. The effect of matrix density on the regulation of 3-D capillary morphogenesis. Biophys. J. 94(5):1930–1941, 2008.
-
(2008)
Biophys. J.
, vol.94
, Issue.5
, pp. 1930-1941
-
-
Ghajar, C.M.1
-
26
-
-
33644529130
-
Capturing complex 3D tissue physiology in vitro
-
COI: 1:CAS:528:DC%2BD28Xhs1Kisro%3D, PID: 16496023
-
Griffith, L. G., and M. A. Swartz. Capturing complex 3D tissue physiology in vitro. Nat. Rev. Mol. Cell Biol. 7(3):211–224, 2006.
-
(2006)
Nat. Rev. Mol. Cell Biol.
, vol.7
, Issue.3
, pp. 211-224
-
-
Griffith, L.G.1
Swartz, M.A.2
-
27
-
-
0030576517
-
Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis
-
COI: 1:CAS:528:DyaK28XltVSks7s%3D, PID: 8756718
-
Hanahan, D., and J. Folkman. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86(3):353–364, 1996.
-
(1996)
Cell
, vol.86
, Issue.3
, pp. 353-364
-
-
Hanahan, D.1
Folkman, J.2
-
28
-
-
27644453468
-
Synergy between interstitial flow and VEGF directs capillary morphogenesis in vitro through a gradient amplification mechanism
-
COI: 1:CAS:528:DC%2BD2MXht1Wru7jF, PID: 16249343
-
Helm, C.-L. E., et al. Synergy between interstitial flow and VEGF directs capillary morphogenesis in vitro through a gradient amplification mechanism. Proc. Natl. Acad. Sci. USA 102(44):15779–15784, 2005.
-
(2005)
Proc. Natl. Acad. Sci. USA
, vol.102
, Issue.44
, pp. 15779-15784
-
-
Helm, C.-L.E.1
-
29
-
-
80052015813
-
Molecular control of endothelial cell behaviour during blood vessel morphogenesis
-
COI: 1:CAS:528:DC%2BC3MXhtVGksrbN, PID: 21860391
-
Herbert, S. P., and D. Y. R. Stainier. Molecular control of endothelial cell behaviour during blood vessel morphogenesis. Nat. Rev. Mol. Cell Biol. 12(9):551–564, 2011.
-
(2011)
Nat. Rev. Mol. Cell Biol.
, vol.12
, Issue.9
, pp. 551-564
-
-
Herbert, S.P.1
Stainier, D.Y.R.2
-
30
-
-
0033580889
-
Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF
-
COI: 1:CAS:528:DyaK1MXktVWntrY%3D, PID: 10373119
-
Holash, J., et al. Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science 284(5422):1994–1998, 1999.
-
(1999)
Science
, vol.284
, Issue.5422
, pp. 1994-1998
-
-
Holash, J.1
-
31
-
-
84910028628
-
Techniques and assays for the study of angiogenesis
-
Irvin, M. W., et al. Techniques and assays for the study of angiogenesis. Exp. Biol Med. 239:1476–1488, 2014.
-
(2014)
Exp. Biol Med.
, vol.239
, pp. 1476-1488
-
-
Irvin, M.W.1
-
32
-
-
33847320719
-
Simulations of chemotaxis and random motility in 2D random porous domains
-
PID: 17216402
-
Jabbarzadeh, E., and C. F. Abrams. Simulations of chemotaxis and random motility in 2D random porous domains. Bull. Math. Biol. 69(2):747–764, 2007.
-
(2007)
Bull. Math. Biol.
, vol.69
, Issue.2
, pp. 747-764
-
-
Jabbarzadeh, E.1
Abrams, C.F.2
-
33
-
-
34548096962
-
Strategies to enhance capillary formation inside biomaterials: a computational study
-
COI: 1:CAS:528:DC%2BD2sXptVait7o%3D, PID: 17590150
-
Jabbarzadeh, E., and C. F. Abrams. Strategies to enhance capillary formation inside biomaterials: a computational study. Tissue Eng. 13(8):2073–2086, 2007.
-
(2007)
Tissue Eng.
, vol.13
, Issue.8
, pp. 2073-2086
-
-
Jabbarzadeh, E.1
Abrams, C.F.2
-
34
-
-
77957607057
-
Endothelial cells dynamically compete for the tip cell position during angiogenic sprouting
-
COI: 1:CAS:528:DC%2BC3cXht1aktLfL, PID: 20871601
-
Jakobsson, L., et al. Endothelial cells dynamically compete for the tip cell position during angiogenic sprouting. Nat. Cell Biol. 12(10):943–953, 2010.
-
(2010)
Nat. Cell Biol.
, vol.12
, Issue.10
, pp. 943-953
-
-
Jakobsson, L.1
-
35
-
-
77957769697
-
A sub-cellular viscoelastic model for cell population mechanics
-
PID: 20856895
-
Jamali, Y., M. Azimi, and M. R. K. Mofrad. A sub-cellular viscoelastic model for cell population mechanics. PLoS One 5(8):e12097, 2010.
-
(2010)
PLoS One
, vol.5
, Issue.8
, pp. e12097
-
-
Jamali, Y.1
Azimi, M.2
Mofrad, M.R.K.3
-
36
-
-
84876922933
-
A computational model predicting disruption of blood vessel development
-
COI: 1:CAS:528:DC%2BC3sXntFarurk%3D, PID: 23592958
-
Kleinstreuer, N., et al. A computational model predicting disruption of blood vessel development. PLoS Comput. Biol. 9(4):e1002996, 2013.
-
(2013)
PLoS Comput. Biol.
, vol.9
, Issue.4
, pp. e1002996
-
-
Kleinstreuer, N.1
-
37
-
-
67650067285
-
Endothelial cell traction and ECM density influence both capillary morphogenesis and maintenance in 3-D
-
COI: 1:CAS:528:DC%2BD1MXovVKjsbs%3D
-
Kniazeva, E., and A. J. Putnam. Endothelial cell traction and ECM density influence both capillary morphogenesis and maintenance in 3-D. Am. J. Physiol. 297(1):C179–C187, 2009.
-
(2009)
Am. J. Physiol.
, vol.297
, Issue.1
, pp. C179-C187
-
-
Kniazeva, E.1
Putnam, A.J.2
-
38
-
-
0032748089
-
Tensional forces in fibrillar extracellular matrices control directional capillary sprouting
-
COI: 1:CAS:528:DyaK1MXntFOjurY%3D, PID: 10504330
-
Korff, T., and H. G. Augustin. Tensional forces in fibrillar extracellular matrices control directional capillary sprouting. J. Cell Sci. 112(19):3249–3258, 1999.
-
(1999)
J. Cell Sci.
, vol.112
, Issue.19
, pp. 3249-3258
-
-
Korff, T.1
Augustin, H.G.2
-
39
-
-
16344382436
-
A semianalytic model of leukocyte rolling
-
COI: 1:CAS:528:DC%2BD2cXpslKht7w%3D, PID: 15315955
-
Krasik, E. F., and D. A. Hammer. A semianalytic model of leukocyte rolling. Biophys. J. 87(5):2919–2930, 2004.
-
(2004)
Biophys. J.
, vol.87
, Issue.5
, pp. 2919-2930
-
-
Krasik, E.F.1
Hammer, D.A.2
-
40
-
-
0037766282
-
Collagen type 1 retards tube formation by human microvascular endothelial cells in a fibrin matrix
-
COI: 1:CAS:528:DC%2BD3sXltFynsLg%3D, PID: 12911012
-
Kroon, M. E., et al. Collagen type 1 retards tube formation by human microvascular endothelial cells in a fibrin matrix. Angiogenesis 5(4):257–265, 2002.
-
(2002)
Angiogenesis
, vol.5
, Issue.4
, pp. 257-265
-
-
Kroon, M.E.1
-
41
-
-
0032983337
-
Angiogenesis activators and inhibitors differentially regulate caveolin-1 expression and caveolae formation in vascular endothelial cells. Angiogenesis inhibitors block vascular endothelial growth factor-induced down-regulation of caveolin-1
-
COI: 1:CAS:528:DyaK1MXjsV2gtLw%3D, PID: 10336480
-
Liu, J., et al. Angiogenesis activators and inhibitors differentially regulate caveolin-1 expression and caveolae formation in vascular endothelial cells. Angiogenesis inhibitors block vascular endothelial growth factor-induced down-regulation of caveolin-1. J. Biol. Chem. 274(22):15781–15785, 1999.
-
(1999)
J. Biol. Chem.
, vol.274
, Issue.22
, pp. 15781-15785
-
-
Liu, J.1
-
42
-
-
33745918670
-
Mathematical modelling of dynamic adaptive tumour-induced angiogenesis: clinical implications and therapeutic targeting strategies
-
PID: 16487543
-
McDougall, S. R., A. R. A. Anderson, and M. A. J. Chaplain. Mathematical modelling of dynamic adaptive tumour-induced angiogenesis: clinical implications and therapeutic targeting strategies. J. Theor. Biol. 241(3):564–589, 2006.
-
(2006)
J. Theor. Biol.
, vol.241
, Issue.3
, pp. 564-589
-
-
McDougall, S.R.1
Anderson, A.R.A.2
Chaplain, M.A.J.3
-
43
-
-
77950443579
-
Axon guidance by growth-rate modulation
-
COI: 1:CAS:528:DC%2BC3cXjvFemu78%3D, PID: 20194766
-
Mortimer, D., et al. Axon guidance by growth-rate modulation. Proc. Natl. Acad. Sci. 107(11):5202–5207, 2010.
-
(2010)
Proc. Natl. Acad. Sci.
, vol.107
, Issue.11
, pp. 5202-5207
-
-
Mortimer, D.1
-
44
-
-
84931300629
-
Angiogenesis assays: an appraisal of current techniques
-
Springer, Dordrecht
-
Mousa, S. A., and P. J. Davis. Angiogenesis assays: an appraisal of current techniques. Angiogenesis Modulations in Health and Disease, Dordrecht: Springer, 2013, pp. 1–12.
-
(2013)
Angiogenesis Modulations in Health and Disease
, pp. 1-12
-
-
Mousa, S.A.1
Davis, P.J.2
-
45
-
-
79952598663
-
Biophysical coarse-grained modeling provides insights into transport through the nuclear pore complex
-
COI: 1:CAS:528:DC%2BC3MXjtFCjtbk%3D, PID: 21402022
-
Moussavi-Baygi, R., et al. Biophysical coarse-grained modeling provides insights into transport through the nuclear pore complex. Biophys. J. 100(6):1410–1419, 2011.
-
(2011)
Biophys. J.
, vol.100
, Issue.6
, pp. 1410-1419
-
-
Moussavi-Baygi, R.1
-
46
-
-
84874622432
-
Spatial regulation of VEGF receptor endocytosis in angiogenesis
-
COI: 1:CAS:528:DC%2BC3sXhsVyktLc%3D, PID: 23354168
-
Nakayama, M., et al. Spatial regulation of VEGF receptor endocytosis in angiogenesis. Nat. Cell Biol. 15(3):249–260, 2013.
-
(2013)
Nat. Cell Biol.
, vol.15
, Issue.3
, pp. 249-260
-
-
Nakayama, M.1
-
47
-
-
84876872941
-
Biomimetic model to reconstitute angiogenic sprouting morphogenesis in vitro
-
COI: 1:CAS:528:DC%2BC3sXot1Ghs7Y%3D, PID: 23569284
-
Nguyen, D.-H. T., et al. Biomimetic model to reconstitute angiogenic sprouting morphogenesis in vitro. Proc. Natl. Acad. Sci. 110(17):6712–6717, 2013.
-
(2013)
Proc. Natl. Acad. Sci.
, vol.110
, Issue.17
, pp. 6712-6717
-
-
Nguyen, D.-H.T.1
-
48
-
-
84859854387
-
Integration of experimental and computational approaches to sprouting angiogenesis
-
PID: 22406822
-
Peirce, S. M., F. Mac Gabhann, and V. L. Bautch. Integration of experimental and computational approaches to sprouting angiogenesis. Curr. Opin. Hematol. 19(3):184–191, 2012.
-
(2012)
Curr. Opin. Hematol.
, vol.19
, Issue.3
, pp. 184-191
-
-
Peirce, S.M.1
Mac Gabhann, F.2
Bautch, V.L.3
-
49
-
-
84884258983
-
Filopodia are dispensable for endothelial tip cell guidance
-
COI: 1:CAS:528:DC%2BC3sXhslSmsrfP, PID: 24046319
-
Phng, L.-K., F. Stanchi, and H. Gerhardt. Filopodia are dispensable for endothelial tip cell guidance. Development 140(19):4031–4040, 2013.
-
(2013)
Development
, vol.140
, Issue.19
, pp. 4031-4040
-
-
Phng, L.-K.1
Stanchi, F.2
Gerhardt, H.3
-
50
-
-
65449162276
-
Elongation, proliferation & migration differentiate endothelial cell phenotypes and determine capillary sprouting
-
PID: 19171061
-
Qutub, A. A., and A. S. Popel. Elongation, proliferation & migration differentiate endothelial cell phenotypes and determine capillary sprouting. BMC Syst. Biol. 3(1):13, 2009.
-
(2009)
BMC Syst. Biol.
, vol.3
, Issue.1
, pp. 13
-
-
Qutub, A.A.1
Popel, A.S.2
-
51
-
-
78049238220
-
Matrix density mediates polarization and lumen formation of endothelial sprouts in VEGF gradients
-
COI: 1:CAS:528:DC%2BC3cXhtlehsrzJ, PID: 20820484
-
Shamloo, A., and S. C. Heilshorn. Matrix density mediates polarization and lumen formation of endothelial sprouts in VEGF gradients. Lab Chip 10(22):3061–3068, 2010.
-
(2010)
Lab Chip
, vol.10
, Issue.22
, pp. 3061-3068
-
-
Shamloo, A.1
Heilshorn, S.C.2
-
52
-
-
47949100705
-
Endothelial cell polarization and chemotaxis in a microfluidic device
-
COI: 1:CAS:528:DC%2BD1cXovVCms70%3D, PID: 18651071
-
Shamloo, A., et al. Endothelial cell polarization and chemotaxis in a microfluidic device. Lab Chip 8(8):1292–1299, 2008.
-
(2008)
Lab Chip
, vol.8
, Issue.8
, pp. 1292-1299
-
-
Shamloo, A.1
-
53
-
-
79958787923
-
In vitro 3D collective sprouting angiogenesis under orchestrated ANG-1 and VEGF gradients
-
COI: 1:CAS:528:DC%2BC3MXnsV2itrw%3D, PID: 21617793
-
Shin, Y., et al. In vitro 3D collective sprouting angiogenesis under orchestrated ANG-1 and VEGF gradients. Lab Chip 11(13):2175–2181, 2011.
-
(2011)
Lab Chip
, vol.11
, Issue.13
, pp. 2175-2181
-
-
Shin, Y.1
-
54
-
-
2942751900
-
The relative magnitudes of endothelial force generation and matrix stiffness modulate capillary morphogenesis in vitro
-
COI: 1:CAS:528:DC%2BD2cXltVOitr4%3D, PID: 15212957
-
Sieminski, A. L., R. P. Hebbel, and K. J. Gooch. The relative magnitudes of endothelial force generation and matrix stiffness modulate capillary morphogenesis in vitro. Exp. Cell Res. 297(2):574–584, 2004.
-
(2004)
Exp. Cell Res.
, vol.297
, Issue.2
, pp. 574-584
-
-
Sieminski, A.L.1
Hebbel, R.P.2
Gooch, K.J.3
-
55
-
-
35348838370
-
The stiffness of three-dimensional ionic self-assembling peptide gels affects the extent of capillary-like network formation
-
COI: 1:CAS:528:DC%2BD2sXhtFKntbbJ, PID: 17906362
-
Sieminski, A. L., et al. The stiffness of three-dimensional ionic self-assembling peptide gels affects the extent of capillary-like network formation. Cell Biochem. Biophys. 49(2):73–83, 2007.
-
(2007)
Cell Biochem. Biophys.
, vol.49
, Issue.2
, pp. 73-83
-
-
Sieminski, A.L.1
-
56
-
-
84889034333
-
Going with the flow: microfluidic platforms in vascular tissue engineering
-
PID: 24644533
-
Smith, Q., and S. Gerecht. Going with the flow: microfluidic platforms in vascular tissue engineering. Curr. Opin. Chem. Eng. 3:42–50, 2014.
-
(2014)
Curr. Opin. Chem. Eng.
, vol.3
, pp. 42-50
-
-
Smith, Q.1
Gerecht, S.2
-
57
-
-
84864254171
-
Anastomosis of endothelial sprouts forms new vessels in a tissue analogue of angiogenesis
-
COI: 1:CAS:528:DC%2BC38XhtFWntLzM
-
Song, J. W., D. Bazou, and L. L. Munn. Anastomosis of endothelial sprouts forms new vessels in a tissue analogue of angiogenesis. Integr. Biol. 4(8):857–862, 2012.
-
(2012)
Integr. Biol.
, vol.4
, Issue.8
, pp. 857-862
-
-
Song, J.W.1
Bazou, D.2
Munn, L.L.3
-
58
-
-
0025991093
-
Analysis of the roles of microvessel endothelial cell random motility and chemotaxis in angiogenesis
-
COI: 1:STN:280:DyaK38%2FosFKqsQ%3D%3D, PID: 1721100
-
Stokes, C. L., and D. A. Lauffenburger. Analysis of the roles of microvessel endothelial cell random motility and chemotaxis in angiogenesis. J. Theor. Biol. 152(3):377–403, 1991.
-
(1991)
J. Theor. Biol.
, vol.152
, Issue.3
, pp. 377-403
-
-
Stokes, C.L.1
Lauffenburger, D.A.2
-
59
-
-
48349129069
-
Blocking VEGFR-3 suppresses angiogenic sprouting and vascular network formation
-
COI: 1:CAS:528:DC%2BD1cXptFOksb8%3D, PID: 18594512
-
Tammela, T., et al. Blocking VEGFR-3 suppresses angiogenic sprouting and vascular network formation. Nature 454(7204):656–660, 2008.
-
(2008)
Nature
, vol.454
, Issue.7204
, pp. 656-660
-
-
Tammela, T.1
-
60
-
-
84903901969
-
Anti-angiogenic therapy for cancer: current progress, unresolved questions and future directions
-
COI: 1:CAS:528:DC%2BC2cXpsVGrtrk%3D, PID: 24482243
-
Vasudev, N. S., and A. R. Reynolds. Anti-angiogenic therapy for cancer: current progress, unresolved questions and future directions. Angiogenesis 17:471–494, 2014.
-
(2014)
Angiogenesis
, vol.17
, pp. 471-494
-
-
Vasudev, N.S.1
Reynolds, A.R.2
-
61
-
-
52649129923
-
Design, fabrication and implementation of a novel multi-parameter control microfluidic platform for three-dimensional cell culture and real-time imaging
-
COI: 1:CAS:528:DC%2BD1cXhtFKgs77P, PID: 18818801
-
Vickerman, V., et al. Design, fabrication and implementation of a novel multi-parameter control microfluidic platform for three-dimensional cell culture and real-time imaging. Lab Chip 8(9):1468–1477, 2008.
-
(2008)
Lab Chip
, vol.8
, Issue.9
, pp. 1468-1477
-
-
Vickerman, V.1
-
62
-
-
84962770944
-
Microfluidic devices for angiogenesis
-
Springer, Berlin
-
Vickerman, V., C. Kim, and R. D. Kamm. Microfluidic devices for angiogenesis. Mechanical and Chemical Signaling in Angiogenesis, Berlin: Springer, 2013, pp. 93–120.
-
(2013)
Mechanical and Chemical Signaling in Angiogenesis
, pp. 93-120
-
-
Vickerman, V.1
Kim, C.2
Kamm, R.D.3
-
63
-
-
84881232071
-
Recent molecular discoveries in angiogenesis and antiangiogenic therapies in cancer
-
COI: 1:CAS:528:DC%2BC3sXht1OgtbrE, PID: 23908119
-
Welti, J., et al. Recent molecular discoveries in angiogenesis and antiangiogenic therapies in cancer. J. Clin. Investig. 123(8):3190–3200, 2013.
-
(2013)
J. Clin. Investig.
, vol.123
, Issue.8
, pp. 3190-3200
-
-
Welti, J.1
-
64
-
-
84887536962
-
Advances in microfluidic cell culture systems for studying angiogenesis
-
PID: 23832929
-
Young, E. W. K. Advances in microfluidic cell culture systems for studying angiogenesis. J. Lab. Autom. 18(6):427–436, 2013.
-
(2013)
J. Lab. Autom.
, vol.18
, Issue.6
, pp. 427-436
-
-
Young, E.W.K.1
-
65
-
-
33746593689
-
Migration of tumor cells in 3D matrices is governed by matrix stiffness along with cell-matrix adhesion and proteolysis
-
COI: 1:CAS:528:DC%2BD28XnsFensrg%3D, PID: 16832052
-
Zaman, M. H., et al. Migration of tumor cells in 3D matrices is governed by matrix stiffness along with cell-matrix adhesion and proteolysis. Proc. Natl. Acad. Sci. 103(29):10889–10894, 2006.
-
(2006)
Proc. Natl. Acad. Sci.
, vol.103
, Issue.29
, pp. 10889-10894
-
-
Zaman, M.H.1
|