-
1
-
-
84880356469
-
Foam cells in atherosclerosis
-
X. H. Yu, Y. C. Fu, D. W. Zhang, K. Yin, and C. K. Tang, "Foam cells in atherosclerosis," Clinica Chimica Acta, vol. 424, pp. 245-252, 2013.
-
(2013)
Clinica Chimica Acta
, vol.424
, pp. 245-252
-
-
Yu, X.H.1
Fu, Y.C.2
Zhang, D.W.3
Yin, K.4
Tang, C.K.5
-
2
-
-
84862546901
-
Exposure of endothelial cells to physiological levels of myeloperoxidasemodified LDL delays pericellular fibrinolysis
-
Article IDe38810
-
K. Z. Boudjeltia, J. Daher, P. van Antwerpen, et al., "Exposure of endothelial cells to physiological levels of myeloperoxidasemodified LDL delays pericellular fibrinolysis," PLoS ONE, vol. 7, no. 6, Article IDe38810, 2012.
-
(2012)
PLoS ONE
, vol.7
, Issue.6
-
-
Boudjeltia, K.Z.1
Daher, J.2
Van Antwerpen, P.3
-
3
-
-
79953731953
-
Oxidative modification of lipoproteins: Mechanisms, role in inflammation and potential clinical applications in cardiovascular disease
-
S. Tsimikas and Y. I. Miller, "Oxidative modification of lipoproteins: mechanisms, role in inflammation and potential clinical applications in cardiovascular disease," Current Pharmaceutical Design, vol. 17, no. 1, pp. 27-37, 2011.
-
(2011)
Current Pharmaceutical Design
, vol.17
, Issue.1
, pp. 27-37
-
-
Tsimikas, S.1
Miller, Y.I.2
-
4
-
-
0034724687
-
Oxidized low density lipoprotein (ox-LDL) binding to ox-LDL receptor-in endothelial cells induces the activation of NF-kappaB through an increased production of intracellular reactive oxygen species
-
L. Cominacini, A. F. Pasini, U. Garbin, et al., "Oxidized low density lipoprotein (ox-LDL) binding to ox-LDL receptor-in endothelial cells induces the activation of NF-kappaB through an increased production of intracellular reactive oxygen species,"The Journal of Biological Chemistry, vol. 275, no. 17, pp. 12633-12638, 2000.
-
(2000)
The Journal of Biological Chemistry
, vol.275
, Issue.17
, pp. 12633-12638
-
-
Cominacini, L.1
Pasini, A.F.2
Garbin, U.3
-
5
-
-
0034020163
-
Stimulation of platelets and endothelial cells by mildly oxidized LDL proceeds through activation of lysophosphatidic acid receptors and the Rho/Rho-kinase pathway. Inhibition by lovastatin
-
M. Essler, M. Retzer, M. Bauer, K. J. Zangl, G. Tigyi, and W. Siess, "Stimulation of platelets and endothelial cells by mildly oxidized LDL proceeds through activation of lysophosphatidic acid receptors and the Rho/Rho-kinase pathway. Inhibition by lovastatin," Annals of theNew York Academy of Sciences, vol. 905, pp. 282-286, 2000.
-
(2000)
Annals of the New York Academy of Sciences
, vol.905
, pp. 282-286
-
-
Essler, M.1
Retzer, M.2
Bauer, M.3
Zangl, K.J.4
Tigyi, G.5
Siess, W.6
-
6
-
-
67849088725
-
Inflammatory mechanisms in atherosclerosis
-
G. K. Hansson, "Inflammatory mechanisms in atherosclerosis," Journal ofThrombosis and Haemostasis, vol. 7, supplement 1, pp. 328-331, 2009.
-
(2009)
Journal of Thrombosis and Haemostasis
, vol.7
, pp. 328-331
-
-
Hansson, G.K.1
-
7
-
-
82655162526
-
M2 macrophages exhibit higher sensitivity to oxLDL-induced lipotoxicity than other monocyte/macrophage subtypes
-
article 229
-
S. A. Isa, J. S. Ruffino, M. Ahluwalia, A. W. Thomas, K. Morris, and R. Webb, "M2 macrophages exhibit higher sensitivity to oxLDL-induced lipotoxicity than other monocyte/macrophage subtypes," Lipids in Health and Disease, vol. 10, article 229, 2011.
-
(2011)
Lipids in Health and Disease
, vol.10
-
-
Isa, S.A.1
Ruffino, J.S.2
Ahluwalia, M.3
Thomas, A.W.4
Morris, K.5
Webb, R.6
-
8
-
-
84897989832
-
Proatherogenic modification of LDL by surface-boundmyeloperoxidase
-
A. V. Sokolov, V. A. Kostevich, O. L. Runova, et al., "Proatherogenic modification of LDL by surface-boundmyeloperoxidase," Chemistry and Physics of Lipids, vol. 180, pp. 72-80, 2014.
-
(2014)
Chemistry and Physics of Lipids
, vol.180
, pp. 72-80
-
-
Sokolov, A.V.1
Kostevich, V.A.2
Runova, O.L.3
-
9
-
-
33846271481
-
Triggering of inflammatory response by myeloperoxidase-oxidized LDL
-
K. Z. Boudjeltia, I. Legssyer, P. VanAntwerpenet al., "Triggering of inflammatory response by myeloperoxidase-oxidized LDL," Biochemistry and Cell Biology, vol. 84, no. 5, pp. 805-812, 2006.
-
(2006)
Biochemistry and Cell Biology
, vol.84
, Issue.5
, pp. 805-812
-
-
Boudjeltia, K.Z.1
Legssyer, I.2
Van Antwerpen, P.3
-
10
-
-
84911077934
-
Macrophage phenotypes in atherosclerosis
-
S. Colin, G. Chinetti-Gbaguidi, and B. Staels, "Macrophage phenotypes in atherosclerosis," Immunological Reviews, vol. 262, no. 1, pp. 153-166, 2014.
-
(2014)
Immunological Reviews
, vol.262
, Issue.1
, pp. 153-166
-
-
Colin, S.1
Chinetti-Gbaguidi, G.2
Staels, B.3
-
11
-
-
84905028309
-
Macrophage phenotypes and their modulation in atherosclerosis
-
F. De Paoli, B. Staels, and G. Chinetti-Gbaguidi, "Macrophage phenotypes and their modulation in atherosclerosis," Circulation Journal, vol. 78, no. 8, pp. 1775-1781, 2014.
-
(2014)
Circulation Journal
, vol.78
, Issue.8
, pp. 1775-1781
-
-
De Paoli, F.1
Staels, B.2
Chinetti-Gbaguidi, G.3
-
12
-
-
79951669207
-
The immune system in atherosclerosis
-
G. K. Hansson and A. Hermansson, "The immune system in atherosclerosis," Nature Immunology, vol. 12, no. 3, pp. 204-212, 2011.
-
(2011)
Nature Immunology
, vol.12
, Issue.3
, pp. 204-212
-
-
Hansson, G.K.1
Hermansson, A.2
-
13
-
-
84870399457
-
Upregulation of macrophage-specific functions by oxidized LDL: Lysosomal degradation-dependent and -independent pathways
-
A. Radhika and P. R. Sudhakaran, "Upregulation of macrophage-specific functions by oxidized LDL: lysosomal degradation-dependent and -independent pathways," Molecular and Cellular Biochemistry, vol. 372, no. 1-2, pp. 181-190, 2013.
-
(2013)
Molecular and Cellular Biochemistry
, vol.372
, Issue.1-2
, pp. 181-190
-
-
Radhika, A.1
Sudhakaran, P.R.2
-
14
-
-
0031749187
-
Evaluation of lipid peroxidation by measuring thiobarbituric acid reactive substances
-
G. Lefevre, M. Beljean-Leymarie, F. Beyerle, et al., "Evaluation of lipid peroxidation by measuring thiobarbituric acid reactive substances," Annales de Biologie Clinique (Paris), vol. 56, no. 3, pp. 305-319, 1998.
-
(1998)
Annales de Biologie Clinique (Paris)
, vol.56
, Issue.3
, pp. 305-319
-
-
Lefevre, G.1
Beljean-Leymarie, M.2
Beyerle, F.3
-
15
-
-
0033621455
-
Oxidation-dependent effects of oxidized LDL: Proliferation or cell death
-
C.-Y. Han and Y. K. Pak, "Oxidation-dependent effects of oxidized LDL: proliferation or cell death," Experimental and Molecular Medicine, vol. 31, no. 4, pp. 165-173, 1999.
-
(1999)
Experimental and Molecular Medicine
, vol.31
, Issue.4
, pp. 165-173
-
-
Han, C.-Y.1
Pak, Y.K.2
-
16
-
-
0037304753
-
OxLDL stimulates cell proliferation through a general induction of cell cycle proteins
-
M. E. Zettler, M. A. Prociuk, J. A. Austria, H. Massaeli, G. Zhong, and G. N. Pierce, "OxLDL stimulates cell proliferation through a general induction of cell cycle proteins," The American Journal of Physiology-Heart and Circulatory Physiology, vol. 284, no. 2, pp. H644-H653, 2003.
-
(2003)
The American Journal of Physiology-Heart and Circulatory Physiology
, vol.284
, Issue.2
, pp. H644-H653
-
-
Zettler, M.E.1
Prociuk, M.A.2
Austria, J.A.3
Massaeli, H.4
Zhong, G.5
Pierce, G.N.6
-
17
-
-
0035049227
-
Oxidized LDL regulates vascular endothelial growth factor expression in human macrophages and endothelial cells through activation of peroxisome proliferator-activated receptor-γ
-
M. Inoue, H. Itoh, T. Tanaka, et al., "Oxidized LDL regulates vascular endothelial growth factor expression in human macrophages and endothelial cells through activation of peroxisome proliferator-activated receptor-γ," Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 21, no. 4, pp. 560-566, 2001.
-
(2001)
Arteriosclerosis, Thrombosis, and Vascular Biology
, vol.21
, Issue.4
, pp. 560-566
-
-
Inoue, M.1
Itoh, H.2
Tanaka, T.3
-
18
-
-
77649267205
-
The identification of markers of macrophage differentiation in PMA-stimulated THP-1 cells and monocyte-derived macrophages
-
Article ID e8668
-
M. Daigneault, J. A. Preston, H. M. Marriott, M. K. B. Whyte, and D. H. Dockrell, "The identification of markers of macrophage differentiation in PMA-stimulated THP-1 cells and monocyte-derived macrophages," PLoS ONE, vol. 5, no. 1, Article ID e8668, 2010.
-
(2010)
PLoS ONE
, vol.5
, Issue.1
-
-
Daigneault, M.1
Preston, J.A.2
Marriott, H.M.3
Whyte, M.K.B.4
Dockrell, D.H.5
-
19
-
-
84962091389
-
Loss of NADPH oxidase-derived superoxide skews macrophage phenotypes to delay type 1 diabetes
-
L. E. Padgett, A. R. Burg, W. Lei, and H. M. Tse, "Loss ofNADPH oxidase-derived superoxide skews macrophage phenotypes to delay type 1 diabetes," Diabetes, vol. 64, no. 3, pp. 937-946, 2015.
-
(2015)
Diabetes
, vol.64
, Issue.3
, pp. 937-946
-
-
Padgett, L.E.1
Burg, A.R.2
Lei, W.3
Tse, H.M.4
-
20
-
-
0141639811
-
Role of monocytes in atherogenesis
-
B. Osterud and E. Bjorklid, "Role of monocytes in atherogenesis," Physiological Reviews, vol. 83, no. 4, pp. 1069-1112, 2003.
-
(2003)
Physiological Reviews
, vol.83
, Issue.4
, pp. 1069-1112
-
-
Osterud, B.1
Bjorklid, E.2
-
21
-
-
84899124414
-
Signaling by IL-6 promotes alternative activation of macrophages to limit endotoxemia and obesity-associated resistance to insulin
-
J. Mauer, B. Chaurasia, J. Goldau, et al., "Signaling by IL-6 promotes alternative activation of macrophages to limit endotoxemia and obesity-associated resistance to insulin," Nature Immunology, vol. 15, no. 5, pp. 423-430, 2014.
-
(2014)
Nature Immunology
, vol.15
, Issue.5
, pp. 423-430
-
-
Mauer, J.1
Chaurasia, B.2
Goldau, J.3
-
22
-
-
39649120597
-
Tumor-associated leukemia inhibitory factor and IL-6 skew monocyte differentiation into tumor-associated macrophage-like cells
-
D. Duluc, Y. Delneste, F. Tan, et al., "Tumor-associated leukemia inhibitory factor and IL-6 skew monocyte differentiation into tumor-associated macrophage-like cells," Blood, vol. 110, no. 13, pp. 4319-4330, 2007.
-
(2007)
Blood
, vol.110
, Issue.13
, pp. 4319-4330
-
-
Duluc, D.1
Delneste, Y.2
Tan, F.3
-
23
-
-
77951902290
-
Monocyte chemoattractant protein-1 contributes to gut homeostasis and intestinal inflammation by composition of IL-10-producing regulatory macrophage subset
-
Y. Takada, T. Hisamatsu, N. Kamada, et al., "Monocyte chemoattractant protein-1 contributes to gut homeostasis and intestinal inflammation by composition of IL-10-producing regulatory macrophage subset," Journal of Immunology, vol. 184, no. 5, pp. 2671-2676, 2010.
-
(2010)
Journal of Immunology
, vol.184
, Issue.5
, pp. 2671-2676
-
-
Takada, Y.1
Hisamatsu, T.2
Kamada, N.3
-
24
-
-
18044391849
-
Yin and yang of MCP-1
-
L. C. Becker, "Yin and yang ofMCP-1," Circulation Research, vol. 96, no. 8, pp. 812-814, 2005.
-
(2005)
Circulation Research
, vol.96
, Issue.8
, pp. 812-814
-
-
Becker, L.C.1
-
25
-
-
44449170800
-
MCP-1 induces cardioprotection against ischaemia/reperfusion injury: Role of reactive oxygen species
-
H. Morimoto, M. Hirose, M. Takahashi, et al., "MCP-1 induces cardioprotection against ischaemia/reperfusion injury: role of reactive oxygen species," Cardiovascular Research, vol. 78, no. 3, pp. 554-562, 2008.
-
(2008)
Cardiovascular Research
, vol.78
, Issue.3
, pp. 554-562
-
-
Morimoto, H.1
Hirose, M.2
Takahashi, M.3
-
26
-
-
84903958619
-
LOX-1 and ROS, inseparable factors in the process of endothelial damage
-
V. Lubrano and S. Balzan, "LOX-1 and ROS, inseparable factors in the process of endothelial damage," Free Radical Research, vol. 48, no. 8, pp. 841-848, 2014.
-
(2014)
Free Radical Research
, vol.48
, Issue.8
, pp. 841-848
-
-
Lubrano, V.1
Balzan, S.2
-
27
-
-
84878915860
-
Lectin-like oxidized lowdensity lipoprotein receptor 1 pathways
-
A. Taye and A. A. K. El-Sheikh, "Lectin-like oxidized lowdensity lipoprotein receptor 1 pathways," European Journal of Clinical Investigation, vol. 43, no. 7, pp. 740-745, 2013.
-
(2013)
European Journal of Clinical Investigation
, vol.43
, Issue.7
, pp. 740-745
-
-
Taye, A.1
El-Sheikh, A.A.K.2
-
28
-
-
84859505076
-
Endoplasmic reticulum stress controls M2 macrophage differentiation and foam cell formation
-
J. Oh, A. E. Riek, S. Weng, et al., "Endoplasmic reticulum stress controls M2 macrophage differentiation and foam cell formation," Journal of Biological Chemistry, vol. 287, no. 15, pp. 11629-11641, 2012.
-
(2012)
Journal of Biological Chemistry
, vol.287
, Issue.15
, pp. 11629-11641
-
-
Oh, J.1
Riek, A.E.2
Weng, S.3
-
29
-
-
84914695211
-
Ox-LDL induces endothelial cell apoptosis via the LOX-1-dependent endoplasmic reticulum stress pathway
-
D. Hong, Y.-P. Bai, H.-C. Gao, et al., "Ox-LDL induces endothelial cell apoptosis via the LOX-1-dependent endoplasmic reticulum stress pathway," Atherosclerosis, vol. 235, no. 2, pp. 310-317, 2015.
-
(2015)
Atherosclerosis
, vol.235
, Issue.2
, pp. 310-317
-
-
Hong, D.1
Bai, Y.-P.2
Gao, H.-C.3
-
30
-
-
84881428575
-
Ox-LDL promotes migration and adhesion of bonemarrow-derivedmesenchymal stem cells via regulation of MCP-1 expression
-
Article ID 691023
-
F. Zhang, C. Wang, H. Wang, et al., "Ox-LDL promotes migration and adhesion of bonemarrow-derivedmesenchymal stem cells via regulation of MCP-1 expression," Mediators of Inflammation, vol. 2013, Article ID 691023, 11 pages, 2013.
-
(2013)
Mediators of Inflammation
, vol.2013
, pp. 11
-
-
Zhang, F.1
Wang, C.2
Wang, H.3
-
31
-
-
67650152516
-
M1 and M2a polarization of human monocyte-derived macrophages inhibits HIV-1 replication by distinct mechanisms
-
E. Cassol, L. Cassetta, C. Rizzi, M. Alfano, and G. Poli, "M1 and M2a polarization of human monocyte-derived macrophages inhibits HIV-1 replication by distinct mechanisms," The Journal of Immunology, vol. 182, no. 10, pp. 6237-6246, 2009.
-
(2009)
The Journal of Immunology
, vol.182
, Issue.10
, pp. 6237-6246
-
-
Cassol, E.1
Cassetta, L.2
Rizzi, C.3
Alfano, M.4
Poli, G.5
-
32
-
-
84893487976
-
Angiogenic capacity of M1-and M2-polarized macrophages is determined by the levels of TIMP-1 complexedwith their secreted proMMP-9
-
E. Zajac, B. Schweighofer, T. A. Kupriyanova, et al., "Angiogenic capacity of M1-and M2-polarized macrophages is determined by the levels of TIMP-1 complexedwith their secreted proMMP-9. ," Blood, vol. 122, no. 25, pp. 4054-4067, 2013.
-
(2013)
Blood
, vol.122
, Issue.25
, pp. 4054-4067
-
-
Zajac, E.1
Schweighofer, B.2
Kupriyanova, T.A.3
|