메뉴 건너뛰기




Volumn 21, Issue 3, 2015, Pages 167-174

Data-mining-based coronary heart disease risk prediction model using fuzzy logic and decision tree

Author keywords

Data mining; Decision tree; Fuzzy logic; Heart disease; KNHANES

Indexed keywords


EID: 84938879987     PISSN: 20933681     EISSN: 2093369X     Source Type: Journal    
DOI: 10.4258/hir.2015.21.3.167     Document Type: Article
Times cited : (67)

References (23)
  • 1
    • 84938901176 scopus 로고    scopus 로고
    • Geneva, Switzerland: World Health Organization, [cited at 2015 Jul 1]
    • World Health Organization. The world health report 2010 [Internet]. Geneva, Switzerland: World Health Organization; c2015 [cited at 2015 Jul 1]. Available from: http://www.who.int/whr/2010/en/.
    • (2015) The World Health Report 2010 [Internet]
  • 2
    • 84858002181 scopus 로고    scopus 로고
    • Healthy lifestyle through young adulthood and the presence of low cardiovascular disease risk profile in middle age: The Coronary Artery Risk Development in (Young) Adults (CARDIA) study
    • Liu K, Daviglus ML, Loria CM, Colangelo LA, Spring B, Moller AC, et al. Healthy lifestyle through young adulthood and the presence of low cardiovascular disease risk profile in middle age: the Coronary Artery Risk Development in (Young) Adults (CARDIA) study. Circulation 2012;125(8):996-1004.
    • (2012) Circulation , vol.125 , Issue.8 , pp. 996-1004
    • Liu, K.1    Daviglus, M.L.2    Loria, C.M.3    Colangelo, L.A.4    Spring, B.5    Moller, A.C.6
  • 4
    • 79951639426 scopus 로고    scopus 로고
    • Comparison of the predictability of cardiovascular disease risk according to different metabolic syndrome criteria of American Heart Association/National Heart, Lung, and Blood Institute and International Diabetes Federation in Korean men
    • Lee DY, Rhee EJ, Choi ES, Kim JH, Won JC, Park CY, et al. Comparison of the predictability of cardiovascular disease risk according to different metabolic syndrome criteria of American Heart Association/National Heart, Lung, and Blood Institute and International Diabetes Federation in Korean men. Korean Diabetes J 2008;32(4):317-27.
    • (2008) Korean Diabetes J , vol.32 , Issue.4 , pp. 317-327
    • Lee, D.Y.1    Rhee, E.J.2    Choi, E.S.3    Kim, J.H.4    Won, J.C.5    Park, C.Y.6
  • 5
    • 84906786979 scopus 로고    scopus 로고
    • Adaptive mining prediction model for content recommendation to coronary heart disease patients
    • Kim JK, Lee JS, Park DK, Lim YS, Lee YH, Jung EY. Adaptive mining prediction model for content recommendation to coronary heart disease patients. Cluster Comput 2014;17(3):881-91.
    • (2014) Cluster Comput , vol.17 , Issue.3 , pp. 881-891
    • Kim, J.K.1    Lee, J.S.2    Park, D.K.3    Lim, Y.S.4    Lee, Y.H.5    Jung, E.Y.6
  • 6
    • 84865516429 scopus 로고    scopus 로고
    • A multi-classifier based guideline sentence classification system
    • Song MH, Kim SH, Park DK, Lee YH. A multi-classifier based guideline sentence classification system. Healthc Inform Res 2011;17(4):224-31.
    • (2011) Healthc Inform Res , vol.17 , Issue.4 , pp. 224-231
    • Song, M.H.1    Kim, S.H.2    Park, D.K.3    Lee, Y.H.4
  • 7
    • 84880061591 scopus 로고    scopus 로고
    • Use of data mining techniques to determine and predict length of stay of cardiac patients
    • Hachesu PR, Ahmadi M, Alizadeh S, Sadoughi F. Use of data mining techniques to determine and predict length of stay of cardiac patients. Healthc Inform Res 2013;19(2):121-9.
    • (2013) Healthc Inform Res , vol.19 , Issue.2 , pp. 121-129
    • Hachesu, P.R.1    Ahmadi, M.2    Alizadeh, S.3    Sadoughi, F.4
  • 9
    • 84874154868 scopus 로고    scopus 로고
    • Clinical decision support system: Risk level prediction of heart disease using decision tree fuzzy rules
    • Anooj PK. Clinical decision support system: risk level prediction of heart disease using decision tree fuzzy rules. Int J Res Rev Comput Sci 2012;3(3):1659-67.
    • (2012) Int J Res Rev Comput Sci , vol.3 , Issue.3 , pp. 1659-1667
    • Anooj, P.K.1
  • 10
    • 77957847864 scopus 로고    scopus 로고
    • A fuzzy-evidential hybrid inference engine for coronary heart disease risk assessment
    • Khatibi V, Montazer GA. A fuzzy-evidential hybrid inference engine for coronary heart disease risk assessment. Expert Syst Appl 2010;37(12):8536-42.
    • (2010) Expert Syst Appl , vol.37 , Issue.12 , pp. 8536-8542
    • Khatibi, V.1    Montazer, G.A.2
  • 12
    • 84924223893 scopus 로고    scopus 로고
    • Evolutionary rule decision using similarity based associative chronic disease patients
    • Jung H, Yang J, Woo JI, Lee BM, Ouyang J, Chung K, Lee Y. Evolutionary rule decision using similarity based associative chronic disease patients. Cluster Comput 2014;18(1):279-91.
    • (2014) Cluster Comput , vol.18 , Issue.1 , pp. 279-291
    • Jung, H.1    Yang, J.2    Woo, J.I.3    Lee, B.M.4    Ouyang, J.5    Chung, K.6    Lee, Y.7
  • 13
    • 84924020040 scopus 로고    scopus 로고
    • A fuzzy rule base system for the diagnosis of heart disease
    • Barman M, Choudhury JP. A fuzzy rule base system for the diagnosis of heart disease. Int J Comput Appl 2012;57(7):46-53.
    • (2012) Int J Comput Appl , vol.57 , Issue.7 , pp. 46-53
    • Barman, M.1    Choudhury, J.P.2
  • 14
    • 77957924556 scopus 로고    scopus 로고
    • A new methodology for decisions in medical informatics using fuzzy cognitive maps based on fuzzy rule-extraction techniques
    • Papageorgiou EI. A new methodology for decisions in medical informatics using fuzzy cognitive maps based on fuzzy rule-extraction techniques. Appl Soft Comput 2011;11(1):500-13.
    • (2011) Appl Soft Comput , vol.11 , Issue.1 , pp. 500-513
    • Papageorgiou, E.I.1
  • 15
    • 84874127223 scopus 로고    scopus 로고
    • Decision tree driven rule induction for heart disease prediction model: Korean National Health and Nutrition Examinations Survey V-1
    • In: Kim KJ, Chung KY, editors, Amsterdam: Springer Netherlands
    • Kim JK, Son EJ, Lee YH, Park DK. Decision tree driven rule induction for heart disease prediction model: Korean National Health and Nutrition Examinations Survey V-1. In: Kim KJ, Chung KY, editors. IT Convergence and Security 2012. Amsterdam: Springer Netherlands; 2013. p. 1015-20.
    • (2013) IT Convergence and Security 2012 , pp. 1015-1020
    • Kim, J.K.1    Son, E.J.2    Lee, Y.H.3    Park, D.K.4
  • 16
    • 84938891340 scopus 로고    scopus 로고
    • Korea Center for Disease Control and Prevention
    • heongju: Korea Center for Disease Control and Prevention, [cited 2015 Jul 1]
    • Korea Center for Disease Control and Prevention. The 6th Korea National Health & Nutrition Examination Survey 2013 (KNHANES VI) [Internet]. Cheongju: Korea Center for Disease Control and Prevention; c2015 [cited 2015 Jul 1]. Available from: http://knhanes.cdc. go.kr/.
    • (2015) The 6Th Korea National Health & Nutrition Examination Survey 2013 (KNHANES VI) [Internet]
  • 17
    • 84893621752 scopus 로고    scopus 로고
    • Knowledge discovery in a community data set: Malnutrition among the elderly
    • Park M, Kim H, Kim SK. Knowledge discovery in a community data set: malnutrition among the elderly. Healthc Inform Res 2014;20(1):30-8.
    • (2014) Healthc Inform Res , vol.20 , Issue.1 , pp. 30-38
    • Park, M.1    Kim, H.2    Kim, S.K.3
  • 18
    • 84874188299 scopus 로고    scopus 로고
    • In: Kim KJ, Chung KY, editors, Amsterdam: Springer Netherlands
    • Son EJ, Kim JK, Lee YH, Jung EY. (2013). Data Mining Driven Chronic Heart Disease for Clinical Decision Support System Architecture in Korea. In: Kim KJ, Chung KY, editors. IT Convergence and Security 2012. Amsterdam: Springer Netherlands; 2013. p. 1021-25.
    • (2013) IT Convergence and Security 2012 , pp. 1021-1025
    • Son, E.J.1    Kim, J.K.2    Lee, Y.H.3    Jung, E.Y.4
  • 19
    • 84863085276 scopus 로고    scopus 로고
    • Sensitivity, specificity, accuracy, associated confidence interval and ROC analysis with practical SAS implementations
    • . , Health Care and Life Sciences; 2010 Nov 14-17; Baltimore, MD
    • Zhu W, Zeng N, Wang N. Sensitivity, specificity, accuracy, associated confidence interval and ROC analysis with practical SAS implementations. Proceedings of Northeast SAS Users Group (NESUG) 2010: Health Care and Life Sciences; 2010 Nov 14-17; Baltimore, MD. p. 1-9.
    • (2010) Proceedings of Northeast SAS Users Group (NESUG) , pp. 1-9
    • Zhu, W.1    Zeng, N.2    Wang, N.3
  • 20
    • 0026477875 scopus 로고
    • Noninvasive diagnosis of coronary artery disease using a neural network algorithm
    • Akay M. Noninvasive diagnosis of coronary artery disease using a neural network algorithm. Biol Cybern 1992;67(4):361-7.
    • (1992) Biol Cybern , vol.67 , Issue.4 , pp. 361-367
    • Akay, M.1
  • 21
    • 84873027513 scopus 로고    scopus 로고
    • Support vector machine ensembles for intelligent diagnosis of valvular heart disease
    • Sengur A. Support vector machine ensembles for intelligent diagnosis of valvular heart disease. J Med Syst 2012;36(4):2649-55.
    • (2012) J Med Syst , vol.36 , Issue.4 , pp. 2649-2655
    • Sengur, A.1
  • 22
    • 0035714567 scopus 로고    scopus 로고
    • Aortic stiffness is an independent predictor of all-cause and cardiovascular mortality in hypertensive patients
    • Laurent S, Boutouyrie P, Asmar R, Gautier I, Laloux B, Guize L, et al. Aortic stiffness is an independent predictor of all-cause and cardiovascular mortality in hypertensive patients. Hypertension 2001;37(5):1236-41.
    • (2001) Hypertension , vol.37 , Issue.5 , pp. 1236-1241
    • Laurent, S.1    Boutouyrie, P.2    Asmar, R.3    Gautier, I.4    Laloux, B.5    Guize, L.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.