-
1
-
-
61649092604
-
Microwave photonics
-
J. Yao, “Microwave photonics,” J. Lightwave Technol. 27, 314–335 (2009).
-
(2009)
J. Lightwave Technol
, vol.27
, pp. 314-335
-
-
Yao, J.1
-
2
-
-
84874053863
-
Integrated microwave photonics, Laser Photon
-
D. Marpaung, C. Roeloffzen, R. Heidemann, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photon. Rev. 7, 506–538 (2013).
-
(2013)
Rev
, vol.7
, pp. 506-538
-
-
Marpaung, D.1
Roeloffzen, C.2
Heidemann, R.3
Leinse, A.4
Sales, S.5
Capmany, J.6
-
3
-
-
85038212543
-
Clockworks and the measurement of laser frequencies with a mode-locked frequency comb
-
R. Holzwarth, M. Zimmermann, T. Udem, and T. W. Hansch, “Clockworks and the measurement of laser frequencies with a mode-locked frequency comb,” IEEE J. Quantum Electron. 29, 739–741 (1993).
-
(1993)
IEEE J. Quantum Electron
, vol.29
, pp. 739-741
-
-
Holzwarth, R.1
Zimmermann, M.2
Udem, T.3
Hansch, T.W.4
-
4
-
-
33847697327
-
Photonic analog-to-digital converters
-
G. Valley, “Photonic analog-to-digital converters,” Opt. Express 15, 1955–1982 (2007).
-
(2007)
Opt. Express
, vol.15
, pp. 1955-1982
-
-
Valley, G.1
-
5
-
-
0010362989
-
Double doped low etch pit density InP with reduced optical absorption
-
A. A. Ballman, A. M. Glass, R. E. Nahory, and H. Brown, “Double doped low etch pit density InP with reduced optical absorption,” J. Cryst. Growth 62, 198–202 (1983).
-
(1983)
J. Cryst. Growth
, vol.62
, pp. 198-202
-
-
Ballman, A.A.1
Glass, A.M.2
Nahory, R.E.3
Brown, H.4
-
6
-
-
0027585815
-
2 cm long monolithic multisection laser for active modelocking at 2.2 GHz
-
P. B. Hansen, G. Raybon, U. Koren, B. I. Miller, M. G. Young, M. A. Newkirk, M.-D. Chien, B. Tell, and C. A. Burrus, “2 cm long monolithic multisection laser for active modelocking at 2.2 GHz,” Electron. Lett. 29, 739–741 (1993).
-
(1993)
Electron. Lett
, vol.29
, pp. 739-741
-
-
Hansen, P.B.1
Raybon, G.2
Koren, U.3
Miller, B.I.4
Young, M.G.5
Newkirk, M.A.6
Chien, M.-D.7
Tell, B.8
Burrus, C.A.9
-
7
-
-
83455258008
-
High-power, low-noise 1.5-μm slab-coupled optical waveguide (SCOW) emitters: Physics, devices and applications
-
P. W. Juodawlkis, J. J. Plant, W. Loh, L. J. Missaggia, F. J. O’Donnell, D. C. Oakley, A. Napoleone, J. Klamkin, J. T. Gopinath, D. J. Ripin, S. Gee, P. J. Delfyett, and J. P. Donnelly, “High-power, low-noise 1.5-μm slab-coupled optical waveguide (SCOW) emitters: physics, devices and applications,” IEEE J. Sel. Top. Quantum Electron. 17, 1698–1714 (2011).
-
(2011)
IEEE J. Sel. Top. Quantum Electron
, vol.17
, pp. 1698-1714
-
-
Juodawlkis, P.W.1
Plant, J.J.2
Loh, W.3
Missaggia, L.J.4
O’Donnell, F.J.5
Oakley, D.C.6
Napoleone, A.7
Klamkin, J.8
Gopinath, J.T.9
Ripin, D.J.10
Gee, S.11
Delfyett, P.J.12
Donnelly, J.P.13
-
8
-
-
33847675814
-
F. Pommereau,and G. H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 μm,”
-
F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J. G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau,and G. H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 μm,” IEEE J. Sel. Top. Quantum Electron. 13, 111–124 (2007).
-
(2007)
IEEE J. Sel. Top. Quantum Electron
, vol.13
, pp. 111-124
-
-
Lelarge, F.1
Dagens, B.2
Renaudier, J.3
Brenot, R.4
Accard, A.5
Van Dijk, F.6
Make, D.7
Le Gouezigou, O.8
Provost, J.G.9
Poingt, F.10
Landreau, J.11
Drisse, O.12
Derouin, E.13
Rousseau, B.14
-
9
-
-
84877872987
-
High peak power, narrow RF linewidth asymmetrical cladding quantum-dash mode-locked lasers
-
M. Faugeron, F. Lelarge, M. Tran, Y. Robert, E. Vinet, A. Enard, J. Jacquet, and F. van Dijk, “High peak power, narrow RF linewidth asymmetrical cladding quantum-dash mode-locked lasers,” IEEE J. Sel. Top. Quantum Electron. 19, 1101008 (2013).
-
(2013)
IEEE J. Sel. Top. Quantum Electron
, vol.19
-
-
Faugeron, M.1
Lelarge, F.2
Tran, M.3
Robert, Y.4
Vinet, E.5
Enard, A.6
Jacquet, J.7
Van Dijk, F.8
-
10
-
-
84875587267
-
Asymmetrical cladding quantum dash mode-locked laser for terahertz wide frequency comb
-
F. van Dijk, M. Faugeron, F. Lelarge, M. Tran, M. Chtioui, Y. Robert, E. Vinet, A. Enard, and J. Jacquet, “Asymmetrical cladding quantum dash mode-locked laser for terahertz wide frequency comb,” in Proceedings of Microwave Photonics (2013), pp. 282–285.
-
(2013)
Proceedings of Microwave Photonics
, pp. 282-285
-
-
Van Dijk, F.1
Faugeron, M.2
Lelarge, F.3
Tran, M.4
Chtioui, M.5
Robert, Y.E.6
Vinet, A.E.7
Jacquet, J.8
-
11
-
-
1342324847
-
Optical pulse generation using Fabry–Perot lasers under continuous-wave operation
-
K. Sato, “Optical pulse generation using Fabry–Perot lasers under continuous-wave operation,” IEEE J. Sel. Top. Quantum Electron. 9, 1288–1293 (2003).
-
(2003)
IEEE J. Sel. Top. Quantum Electron
, vol.9
, pp. 1288-1293
-
-
Sato, K.1
-
12
-
-
80053982945
-
InAs/InP quantum-dot passively mode-locked lasers for 1.55-μm applications
-
R. Rosales, K. Merghem, A. Martinez, A. Akrout, J.-P. Tourrenc, A. Accard, F. Lelarge, and A. Ramdane, “InAs/InP quantum-dot passively mode-locked lasers for 1.55-μm applications,” IEEE J. Sel. Top. Quantum Electron. 17, 1292–1301 (2011).
-
(2011)
IEEE J. Sel. Top. Quantum Electron
, vol.17
, pp. 1292-1301
-
-
Rosales, R.1
Merghem, K.2
Martinez, A.3
Akrout, A.4
Tourrenc, J.-P.5
Accard, A.6
Lelarge, F.7
Ramdane, A.8
-
13
-
-
78650973236
-
Photonic millimeter-wave generation and its applications in high data rate wireless access
-
A. Stöhr, “Photonic millimeter-wave generation and its applications in high data rate wireless access,” in Proceedings of Microwave Photonics (2010), pp. 7–10.
-
(2010)
Proceedings of Microwave Photonics
, pp. 7-10
-
-
Stöhr, A.1
-
14
-
-
84871745157
-
170 GHz Photodiodes for InP-based photonic integrated circuits
-
(IEEE
-
E. Rouvalis, M. Cthioui, F. van Dijk, M. J. Fice, G. Carpintero, C. C. Renaud, and A. J. Seeds, “170 GHz Photodiodes for InP-based photonic integrated circuits,” in IEEE Photonics Conference (IEEE, 2012), pp. 88–89.
-
(2012)
IEEE Photonics Conference
, pp. 88-89
-
-
Rouvalis, E.1
Cthioui, M.2
Van Dijk, F.3
Fice, M.J.4
Carpintero, G.5
Renaud, C.C.6
Seeds, A.J.7
-
15
-
-
85008020445
-
An optical phase-locked loop photonic integrated circuit
-
S. Ristic, A. Bhardwaj, M. J. Rodwell, L. A. Coldren, and L. A. Johansson, “An optical phase-locked loop photonic integrated circuit,” J. Lightwave Technol. 28, 526–538 (2010).
-
(2010)
J. Lightwave Technol
, vol.28
, pp. 526-538
-
-
Ristic, S.1
Bhardwaj, A.2
Rodwell, M.J.3
Coldren, L.A.4
Johansson, L.A.5
-
16
-
-
84055199037
-
Monolithic dual wavelength DFB lasers for narrow linewidth heterodyne beat-note generation
-
F. Van Dijk, A. Accard, A. Enard, O. Drisse, D. Make, and F. Lelarge, “Monolithic dual wavelength DFB lasers for narrow linewidth heterodyne beat-note generation,” in Proceedings of Microwave Photonics (2011), pp. 73–76.
-
(2011)
Proceedings of Microwave Photonics
, pp. 73-76
-
-
Van Dijk, F.1
Accard, A.2
Enard, A.3
Drisse, O.4
Make, D.5
Lelarge, F.6
-
17
-
-
0029780881
-
Fabrication of a heterodyne receiver OEIC with optimized integration process using three MOVPE growth steps only
-
M. Hamacher, D. Trommer, K. Li, H. Schroeter-Janssen, W. Rehbein, and H. Heidrich, “Fabrication of a heterodyne receiver OEIC with optimized integration process using three MOVPE growth steps only,” IEEE Photon. Technol. Lett. 8, 75–77 (1996).
-
(1996)
IEEE Photon. Technol. Lett
, vol.8
, pp. 75-77
-
-
Hamacher, M.1
Trommer, D.2
Li, K.3
Schroeter-Janssen, H.4
Rehbein, W.5
Heidrich, H.6
-
18
-
-
84877912354
-
Monolithic integration of a high-speed widely tunable optical coherent receiver
-
M. Lu, H. C. Park, A. Sivananthan, J. S. Parker, E. Bloch, L. A. Johansson, M. J. W. Rodwell, and L. A. Coldren, “Monolithic integration of a high-speed widely tunable optical coherent receiver,” IEEE Photon. Technol. Lett. 25, 1077–1080 (2013).
-
(2013)
IEEE Photon. Technol. Lett
, vol.25
, pp. 1077-1080
-
-
Lu, M.1
Park, H.C.2
Sivananthan, A.3
Parker, J.S.4
Bloch, E.5
Johansson, L.A.6
Rodwell, M.J.7
Coldren, L.A.8
-
19
-
-
0030087130
-
Linearizing optical frequency-sweep of a laser diode for FMCW reflectometry
-
K. Iiyama, W. Lu-Tang, and K. Hayashi, “Linearizing optical frequency-sweep of a laser diode for FMCW reflectometry,” J. Lightwave Technol. 14, 173–178 (1996).
-
(1996)
J. Lightwave Technol
, vol.14
, pp. 173-178
-
-
Iiyama, K.1
Lu-Tang, W.2
Hayashi, K.3
-
20
-
-
0035056626
-
Laser ranging: A critical review of usual techniques for distance measurement
-
M.-C. Amann, T. Bosch, M. Lescure, R. Myllyla, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40, 10–19 (2001).
-
(2001)
Opt. Eng
, vol.40
, pp. 10-19
-
-
Amann, M.-C.1
Bosch, T.2
Lescure, M.3
Myllyla, R.4
Rioux, M.5
-
21
-
-
75449116126
-
Accuracy of active chirp linearization for broadband frequency modulated continuous wave ladar
-
Z. Barber, W. Babbitt, B. Kaylor, R. Reibel, and P. Roos, “Accuracy of active chirp linearization for broadband frequency modulated continuous wave ladar,” Appl. Opt. 49, 213–219 (2010).
-
(2010)
Appl. Opt
, vol.49
, pp. 213-219
-
-
Barber, Z.1
Babbitt, W.2
Kaylor, B.3
Reibel, R.4
Roos, P.5
-
22
-
-
0037599305
-
Wideband versatile radio-frequency spectrum analyzer
-
V. Lavielle, I. Lorgeré, J. Le Gouët, S. Tonda, and D. Dolfi, “Wideband versatile radio-frequency spectrum analyzer,” Opt. Lett. 28, 384–386 (2003).
-
(2003)
Opt. Lett
, vol.28
, pp. 384-386
-
-
Lavielle, V.1
Lorgeré, I.2
Le Gouët, J.3
Tonda, S.4
Dolfi, D.5
-
23
-
-
39449136557
-
Broadband photonic arbitrary waveform generation based on spatial-spectral holographic materials
-
C. Renner, R. Reibel, M. Tian, T. Chang, and W. R. Babbitt, “Broadband photonic arbitrary waveform generation based on spatial-spectral holographic materials,” J. Opt. Soc. Am. B 24, 2979–2987 (2007).
-
(2007)
J. Opt. Soc. Am. B
, vol.24
, pp. 2979-2987
-
-
Renner, C.1
Reibel, R.2
Tian, M.3
Chang, T.4
Babbitt, W.R.5
-
24
-
-
84874525107
-
Time reversal of optically carried radiofrequency signals in the microsecond range
-
H. Linget, L. Morvan, J. Le Gouët, and A. Louchet-Chauvet, “Time reversal of optically carried radiofrequency signals in the microsecond range,” Opt. Lett. 38, 643–645 (2013).
-
(2013)
Opt. Lett
, vol.38
, pp. 643-645
-
-
Linget, H.1
Morvan, L.2
Le Gouët, J.3
Louchet-Chauvet, A.4
-
25
-
-
33750933493
-
Quantum storage in rare-earth doped crystals for secure networks
-
O. Guillot-Noël, Ph. Goldner, E. Antic-Fidancev, A. Louchet, J.-L. Le Gouët, F. Bretenaker, and I. Lorgeré, “Quantum storage in rare-earth doped crystals for secure networks,” J. Lumin. 122–123, 526–528 (2007).
-
(2007)
J. Lumin
, vol.122-123
, pp. 526-528
-
-
Guillot-Noël, O.1
Goldner, P.H.2
Antic-Fidancev, E.3
Louchet, A.4
Le Gouët, J.-L.5
Bretenaker, F.6
Lorgeré, I.7
-
26
-
-
84255172778
-
Reconfiguration of spectral absorption features using a frequency-chirped laser pulse
-
M. Tian, T. Chang, K. D. Merkel, W. Randall, and W. R. Babbitt, “Reconfiguration of spectral absorption features using a frequency-chirped laser pulse,” Appl. Opt. 50, 6548–6554 (2011).
-
(2011)
Appl. Opt
, vol.50
, pp. 6548-6554
-
-
Tian, M.1
Chang, T.2
Merkel, K.D.3
Randall, W.4
Babbitt, W.R.5
-
27
-
-
84975606537
-
Use of single-mode optical fiber in the stabilization of laser frequency
-
Y. T. Chen, “Use of single-mode optical fiber in the stabilization of laser frequency,” Appl. Opt. 28, 2017–2021 (1989).
-
(1989)
Appl. Opt
, vol.28
, pp. 2017-2021
-
-
Chen, Y.T.1
-
28
-
-
0001007441
-
Laser frequency stabilization by means of optical self-heterodyne beat-frequency control
-
C. Greiner, B. Boggs, T. Wang, and T. W. Mossberg, “Laser frequency stabilization by means of optical self-heterodyne beat-frequency control,” Opt. Lett. 23, 1280–1282 (1998).
-
(1998)
Opt. Lett
, vol.23
, pp. 1280-1282
-
-
Greiner, C.1
Boggs, B.2
Wang, T.3
Mossberg, T.W.4
-
29
-
-
0036641850
-
Frequency noise reduction in erbium-doped fiber distributed-feedback lasers by electronic feedback
-
G. A. Cranch, “Frequency noise reduction in erbium-doped fiber distributed-feedback lasers by electronic feedback,” Opt. Lett. 27, 1114–1116 (2002).
-
(2002)
Opt. Lett
, vol.27
, pp. 1114-1116
-
-
Cranch, G.A.1
-
30
-
-
33846038228
-
Phase locking of a frequency agile laser
-
V. Crozatier, G. Gorju, F. Bretenaker, J.-L. Le Gouet, I. Lorgere, C. Gagnol, and E. Ducloux, “Phase locking of a frequency agile laser,” Appl. Phys. Lett. 89, 261115 (2006).
-
(2006)
Appl. Phys. Lett
, vol.89
-
-
Crozatier, V.1
Gorju, G.2
Bretenaker, F.3
Le Gouet, J.-L.4
Lorgere, I.5
Gagnol, C.6
Ducloux, E.7
-
31
-
-
33847671944
-
Active stabilization of a rapidly chirped laser by an optoelectronic digital servo-loop control
-
G. Gorju, A. Jucha, A. Jain, V. Crozatier, I. Lorgeré, J.-L. Le Gouët, F. Bretenaker, and M. Colice, “Active stabilization of a rapidly chirped laser by an optoelectronic digital servo-loop control,” Opt. Lett. 32, 484–486 (2007).
-
(2007)
Opt. Lett
, vol.32
, pp. 484-486
-
-
Gorju, G.1
Jucha, A.2
Jain, A.3
Crozatier, V.4
Lorgeré, I.5
Le Gouët, J.-L.6
Bretenaker, F.7
Colice, M.8
-
32
-
-
71849085160
-
Ultrabroadband optical chirp linearization for precision metrology applications
-
P. Roos, R. Reibel, T. Berg, B. Kaylor, Z. Barber, and W. Babbitt, “Ultrabroadband optical chirp linearization for precision metrology applications,” Opt. Lett. 34, 3692–3694 (2009).
-
(2009)
Opt. Lett
, vol.34
, pp. 3692-3694
-
-
Roos, P.1
Reibel, R.2
Berg, T.3
Kaylor, B.4
Barber, Z.5
Babbitt, W.6
-
33
-
-
69949086660
-
Precise control of broadband frequency chirps using optoelectronic feedback
-
N. Satyan, A. Vasilyev, G. Rakuljic, V. Leyva, and A. Yariv, “Precise control of broadband frequency chirps using optoelectronic feedback,” Opt. Express 17, 15991–15999 (2009).
-
(2009)
Opt. Express
, vol.17
, pp. 15991-15999
-
-
Satyan, N.1
Vasilyev, A.2
Rakuljic, G.3
Leyva, V.4
Yariv, A.5
-
34
-
-
77149171738
-
An agile laser with ultra-low frequency noise and high sweep linearity
-
H. Jiang, F. Kéfélian, P. Lemonde, A. Clairon, and G. Santarelli, “An agile laser with ultra-low frequency noise and high sweep linearity,” Opt. Express 18, 3284–3297 (2010).
-
(2010)
Opt. Express
, vol.18
, pp. 3284-3297
-
-
Jiang, H.1
Kéfélian, F.2
Lemonde, P.3
Clairon, A.4
Santarelli, G.5
-
35
-
-
85038213738
-
Broadband RF spectrum analyzer based on spectral hole burning microwave photonics
-
I. Lorgere, G. Gorju, L. Menager, V. Lavielle, F. Bretenaker, J.-L. Le Gouet, S. Molin, L. Morvan, S. Tonda-Goldstein, D. Dolfi, and J.-P. Huignard, “Broadband RF spectrum analyzer based on spectral hole burning microwave photonics,” in Proceedings of Microwave Photonics (2009), pp. 1–4.
-
(2009)
Proceedings of Microwave Photonics
, pp. 1-4
-
-
Lorgere, I.1
Gorju, G.2
Menager, L.3
Lavielle, V.4
Bretenaker, F.5
Le Gouet, J.-L.6
Molin, S.7
Morvan, L.8
Tonda-Goldstein, S.9
Dolfi, D.10
Huignard, J.-P.11
-
36
-
-
79960676260
-
Monolithically integrated photonic heterodyne system
-
L. Ponnampalam, M. J. Fice, F. Pozzi, C. Renaud, D. C. Rogers, I. F. Lealman, D. G. Moodie, P. J. Cannard, C. Lynch, L. Johnston, M. J. Robertson, R. Cronin, L. Pavlovic, L Naglic, M. Vidmar, and A. J. Seeds, “Monolithically integrated photonic heterodyne system,” J. Lightwave Technol. 29, 2229–2234 (2011).
-
(2011)
J. Lightwave Technol
, vol.29
, pp. 2229-2234
-
-
Ponnampalam, L.1
Fice, M.J.2
Pozzi, F.3
Renaud, C.4
Rogers, D.C.5
Lealman, I.F.6
Moodie, D.G.7
Cannard, P.J.8
Lynch, C.9
Johnston, L.10
Robertson, M.J.11
Cronin, R.12
Pavlovic, L.13
Naglic, L.14
Vidmar, M.15
Seeds, A.J.16
-
37
-
-
84875585177
-
Tunable monolithically integrated photonic THz heterodyne system
-
K. Balakier, M. J. Fice, L. Ponnampalam, C. Renaud, and A. J. Seeds, “Tunable monolithically integrated photonic THz heterodyne system,” in Proceedings of International Topical Meeting on Microwave Photonics (2012), pp. 286–289.
-
(2012)
Proceedings of International Topical Meeting on Microwave Photonics
, pp. 286-289
-
-
Balakier, K.1
Fice, M.J.2
Ponnampalam, L.3
Renaud, C.4
Seeds, A.J.5
-
38
-
-
0031098790
-
Tunable optical microwave source using spatially resolved laser eigenstates
-
M. Brunel, F. Bretenaker, and A. Le Floch, “Tunable optical microwave source using spatially resolved laser eigenstates,” Opt. Lett. 22, 384–386 (1997).
-
(1997)
Opt. Lett
, vol.22
, pp. 384-386
-
-
Brunel, M.1
Bretenaker, F.2
Le Floch, A.3
-
39
-
-
0030215887
-
Dual polarization frequency-modulated laser source
-
G. W. Baxter, J. M. Dawes, P. Dekker, and S. Knowles, “Dual polarization frequency-modulated laser source,” IEEE Photon. Technol. Lett. 8, 1015–1017 (1996).
-
(1996)
IEEE Photon. Technol. Lett
, vol.8
, pp. 1015-1017
-
-
Baxter, G.W.1
Dawes, J.M.2
Dekker, P.3
Knowles, S.4
-
40
-
-
54949096661
-
Dual-frequency laser at 1.5 μm for optical distribution and generation of high-purity microwave signals
-
G. Pillet, L. Morvan, M. Brunel, F. Bretenaker, D. Dolfi, M. Vallet, J.-P. Huignard, and A. Le Floch, “Dual-frequency laser at 1.5 μm for optical distribution and generation of high-purity microwave signals,” J. Lightwave Technol. 26, 2764–2773 (2008).
-
(2008)
J. Lightwave Technol
, vol.26
, pp. 2764-2773
-
-
Pillet, G.1
Morvan, L.2
Brunel, M.3
Bretenaker, F.4
Dolfi, D.5
Vallet, M.6
Huignard, J.-P.7
Le Floch, A.8
-
41
-
-
84883083705
-
Widely tunable opto-electronic oscillator based on a dual-frequency laser
-
J. Maxin, G. Pillet, B. Steinhausser, L. Morvan, O. Llopis, and D. Dolfi, “Widely tunable opto-electronic oscillator based on a dual-frequency laser,” J. Lightwave Technol. 31, 2919–2925 (2013).
-
(2013)
J. Lightwave Technol
, vol.31
, pp. 2919-2925
-
-
Maxin, J.1
Pillet, G.2
Steinhausser, B.3
Morvan, L.4
Llopis, O.5
Dolfi, D.6
-
42
-
-
84866654643
-
Optoelectronic oscillator based on fiber ring resonator: Overall system optimization and phase noise reduction
-
(IEEE
-
K. Saleh, P. H. Merrer, O. Llopis, and G. Cibiel, “Optoelectronic oscillator based on fiber ring resonator: overall system optimization and phase noise reduction,” in Proceedings of the IEEE International Frequency Control Symposium (IEEE, 2012), pp. 1–6.
-
(2012)
Proceedings of the IEEE International Frequency Control Symposium
, pp. 1-6
-
-
Saleh, K.1
Merrer, P.H.2
Llopis, O.3
Cibiel, G.4
-
43
-
-
34147125852
-
Dual-frequency single-axis laser using a lead lanthanum zirconate tantalate (PLZT) birefringent etalon for millimeter wave generation: Beyond the standard limit of tunability
-
J. Le Gouët, L. Morvan, M. Alouini, J. Bourderionnet, D. Dolfi, and J. Huignard, “Dual-frequency single-axis laser using a lead lanthanum zirconate tantalate (PLZT) birefringent etalon for millimeter wave generation: beyond the standard limit of tunability,” Opt. Lett. 32, 1090–1092 (2007).
-
(2007)
Opt. Lett
, vol.32
, pp. 1090-1092
-
-
Le Gouët, J.1
Morvan, L.2
Alouini, M.3
Bourderionnet, J.4
Dolfi, D.5
Huignard, J.6
-
44
-
-
84875603821
-
100 GHz phase-locked dual-frequency laser
-
(IEEE
-
G. Pillet, L. Morvan, L. Manager, A. Garcia, S. Babiel, and A. Stöhr, “100 GHz phase-locked dual-frequency laser,” in Proceedings of IEEE Topical Meeting on Microwave Photonics (IEEE, 2012), pp. 1–4.
-
(2012)
Proceedings of IEEE Topical Meeting on Microwave Photonics
, pp. 1-4
-
-
Pillet, G.1
Morvan, L.2
Manager, L.3
Garcia, A.4
Babiel, S.5
Stöhr, A.6
|