메뉴 건너뛰기




Volumn 11, Issue 7, 2015, Pages

How Co-translational Folding of Multi-domain Protein Is Affected by Elongation Schedule: Molecular Simulations

Author keywords

[No Author keywords available]

Indexed keywords

MOLECULAR STRUCTURE;

EID: 84938675284     PISSN: 1553734X     EISSN: 15537358     Source Type: Journal    
DOI: 10.1371/journal.pcbi.1004356     Document Type: Article
Times cited : (19)

References (57)
  • 2
    • 1342281633 scopus 로고    scopus 로고
    • The protein folding “speed limit”
    • Kubelka J, Hofrichter J, Eaton W a, The protein folding “speed limit”. Curr Opin Struct Biol. 2004;14: 76–88. doi: 10.1016/j.sbi.2004.01.013 15102453
    • (2004) Curr Opin Struct Biol , vol.14 , pp. 76-88
    • Kubelka, J.1    Hofrichter, J.2    Eaton, W.3
  • 4
    • 67650661943 scopus 로고    scopus 로고
    • The perspectives of studying multi-domain protein folding
    • Fitter J, The perspectives of studying multi-domain protein folding. Cell Mol Life Sci. 2009;66: 1672–1681. doi: 10.1007/s00018-009-8771-9 19183848
    • (2009) Cell Mol Life Sci , vol.66 , pp. 1672-1681
    • Fitter, J.1
  • 5
    • 79551687316 scopus 로고    scopus 로고
    • Protein folding in the cell: challenges and progress
    • Gershenson A, Gierasch LM, Protein folding in the cell: challenges and progress. Curr Opin Struct Biol. Elsevier Ltd; 2011;21: 32–41. doi: 10.1016/j.sbi.2010.11.001 21112769
    • (2011) Curr Opin Struct Biol , vol.21 , pp. 32-41
    • Gershenson, A.1    Gierasch, L.M.2
  • 6
    • 84888376873 scopus 로고    scopus 로고
    • Impact of reconstituted cytosol on protein stability
    • Sarkar M, Smith AE, Pielak GJ, Impact of reconstituted cytosol on protein stability. Proc Natl Acad Sci U S A. 2013;110: 19342–19347. doi: 10.1073/pnas.1312678110 24218610
    • (2013) Proc Natl Acad Sci U S A , vol.110 , pp. 19342-19347
    • Sarkar, M.1    Smith, A.E.2    Pielak, G.J.3
  • 7
    • 77951643591 scopus 로고    scopus 로고
    • Protein folding stability and dynamics imaged in a living cell
    • Ebbinghaus S, Dhar A, McDonald JD, Gruebele M, Protein folding stability and dynamics imaged in a living cell. Nat Methods. Nature Publishing Group; 2010;7: 319–323. doi: 10.1038/nmeth.1435 20190760
    • (2010) Nat Methods , vol.7 , pp. 319-323
    • Ebbinghaus, S.1    Dhar, A.2    McDonald, J.D.3    Gruebele, M.4
  • 8
    • 79960652801 scopus 로고    scopus 로고
    • Molecular chaperones in protein folding and proteostasis
    • Hartl FU, Bracher A, Hayer-Hartl M, Molecular chaperones in protein folding and proteostasis. Nature. Nature Publishing Group; 2011;475: 324–332. doi: 10.1038/nature10317 21776078
    • (2011) Nature , vol.475 , pp. 324-332
    • Hartl, F.U.1    Bracher, A.2    Hayer-Hartl, M.3
  • 9
    • 79551690253 scopus 로고    scopus 로고
    • Folding at the birth of the nascent chain: coordinating translation with co-translational folding
    • Zhang G, Ignatova Z, Folding at the birth of the nascent chain: coordinating translation with co-translational folding. Curr Opin Struct Biol. Elsevier Ltd; 2011;21: 25–31. doi: 10.1016/j.sbi.2010.10.008 21111607
    • (2011) Curr Opin Struct Biol , vol.21 , pp. 25-31
    • Zhang, G.1    Ignatova, Z.2
  • 11
    • 0031468437 scopus 로고    scopus 로고
    • Cotranslational Protein Folding
    • Fedorov AN, Baldwin TO, Cotranslational Protein Folding. J Biol Chem. 1997;272: 32715–32718. doi: 10.1074/jbc.272.52.32715 9407040
    • (1997) J Biol Chem , vol.272 , pp. 32715-32718
    • Fedorov, A.N.1    Baldwin, T.O.2
  • 12
    • 84890423994 scopus 로고    scopus 로고
    • Co-translational mechanisms of protein maturation
    • Gloge F, Becker AH, Kramer G, Bukau B, Co-translational mechanisms of protein maturation. Curr Opin Struct Biol. 2014;24: 24–33. doi: 10.1016/j.sbi.2013.11.004 24721450
    • (2014) Curr Opin Struct Biol , vol.24 , pp. 24-33
    • Gloge, F.1    Becker, A.H.2    Kramer, G.3    Bukau, B.4
  • 13
    • 0032983520 scopus 로고    scopus 로고
    • Co-translational domain folding as the structural basis for the rapid de novo folding of firefly luciferase
    • Frydman J, Erdjument-Bromage H, Tempst P, Hartl FU, Co-translational domain folding as the structural basis for the rapid de novo folding of firefly luciferase. Nat Struct Biol. 1999;6: 697–705. doi: 10.1038/10754 10404229
    • (1999) Nat Struct Biol , vol.6 , pp. 697-705
    • Frydman, J.1    Erdjument-Bromage, H.2    Tempst, P.3    Hartl, F.U.4
  • 14
    • 77950659587 scopus 로고    scopus 로고
    • Cotranslational folding increases GFP folding yield
    • Ugrinov KG, Clark PL, Cotranslational folding increases GFP folding yield. Biophys J. Biophysical Society; 2010;98: 1312–1320. doi: 10.1016/j.bpj.2009.12.4291
    • (2010) Biophys J. Biophysical Society , vol.98 , pp. 1312-1320
    • Ugrinov, K.G.1    Clark, P.L.2
  • 15
    • 79851500085 scopus 로고    scopus 로고
    • New scenarios of protein folding can occur on the ribosome
    • O’Brien EP, Christodoulou J, Vendruscolo M, Dobson CM, New scenarios of protein folding can occur on the ribosome. J Am Chem Soc. 2011;133: 513–526. Available: http://pubs.acs.org/doi/abs/10.1021/ja107863z doi: 10.1021/ja107863z 21204555
    • (2011) J Am Chem Soc , vol.133 , pp. 513-526
    • O’Brien, E.P.1    Christodoulou, J.2    Vendruscolo, M.3    Dobson, C.M.4
  • 16
    • 62049083910 scopus 로고    scopus 로고
    • Transient ribosomal attenuation coordinates protein synthesis and co-translational folding
    • Zhang G, Hubalewska M, Ignatova Z, Transient ribosomal attenuation coordinates protein synthesis and co-translational folding. Nat Struct Mol Biol. 2009;16: 274–280. doi: 10.1038/nsmb.1554 19198590
    • (2009) Nat Struct Mol Biol , vol.16 , pp. 274-280
    • Zhang, G.1    Hubalewska, M.2    Ignatova, Z.3
  • 17
    • 58149199728 scopus 로고    scopus 로고
    • A pause for thought along the co-translational folding pathway
    • Komar AA, A pause for thought along the co-translational folding pathway. Trends Biochem Sci. 2009;34: 16–24. doi: 10.1016/j.tibs.2008.10.002 18996013
    • (2009) Trends Biochem Sci , vol.34 , pp. 16-24
    • Komar, A.A.1
  • 18
    • 84901289547 scopus 로고    scopus 로고
    • Understanding the Influence of Codon Translation Rates on Cotranslational Protein Folding
    • O’Brien EP, Ciryam P, Vendruscolo M, Dobson CM, Understanding the Influence of Codon Translation Rates on Cotranslational Protein Folding. Acc Chem Res. 2014;47: 1536–1544. doi: 10.1021/ar5000117 24784899
    • (2014) Acc Chem Res , vol.47 , pp. 1536-1544
    • O’Brien, E.P.1    Ciryam, P.2    Vendruscolo, M.3    Dobson, C.M.4
  • 19
    • 84865083633 scopus 로고    scopus 로고
    • Genetic code redundancy and its influence on the encoded polypeptides
    • Spencer P, Barral J, Genetic code redundancy and its influence on the encoded polypeptides. Comput Struct Biotechnol J. 2012;1. Available: http://journals.sfu.ca/rncsb/index.php/csbj/article/view/13
    • (2012) Comput Struct Biotechnol J , vol.1
    • Spencer, P.1    Barral, J.2
  • 20
    • 84890423994 scopus 로고    scopus 로고
    • Co-translational mechanisms of protein maturation
    • Gloge F, Becker AH, Kramer G, Bukau B, Co-translational mechanisms of protein maturation. Curr Opin Struct Biol. 2014;24: 24–33. doi: 10.1016/j.sbi.2013.11.004 24721450
    • (2014) Curr Opin Struct Biol , vol.24 , pp. 24-33
    • Gloge, F.1    Becker, A.H.2    Kramer, G.3    Bukau, B.4
  • 21
    • 0023659927 scopus 로고
    • The efficiency of folding of some proteins is increased by controlled rates of translation in vivo. A hypothesis
    • Purvis IJ, Bettany a J, Santiago TC, Coggins JR, Duncan K, Eason R, et al. The efficiency of folding of some proteins is increased by controlled rates of translation in vivo. A hypothesis. J Mol Biol. 1987;193: 413–417. Available: http://www.ncbi.nlm.nih.gov/pubmed/3298659 3298659
    • (1987) J Mol Biol , vol.193 , pp. 413-417
    • Purvis, I.J.1    Bettany a, J.2    Santiago, T.C.3    Coggins, J.R.4    Duncan, K.5    Eason, R.6
  • 22
    • 0032699491 scopus 로고    scopus 로고
    • Synonymous codon substitutions affect ribosome traffic and protein folding during in vitro translation
    • Komar AA, Lesnik T, Reiss C, Synonymous codon substitutions affect ribosome traffic and protein folding during in vitro translation. FEBS Lett. 1999;462: 387–391. Available: http://www.ncbi.nlm.nih.gov/pubmed/10622731 10622731
    • (1999) FEBS Lett , vol.462 , pp. 387-391
    • Komar, A.A.1    Lesnik, T.2    Reiss, C.3
  • 23
    • 0345862088 scopus 로고    scopus 로고
    • The role of cotranslation in protein folding: a lattice model study
    • Morrissey MP, Ahmed Z, Shakhnovich EI, The role of cotranslation in protein folding: a lattice model study. Polymer. Elsevier; 2004;45: 557–571.
    • (2004) Polymer , vol.45 , pp. 557-571
    • Morrissey, M.P.1    Ahmed, Z.2    Shakhnovich, E.I.3
  • 24
    • 84879183007 scopus 로고    scopus 로고
    • Structural and energetic determinants of co-translational folding
    • Krobath H, Shakhnovich EI, Faísca PFN, Structural and energetic determinants of co-translational folding. J Chem Phys. 2013;138: 215101. doi: 10.1063/1.4808044 23758397
    • (2013) J Chem Phys , vol.138 , pp. 215101
    • Krobath, H.1    Shakhnovich, E.I.2    Faísca, P.F.N.3
  • 25
    • 34547830876 scopus 로고    scopus 로고
    • Cotranslational protein folding—fact or fiction?
    • Deane CM, Dong M, Huard FPE, Lance BK, Wood GR, Cotranslational protein folding—fact or fiction? Bioinformatics. 2007;23: i142–148. doi: 10.1093/bioinformatics/btm175 17646290
    • (2007) Bioinformatics , vol.23 , pp. i142-148
    • Deane, C.M.1    Dong, M.2    Huard, F.P.E.3    Lance, B.K.4    Wood, G.R.5
  • 26
    • 78049403925 scopus 로고    scopus 로고
    • Synonymous codon usage influences the local protein structure observed
    • Saunders R, Deane CM, Synonymous codon usage influences the local protein structure observed. Nucleic Acids Res. 2010;38: 6719–6728. doi: 10.1093/nar/gkq495 20530529
    • (2010) Nucleic Acids Res , vol.38 , pp. 6719-6728
    • Saunders, R.1    Deane, C.M.2
  • 27
    • 33746592161 scopus 로고    scopus 로고
    • Molecular Simulations of Cotranslational Protein Folding: Fragment Stabilities, Folding Cooperativity, and Trapping in the Ribosome
    • Elcock AH, Molecular Simulations of Cotranslational Protein Folding: Fragment Stabilities, Folding Cooperativity, and Trapping in the Ribosome. PLoS Comput Biol. 2006;2: e98. doi: 10.1371/journal.pcbi.0020098 16789821
    • (2006) PLoS Comput Biol , vol.2 , pp. e98
    • Elcock, A.H.1
  • 29
    • 84866449925 scopus 로고    scopus 로고
    • Prediction of variable translation rate effects on cotranslational protein folding
    • O’Brien EP, Vendruscolo M, Dobson CM, Prediction of variable translation rate effects on cotranslational protein folding. Nat Commun. Nature Publishing Group; 2012;3: 868. doi: 10.1038/ncomms1850 22643895
    • (2012) Nat Commun , vol.3 , pp. 868
    • O’Brien, E.P.1    Vendruscolo, M.2    Dobson, C.M.3
  • 30
    • 0023449962 scopus 로고
    • Spin glasses and the statistical mechanics of protein folding
    • Bryngelson JD, Wolynes PG, Spin glasses and the statistical mechanics of protein folding. Proc Natl Acad Sci U S A. 1987;84: 7524–7528. 3478708
    • (1987) Proc Natl Acad Sci U S A , vol.84 , pp. 7524-7528
    • Bryngelson, J.D.1    Wolynes, P.G.2
  • 31
    • 0030628825 scopus 로고    scopus 로고
    • Theory of protein folding: the energy landscape perspective
    • Onuchic JN, Luthey-Schulten Z, Wolynes PG, Theory of protein folding: the energy landscape perspective. Annu Rev Phys Chem. 1997;48: 545–600. doi: 10.1146/annurev.physchem.48.1.545 9348663
    • (1997) Annu Rev Phys Chem , vol.48 , pp. 545-600
    • Onuchic, J.N.1    Luthey-Schulten, Z.2    Wolynes, P.G.3
  • 32
    • 84868107440 scopus 로고    scopus 로고
    • Energy landscape and multiroute folding of topologically complex proteins adenylate kinase and 2ouf-knot
    • Li W, Terakawa T, Wang W, Takada S, Energy landscape and multiroute folding of topologically complex proteins adenylate kinase and 2ouf-knot. Proc Natl Acad Sci U S A. 2012;109: 17789–17794. doi: 10.1073/pnas.1201807109 22753508
    • (2012) Proc Natl Acad Sci U S A , vol.109 , pp. 17789-17794
    • Li, W.1    Terakawa, T.2    Wang, W.3    Takada, S.4
  • 33
    • 84865403286 scopus 로고    scopus 로고
    • Wang Y, Chu X, Suo Z, Wang E, Wang J. Multidomain Protein Solves the Folding Problem by Multifunnel Combined Landscape: Theoretical Investigation of a Y-Family DNA Polymerase. J Am Chem Soc. 2012; doi: 10.1021/ja3045663
  • 34
    • 84886644258 scopus 로고    scopus 로고
    • Ito M, Ozawa T, Takada S. Folding Coupled with Assembly in Split Green Fluorescent Proteins Studied by Structure-Based Molecular Simulations. J Phys Chem B. 2013; doi: 10.1021/jp4032817
  • 35
    • 84919770982 scopus 로고    scopus 로고
    • Theoretical perspectives on nonnative interactions and intrinsic disorder in protein folding and binding
    • Chen T, Song J, Chan HS, Theoretical perspectives on nonnative interactions and intrinsic disorder in protein folding and binding. Curr Opin Struct Biol. Elsevier; 2015;30: 32–42. doi: 10.1016/j.sbi.2014.12.002 25544254
    • (2015) Curr Opin Struct Biol , vol.30 , pp. 32-42
    • Chen, T.1    Song, J.2    Chan, H.S.3
  • 36
    • 0016696599 scopus 로고
    • Studies on protein folding, unfolding and fluctuations by computer simulation
    • Taketomi H, Ueda Y, Go N, Studies on protein folding, unfolding and fluctuations by computer simulation. Int J Pept Protein Res. Wiley Online Library; 1975;7: 445–459. 1201909
    • (1975) Int J Pept Protein Res , vol.7 , pp. 445-459
    • Taketomi, H.1    Ueda, Y.2    Go, N.3
  • 37
    • 0034685604 scopus 로고    scopus 로고
    • Topological and energetic factors: what determines the structural details of the transition state ensemble and “en-route” intermediates for protein folding? An investigation for small globular proteins
    • Clementi C, Nymeyer H, Onuchic JN, Topological and energetic factors: what determines the structural details of the transition state ensemble and “en-route” intermediates for protein folding? An investigation for small globular proteins. J Mol Biol. 2000;298: 937–953. doi: 10.1006/jmbi.2000.3693 10801360
    • (2000) J Mol Biol , vol.298 , pp. 937-953
    • Clementi, C.1    Nymeyer, H.2    Onuchic, J.N.3
  • 38
    • 0035850732 scopus 로고    scopus 로고
    • Roles of native topology and chain-length scaling in protein folding: a simulation study with a Go-like model
    • Koga N, Takada S, Roles of native topology and chain-length scaling in protein folding: a simulation study with a Go-like model. J Mol Biol. 2001;313: 171–180. doi: 10.1006/jmbi.2001.5037 11601854
    • (2001) J Mol Biol , vol.313 , pp. 171-180
    • Koga, N.1    Takada, S.2
  • 39
    • 63449129633 scopus 로고    scopus 로고
    • Insights from coarse-grained gō models for protein folding and dynamics
    • Hills RD, Brooks CL, Insights from coarse-grained gō models for protein folding and dynamics. Int J Mol Sci. 2009;10: 889–905. doi: 10.3390/ijms10030889 19399227
    • (2009) Int J Mol Sci , vol.10 , pp. 889-905
    • Hills, R.D.1    Brooks, C.L.2
  • 40
    • 0347417009 scopus 로고    scopus 로고
    • Optimizing physical energy functions for protein folding
    • Fujitsuka Y, Takada S, Luthey-Schulten ZA, Wolynes PG, Optimizing physical energy functions for protein folding. Proteins. 2004;54: 88–103. doi: 10.1002/prot.10429 14705026
    • (2004) Proteins , vol.54 , pp. 88-103
    • Fujitsuka, Y.1    Takada, S.2    Luthey-Schulten, Z.A.3    Wolynes, P.G.4
  • 41
    • 58549104541 scopus 로고    scopus 로고
    • Folding energy landscape and network dynamics of small globular proteins
    • Hori N, Chikenji G, Berry RS, Takada S, Folding energy landscape and network dynamics of small globular proteins. Proc Natl Acad Sci U S A. 2009;106: 73–78. doi: 10.1073/pnas.0811560106 19114654
    • (2009) Proc Natl Acad Sci U S A , vol.106 , pp. 73-78
    • Hori, N.1    Chikenji, G.2    Berry, R.S.3    Takada, S.4
  • 42
    • 4143090730 scopus 로고    scopus 로고
    • The protein folding network
    • Rao F, Caflisch A, The protein folding network. J Mol Biol. 2004;342: 299–306. doi: 10.1016/j.jmb.2004.06.063 15313625
    • (2004) J Mol Biol , vol.342 , pp. 299-306
    • Rao, F.1    Caflisch, A.2
  • 43
    • 84865098071 scopus 로고    scopus 로고
    • Silent substitutions predictably alter translation elongation rates and protein folding efficiencies
    • Spencer PS, Siller E, Anderson JF, Barral JM, Silent substitutions predictably alter translation elongation rates and protein folding efficiencies. J Mol Biol. Elsevier Ltd; 2012;422: 328–335. doi: 10.1016/j.jmb.2012.06.010 22705285
    • (2012) J Mol Biol , vol.422 , pp. 328-335
    • Spencer, P.S.1    Siller, E.2    Anderson, J.F.3    Barral, J.M.4
  • 44
    • 84891871414 scopus 로고    scopus 로고
    • Kinetic modelling indicates that fast-translating codons can coordinate cotranslational protein folding by avoiding misfolded intermediates
    • O’Brien EP, Vendruscolo M, Dobson CM, Kinetic modelling indicates that fast-translating codons can coordinate cotranslational protein folding by avoiding misfolded intermediates. Nat Commun. Nature Publishing Group; 2014;5.
    • (2014) Nat Commun , vol.5
    • O’Brien, E.P.1    Vendruscolo, M.2    Dobson, C.M.3
  • 45
    • 59149092772 scopus 로고    scopus 로고
    • The Escherichia coli cell division protein and model Tat substrate SufI (FtsP) localizes to the septal ring and has a multicopper oxidase-like structure
    • Tarry M, Arends SJR, Roversi P, Piette E, Sargent F, Berks BC, et al. The Escherichia coli cell division protein and model Tat substrate SufI (FtsP) localizes to the septal ring and has a multicopper oxidase-like structure. J Mol Biol. Elsevier Ltd; 2009;386: 504–19. doi: 10.1016/j.jmb.2008.12.043 19135451
    • (2009) J Mol Biol , vol.386 , pp. 504-519
    • Tarry, M.1    Arends, S.J.R.2    Roversi, P.3    Piette, E.4    Sargent, F.5    Berks, B.C.6
  • 46
    • 0033810049 scopus 로고    scopus 로고
    • Modeling of loops in protein structures
    • Fiser A, Do RKG, Sali A, Modeling of loops in protein structures. Protein Sci. 2000;9: 1753–1773. doi: 10.1110/ps.9.9.1753 11045621
    • (2000) Protein Sci , vol.9 , pp. 1753-1773
    • Fiser, A.1    Do, R.K.G.2    Sali, A.3
  • 49
    • 79959215991 scopus 로고    scopus 로고
    • CafeMol: A Coarse-Grained Biomolecular Simulator for Simulating Proteins at Work
    • Kenzaki H, Koga N, Hori N, Kanada R, Li W, Okazaki K, et al. CafeMol: A Coarse-Grained Biomolecular Simulator for Simulating Proteins at Work. J Chem Theory Comput. 2011;7: 1979–1989. doi: 10.1021/ct2001045
    • (2011) J Chem Theory Comput , vol.7 , pp. 1979-1989
    • Kenzaki, H.1    Koga, N.2    Hori, N.3    Kanada, R.4    Li, W.5    Okazaki, K.6
  • 50
    • 80053120944 scopus 로고    scopus 로고
    • Multiscale ensemble modeling of intrinsically disordered proteins: p53 N-terminal domain
    • Terakawa T, Takada S, Multiscale ensemble modeling of intrinsically disordered proteins: p53 N-terminal domain. Biophys J. Biophysical Society; 2011;101: 1450–1458. doi: 10.1016/j.bpj.2011.08.003
    • (2011) Biophys J. Biophysical Society , vol.101 , pp. 1450-1458
    • Terakawa, T.1    Takada, S.2
  • 51
    • 0043180474 scopus 로고    scopus 로고
    • PISCES: a protein sequence culling server
    • Wang G, Dunbrack RL, PISCES: a protein sequence culling server. Bioinformatics. 2003;19: 1589–1591. doi: 10.1093/bioinformatics/btg224 12912846
    • (2003) Bioinformatics , vol.19 , pp. 1589-1591
    • Wang, G.1    Dunbrack, R.L.2
  • 52
    • 0000484499 scopus 로고
    • Hydrophobic parameters-pi of amino-acid side-chains from the partitioning of N-acetyl-amino-acid amides
    • Fauchere JL, Pliska V, Hydrophobic parameters-pi of amino-acid side-chains from the partitioning of N-acetyl-amino-acid amides. Eur J Med Chem. 1983;18: 369–375.
    • (1983) Eur J Med Chem , vol.18 , pp. 369-375
    • Fauchere, J.L.1    Pliska, V.2
  • 53
    • 79953747234 scopus 로고    scopus 로고
    • Cooperativity, local-nonlocal coupling, and nonnative interactions: principles of protein folding from coarse-grained models
    • Chan HS, Zhang Z, Wallin S, Liu Z, Cooperativity, local-nonlocal coupling, and nonnative interactions: principles of protein folding from coarse-grained models. Annu Rev Phys Chem. 2011;62: 301–26. doi: 10.1146/annurev-physchem-032210-103405 21453060
    • (2011) Annu Rev Phys Chem , vol.62 , pp. 301-326
    • Chan, H.S.1    Zhang, Z.2    Wallin, S.3    Liu, Z.4
  • 54
    • 0026643094 scopus 로고
    • The nature of folded states of globular proteins
    • Honeycutt JD, Thirumalai D, The nature of folded states of globular proteins. Biopolymers. 1992;32: 695–709. doi: 10.1002/bip.360320610 1643270
    • (1992) Biopolymers , vol.32 , pp. 695-709
    • Honeycutt, J.D.1    Thirumalai, D.2
  • 55
    • 0029010695 scopus 로고
    • Kinetics of protein folding: nucleation mechanism, time scales, and pathways
    • Guo Z, Thirumalai D, Kinetics of protein folding: nucleation mechanism, time scales, and pathways. Biopolymers. 1995;36: 83–102.
    • (1995) Biopolymers , vol.36 , pp. 83-102
    • Guo, Z.1    Thirumalai, D.2
  • 56
    • 58149189877 scopus 로고    scopus 로고
    • GtRNAdb: a database of transfer RNA genes detected in genomic sequence
    • Chan PP, Lowe TM, GtRNAdb: a database of transfer RNA genes detected in genomic sequence. Nucleic Acids Res. 2009;37: D93–97. doi: 10.1093/nar/gkn787 18984615
    • (2009) Nucleic Acids Res , vol.37 , pp. D93-97
    • Chan, P.P.1    Lowe, T.M.2
  • 57
    • 67650558679 scopus 로고    scopus 로고
    • Efficient, High-Quality Force-Directed Graph Drawing
    • Hu Y, Efficient, High-Quality Force-Directed Graph Drawing. Math J. 2005;10: 37–71.
    • (2005) Math J , vol.10 , pp. 37-71
    • Hu, Y.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.