-
3
-
-
33947501381
-
The folding and evolution of multidomain proteins
-
Han J-H, Batey S, Nickson A a, Teichmann S a, Clarke J, The folding and evolution of multidomain proteins. Nat Rev Mol Cell Biol. 2007;8: 319–330. doi: 10.1038/nrm2144 17356578
-
(2007)
Nat Rev Mol Cell Biol
, vol.8
, pp. 319-330
-
-
Han, J.-H.1
Batey, S.2
Nickson, A.3
Teichmann, S.4
Clarke, J.5
-
4
-
-
67650661943
-
The perspectives of studying multi-domain protein folding
-
Fitter J, The perspectives of studying multi-domain protein folding. Cell Mol Life Sci. 2009;66: 1672–1681. doi: 10.1007/s00018-009-8771-9 19183848
-
(2009)
Cell Mol Life Sci
, vol.66
, pp. 1672-1681
-
-
Fitter, J.1
-
5
-
-
79551687316
-
Protein folding in the cell: challenges and progress
-
Gershenson A, Gierasch LM, Protein folding in the cell: challenges and progress. Curr Opin Struct Biol. Elsevier Ltd; 2011;21: 32–41. doi: 10.1016/j.sbi.2010.11.001 21112769
-
(2011)
Curr Opin Struct Biol
, vol.21
, pp. 32-41
-
-
Gershenson, A.1
Gierasch, L.M.2
-
6
-
-
84888376873
-
Impact of reconstituted cytosol on protein stability
-
Sarkar M, Smith AE, Pielak GJ, Impact of reconstituted cytosol on protein stability. Proc Natl Acad Sci U S A. 2013;110: 19342–19347. doi: 10.1073/pnas.1312678110 24218610
-
(2013)
Proc Natl Acad Sci U S A
, vol.110
, pp. 19342-19347
-
-
Sarkar, M.1
Smith, A.E.2
Pielak, G.J.3
-
7
-
-
77951643591
-
Protein folding stability and dynamics imaged in a living cell
-
Ebbinghaus S, Dhar A, McDonald JD, Gruebele M, Protein folding stability and dynamics imaged in a living cell. Nat Methods. Nature Publishing Group; 2010;7: 319–323. doi: 10.1038/nmeth.1435 20190760
-
(2010)
Nat Methods
, vol.7
, pp. 319-323
-
-
Ebbinghaus, S.1
Dhar, A.2
McDonald, J.D.3
Gruebele, M.4
-
8
-
-
79960652801
-
Molecular chaperones in protein folding and proteostasis
-
Hartl FU, Bracher A, Hayer-Hartl M, Molecular chaperones in protein folding and proteostasis. Nature. Nature Publishing Group; 2011;475: 324–332. doi: 10.1038/nature10317 21776078
-
(2011)
Nature
, vol.475
, pp. 324-332
-
-
Hartl, F.U.1
Bracher, A.2
Hayer-Hartl, M.3
-
9
-
-
79551690253
-
Folding at the birth of the nascent chain: coordinating translation with co-translational folding
-
Zhang G, Ignatova Z, Folding at the birth of the nascent chain: coordinating translation with co-translational folding. Curr Opin Struct Biol. Elsevier Ltd; 2011;21: 25–31. doi: 10.1016/j.sbi.2010.10.008 21111607
-
(2011)
Curr Opin Struct Biol
, vol.21
, pp. 25-31
-
-
Zhang, G.1
Ignatova, Z.2
-
11
-
-
0031468437
-
Cotranslational Protein Folding
-
Fedorov AN, Baldwin TO, Cotranslational Protein Folding. J Biol Chem. 1997;272: 32715–32718. doi: 10.1074/jbc.272.52.32715 9407040
-
(1997)
J Biol Chem
, vol.272
, pp. 32715-32718
-
-
Fedorov, A.N.1
Baldwin, T.O.2
-
12
-
-
84890423994
-
Co-translational mechanisms of protein maturation
-
Gloge F, Becker AH, Kramer G, Bukau B, Co-translational mechanisms of protein maturation. Curr Opin Struct Biol. 2014;24: 24–33. doi: 10.1016/j.sbi.2013.11.004 24721450
-
(2014)
Curr Opin Struct Biol
, vol.24
, pp. 24-33
-
-
Gloge, F.1
Becker, A.H.2
Kramer, G.3
Bukau, B.4
-
13
-
-
0032983520
-
Co-translational domain folding as the structural basis for the rapid de novo folding of firefly luciferase
-
Frydman J, Erdjument-Bromage H, Tempst P, Hartl FU, Co-translational domain folding as the structural basis for the rapid de novo folding of firefly luciferase. Nat Struct Biol. 1999;6: 697–705. doi: 10.1038/10754 10404229
-
(1999)
Nat Struct Biol
, vol.6
, pp. 697-705
-
-
Frydman, J.1
Erdjument-Bromage, H.2
Tempst, P.3
Hartl, F.U.4
-
14
-
-
77950659587
-
Cotranslational folding increases GFP folding yield
-
Ugrinov KG, Clark PL, Cotranslational folding increases GFP folding yield. Biophys J. Biophysical Society; 2010;98: 1312–1320. doi: 10.1016/j.bpj.2009.12.4291
-
(2010)
Biophys J. Biophysical Society
, vol.98
, pp. 1312-1320
-
-
Ugrinov, K.G.1
Clark, P.L.2
-
15
-
-
79851500085
-
New scenarios of protein folding can occur on the ribosome
-
O’Brien EP, Christodoulou J, Vendruscolo M, Dobson CM, New scenarios of protein folding can occur on the ribosome. J Am Chem Soc. 2011;133: 513–526. Available: http://pubs.acs.org/doi/abs/10.1021/ja107863z doi: 10.1021/ja107863z 21204555
-
(2011)
J Am Chem Soc
, vol.133
, pp. 513-526
-
-
O’Brien, E.P.1
Christodoulou, J.2
Vendruscolo, M.3
Dobson, C.M.4
-
16
-
-
62049083910
-
Transient ribosomal attenuation coordinates protein synthesis and co-translational folding
-
Zhang G, Hubalewska M, Ignatova Z, Transient ribosomal attenuation coordinates protein synthesis and co-translational folding. Nat Struct Mol Biol. 2009;16: 274–280. doi: 10.1038/nsmb.1554 19198590
-
(2009)
Nat Struct Mol Biol
, vol.16
, pp. 274-280
-
-
Zhang, G.1
Hubalewska, M.2
Ignatova, Z.3
-
17
-
-
58149199728
-
A pause for thought along the co-translational folding pathway
-
Komar AA, A pause for thought along the co-translational folding pathway. Trends Biochem Sci. 2009;34: 16–24. doi: 10.1016/j.tibs.2008.10.002 18996013
-
(2009)
Trends Biochem Sci
, vol.34
, pp. 16-24
-
-
Komar, A.A.1
-
18
-
-
84901289547
-
Understanding the Influence of Codon Translation Rates on Cotranslational Protein Folding
-
O’Brien EP, Ciryam P, Vendruscolo M, Dobson CM, Understanding the Influence of Codon Translation Rates on Cotranslational Protein Folding. Acc Chem Res. 2014;47: 1536–1544. doi: 10.1021/ar5000117 24784899
-
(2014)
Acc Chem Res
, vol.47
, pp. 1536-1544
-
-
O’Brien, E.P.1
Ciryam, P.2
Vendruscolo, M.3
Dobson, C.M.4
-
19
-
-
84865083633
-
Genetic code redundancy and its influence on the encoded polypeptides
-
Spencer P, Barral J, Genetic code redundancy and its influence on the encoded polypeptides. Comput Struct Biotechnol J. 2012;1. Available: http://journals.sfu.ca/rncsb/index.php/csbj/article/view/13
-
(2012)
Comput Struct Biotechnol J
, vol.1
-
-
Spencer, P.1
Barral, J.2
-
20
-
-
84890423994
-
Co-translational mechanisms of protein maturation
-
Gloge F, Becker AH, Kramer G, Bukau B, Co-translational mechanisms of protein maturation. Curr Opin Struct Biol. 2014;24: 24–33. doi: 10.1016/j.sbi.2013.11.004 24721450
-
(2014)
Curr Opin Struct Biol
, vol.24
, pp. 24-33
-
-
Gloge, F.1
Becker, A.H.2
Kramer, G.3
Bukau, B.4
-
21
-
-
0023659927
-
The efficiency of folding of some proteins is increased by controlled rates of translation in vivo. A hypothesis
-
Purvis IJ, Bettany a J, Santiago TC, Coggins JR, Duncan K, Eason R, et al. The efficiency of folding of some proteins is increased by controlled rates of translation in vivo. A hypothesis. J Mol Biol. 1987;193: 413–417. Available: http://www.ncbi.nlm.nih.gov/pubmed/3298659 3298659
-
(1987)
J Mol Biol
, vol.193
, pp. 413-417
-
-
Purvis, I.J.1
Bettany a, J.2
Santiago, T.C.3
Coggins, J.R.4
Duncan, K.5
Eason, R.6
-
22
-
-
0032699491
-
Synonymous codon substitutions affect ribosome traffic and protein folding during in vitro translation
-
Komar AA, Lesnik T, Reiss C, Synonymous codon substitutions affect ribosome traffic and protein folding during in vitro translation. FEBS Lett. 1999;462: 387–391. Available: http://www.ncbi.nlm.nih.gov/pubmed/10622731 10622731
-
(1999)
FEBS Lett
, vol.462
, pp. 387-391
-
-
Komar, A.A.1
Lesnik, T.2
Reiss, C.3
-
23
-
-
0345862088
-
The role of cotranslation in protein folding: a lattice model study
-
Morrissey MP, Ahmed Z, Shakhnovich EI, The role of cotranslation in protein folding: a lattice model study. Polymer. Elsevier; 2004;45: 557–571.
-
(2004)
Polymer
, vol.45
, pp. 557-571
-
-
Morrissey, M.P.1
Ahmed, Z.2
Shakhnovich, E.I.3
-
24
-
-
84879183007
-
Structural and energetic determinants of co-translational folding
-
Krobath H, Shakhnovich EI, Faísca PFN, Structural and energetic determinants of co-translational folding. J Chem Phys. 2013;138: 215101. doi: 10.1063/1.4808044 23758397
-
(2013)
J Chem Phys
, vol.138
, pp. 215101
-
-
Krobath, H.1
Shakhnovich, E.I.2
Faísca, P.F.N.3
-
25
-
-
34547830876
-
Cotranslational protein folding—fact or fiction?
-
Deane CM, Dong M, Huard FPE, Lance BK, Wood GR, Cotranslational protein folding—fact or fiction? Bioinformatics. 2007;23: i142–148. doi: 10.1093/bioinformatics/btm175 17646290
-
(2007)
Bioinformatics
, vol.23
, pp. i142-148
-
-
Deane, C.M.1
Dong, M.2
Huard, F.P.E.3
Lance, B.K.4
Wood, G.R.5
-
26
-
-
78049403925
-
Synonymous codon usage influences the local protein structure observed
-
Saunders R, Deane CM, Synonymous codon usage influences the local protein structure observed. Nucleic Acids Res. 2010;38: 6719–6728. doi: 10.1093/nar/gkq495 20530529
-
(2010)
Nucleic Acids Res
, vol.38
, pp. 6719-6728
-
-
Saunders, R.1
Deane, C.M.2
-
27
-
-
33746592161
-
Molecular Simulations of Cotranslational Protein Folding: Fragment Stabilities, Folding Cooperativity, and Trapping in the Ribosome
-
Elcock AH, Molecular Simulations of Cotranslational Protein Folding: Fragment Stabilities, Folding Cooperativity, and Trapping in the Ribosome. PLoS Comput Biol. 2006;2: e98. doi: 10.1371/journal.pcbi.0020098 16789821
-
(2006)
PLoS Comput Biol
, vol.2
, pp. e98
-
-
Elcock, A.H.1
-
28
-
-
78649494154
-
Transient tertiary structure formation within the ribosome exit port
-
O’Brien EP, Hsu S-TD, Christodoulou J, Vendruscolo M, Dobson CM, Transient tertiary structure formation within the ribosome exit port. J Am Chem Soc. 2010;132: 16928–16937. doi: 10.1021/ja106530y 21062068
-
(2010)
J Am Chem Soc
, vol.132
, pp. 16928-16937
-
-
O’Brien, E.P.1
Hsu, S.-T.D.2
Christodoulou, J.3
Vendruscolo, M.4
Dobson, C.M.5
-
29
-
-
84866449925
-
Prediction of variable translation rate effects on cotranslational protein folding
-
O’Brien EP, Vendruscolo M, Dobson CM, Prediction of variable translation rate effects on cotranslational protein folding. Nat Commun. Nature Publishing Group; 2012;3: 868. doi: 10.1038/ncomms1850 22643895
-
(2012)
Nat Commun
, vol.3
, pp. 868
-
-
O’Brien, E.P.1
Vendruscolo, M.2
Dobson, C.M.3
-
30
-
-
0023449962
-
Spin glasses and the statistical mechanics of protein folding
-
Bryngelson JD, Wolynes PG, Spin glasses and the statistical mechanics of protein folding. Proc Natl Acad Sci U S A. 1987;84: 7524–7528. 3478708
-
(1987)
Proc Natl Acad Sci U S A
, vol.84
, pp. 7524-7528
-
-
Bryngelson, J.D.1
Wolynes, P.G.2
-
31
-
-
0030628825
-
Theory of protein folding: the energy landscape perspective
-
Onuchic JN, Luthey-Schulten Z, Wolynes PG, Theory of protein folding: the energy landscape perspective. Annu Rev Phys Chem. 1997;48: 545–600. doi: 10.1146/annurev.physchem.48.1.545 9348663
-
(1997)
Annu Rev Phys Chem
, vol.48
, pp. 545-600
-
-
Onuchic, J.N.1
Luthey-Schulten, Z.2
Wolynes, P.G.3
-
32
-
-
84868107440
-
Energy landscape and multiroute folding of topologically complex proteins adenylate kinase and 2ouf-knot
-
Li W, Terakawa T, Wang W, Takada S, Energy landscape and multiroute folding of topologically complex proteins adenylate kinase and 2ouf-knot. Proc Natl Acad Sci U S A. 2012;109: 17789–17794. doi: 10.1073/pnas.1201807109 22753508
-
(2012)
Proc Natl Acad Sci U S A
, vol.109
, pp. 17789-17794
-
-
Li, W.1
Terakawa, T.2
Wang, W.3
Takada, S.4
-
33
-
-
84865403286
-
-
Wang Y, Chu X, Suo Z, Wang E, Wang J. Multidomain Protein Solves the Folding Problem by Multifunnel Combined Landscape: Theoretical Investigation of a Y-Family DNA Polymerase. J Am Chem Soc. 2012; doi: 10.1021/ja3045663
-
-
-
-
34
-
-
84886644258
-
-
Ito M, Ozawa T, Takada S. Folding Coupled with Assembly in Split Green Fluorescent Proteins Studied by Structure-Based Molecular Simulations. J Phys Chem B. 2013; doi: 10.1021/jp4032817
-
-
-
-
35
-
-
84919770982
-
Theoretical perspectives on nonnative interactions and intrinsic disorder in protein folding and binding
-
Chen T, Song J, Chan HS, Theoretical perspectives on nonnative interactions and intrinsic disorder in protein folding and binding. Curr Opin Struct Biol. Elsevier; 2015;30: 32–42. doi: 10.1016/j.sbi.2014.12.002 25544254
-
(2015)
Curr Opin Struct Biol
, vol.30
, pp. 32-42
-
-
Chen, T.1
Song, J.2
Chan, H.S.3
-
36
-
-
0016696599
-
Studies on protein folding, unfolding and fluctuations by computer simulation
-
Taketomi H, Ueda Y, Go N, Studies on protein folding, unfolding and fluctuations by computer simulation. Int J Pept Protein Res. Wiley Online Library; 1975;7: 445–459. 1201909
-
(1975)
Int J Pept Protein Res
, vol.7
, pp. 445-459
-
-
Taketomi, H.1
Ueda, Y.2
Go, N.3
-
37
-
-
0034685604
-
Topological and energetic factors: what determines the structural details of the transition state ensemble and “en-route” intermediates for protein folding? An investigation for small globular proteins
-
Clementi C, Nymeyer H, Onuchic JN, Topological and energetic factors: what determines the structural details of the transition state ensemble and “en-route” intermediates for protein folding? An investigation for small globular proteins. J Mol Biol. 2000;298: 937–953. doi: 10.1006/jmbi.2000.3693 10801360
-
(2000)
J Mol Biol
, vol.298
, pp. 937-953
-
-
Clementi, C.1
Nymeyer, H.2
Onuchic, J.N.3
-
38
-
-
0035850732
-
Roles of native topology and chain-length scaling in protein folding: a simulation study with a Go-like model
-
Koga N, Takada S, Roles of native topology and chain-length scaling in protein folding: a simulation study with a Go-like model. J Mol Biol. 2001;313: 171–180. doi: 10.1006/jmbi.2001.5037 11601854
-
(2001)
J Mol Biol
, vol.313
, pp. 171-180
-
-
Koga, N.1
Takada, S.2
-
39
-
-
63449129633
-
Insights from coarse-grained gō models for protein folding and dynamics
-
Hills RD, Brooks CL, Insights from coarse-grained gō models for protein folding and dynamics. Int J Mol Sci. 2009;10: 889–905. doi: 10.3390/ijms10030889 19399227
-
(2009)
Int J Mol Sci
, vol.10
, pp. 889-905
-
-
Hills, R.D.1
Brooks, C.L.2
-
40
-
-
0347417009
-
Optimizing physical energy functions for protein folding
-
Fujitsuka Y, Takada S, Luthey-Schulten ZA, Wolynes PG, Optimizing physical energy functions for protein folding. Proteins. 2004;54: 88–103. doi: 10.1002/prot.10429 14705026
-
(2004)
Proteins
, vol.54
, pp. 88-103
-
-
Fujitsuka, Y.1
Takada, S.2
Luthey-Schulten, Z.A.3
Wolynes, P.G.4
-
41
-
-
58549104541
-
Folding energy landscape and network dynamics of small globular proteins
-
Hori N, Chikenji G, Berry RS, Takada S, Folding energy landscape and network dynamics of small globular proteins. Proc Natl Acad Sci U S A. 2009;106: 73–78. doi: 10.1073/pnas.0811560106 19114654
-
(2009)
Proc Natl Acad Sci U S A
, vol.106
, pp. 73-78
-
-
Hori, N.1
Chikenji, G.2
Berry, R.S.3
Takada, S.4
-
42
-
-
4143090730
-
The protein folding network
-
Rao F, Caflisch A, The protein folding network. J Mol Biol. 2004;342: 299–306. doi: 10.1016/j.jmb.2004.06.063 15313625
-
(2004)
J Mol Biol
, vol.342
, pp. 299-306
-
-
Rao, F.1
Caflisch, A.2
-
43
-
-
84865098071
-
Silent substitutions predictably alter translation elongation rates and protein folding efficiencies
-
Spencer PS, Siller E, Anderson JF, Barral JM, Silent substitutions predictably alter translation elongation rates and protein folding efficiencies. J Mol Biol. Elsevier Ltd; 2012;422: 328–335. doi: 10.1016/j.jmb.2012.06.010 22705285
-
(2012)
J Mol Biol
, vol.422
, pp. 328-335
-
-
Spencer, P.S.1
Siller, E.2
Anderson, J.F.3
Barral, J.M.4
-
44
-
-
84891871414
-
Kinetic modelling indicates that fast-translating codons can coordinate cotranslational protein folding by avoiding misfolded intermediates
-
O’Brien EP, Vendruscolo M, Dobson CM, Kinetic modelling indicates that fast-translating codons can coordinate cotranslational protein folding by avoiding misfolded intermediates. Nat Commun. Nature Publishing Group; 2014;5.
-
(2014)
Nat Commun
, vol.5
-
-
O’Brien, E.P.1
Vendruscolo, M.2
Dobson, C.M.3
-
45
-
-
59149092772
-
The Escherichia coli cell division protein and model Tat substrate SufI (FtsP) localizes to the septal ring and has a multicopper oxidase-like structure
-
Tarry M, Arends SJR, Roversi P, Piette E, Sargent F, Berks BC, et al. The Escherichia coli cell division protein and model Tat substrate SufI (FtsP) localizes to the septal ring and has a multicopper oxidase-like structure. J Mol Biol. Elsevier Ltd; 2009;386: 504–19. doi: 10.1016/j.jmb.2008.12.043 19135451
-
(2009)
J Mol Biol
, vol.386
, pp. 504-519
-
-
Tarry, M.1
Arends, S.J.R.2
Roversi, P.3
Piette, E.4
Sargent, F.5
Berks, B.C.6
-
46
-
-
0033810049
-
Modeling of loops in protein structures
-
Fiser A, Do RKG, Sali A, Modeling of loops in protein structures. Protein Sci. 2000;9: 1753–1773. doi: 10.1110/ps.9.9.1753 11045621
-
(2000)
Protein Sci
, vol.9
, pp. 1753-1773
-
-
Fiser, A.1
Do, R.K.G.2
Sali, A.3
-
47
-
-
84938619670
-
-
Case DA, Darden TA, T.E. Cheatham I, Simmerling CL, Wang J, Duke RE, et al. AMBER 11. University of California, San Francisco; 2010.
-
(2010)
, vol.11
-
-
Case, D.A.1
Darden, T.A.2
Cheatham, T.E.3
Simmerling, C.L.4
Wang, J.5
Duke, R.E.6
-
48
-
-
84858077472
-
The Pfam protein families database
-
Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, Boursnell C, et al. The Pfam protein families database. Nucleic Acids Res. 2012;40: D290–301. doi: 10.1093/nar/gkr1065 22127870
-
(2012)
Nucleic Acids Res
, vol.40
, pp. D290-301
-
-
Punta, M.1
Coggill, P.C.2
Eberhardt, R.Y.3
Mistry, J.4
Tate, J.5
Boursnell, C.6
-
49
-
-
79959215991
-
CafeMol: A Coarse-Grained Biomolecular Simulator for Simulating Proteins at Work
-
Kenzaki H, Koga N, Hori N, Kanada R, Li W, Okazaki K, et al. CafeMol: A Coarse-Grained Biomolecular Simulator for Simulating Proteins at Work. J Chem Theory Comput. 2011;7: 1979–1989. doi: 10.1021/ct2001045
-
(2011)
J Chem Theory Comput
, vol.7
, pp. 1979-1989
-
-
Kenzaki, H.1
Koga, N.2
Hori, N.3
Kanada, R.4
Li, W.5
Okazaki, K.6
-
50
-
-
80053120944
-
Multiscale ensemble modeling of intrinsically disordered proteins: p53 N-terminal domain
-
Terakawa T, Takada S, Multiscale ensemble modeling of intrinsically disordered proteins: p53 N-terminal domain. Biophys J. Biophysical Society; 2011;101: 1450–1458. doi: 10.1016/j.bpj.2011.08.003
-
(2011)
Biophys J. Biophysical Society
, vol.101
, pp. 1450-1458
-
-
Terakawa, T.1
Takada, S.2
-
51
-
-
0043180474
-
PISCES: a protein sequence culling server
-
Wang G, Dunbrack RL, PISCES: a protein sequence culling server. Bioinformatics. 2003;19: 1589–1591. doi: 10.1093/bioinformatics/btg224 12912846
-
(2003)
Bioinformatics
, vol.19
, pp. 1589-1591
-
-
Wang, G.1
Dunbrack, R.L.2
-
52
-
-
0000484499
-
Hydrophobic parameters-pi of amino-acid side-chains from the partitioning of N-acetyl-amino-acid amides
-
Fauchere JL, Pliska V, Hydrophobic parameters-pi of amino-acid side-chains from the partitioning of N-acetyl-amino-acid amides. Eur J Med Chem. 1983;18: 369–375.
-
(1983)
Eur J Med Chem
, vol.18
, pp. 369-375
-
-
Fauchere, J.L.1
Pliska, V.2
-
53
-
-
79953747234
-
Cooperativity, local-nonlocal coupling, and nonnative interactions: principles of protein folding from coarse-grained models
-
Chan HS, Zhang Z, Wallin S, Liu Z, Cooperativity, local-nonlocal coupling, and nonnative interactions: principles of protein folding from coarse-grained models. Annu Rev Phys Chem. 2011;62: 301–26. doi: 10.1146/annurev-physchem-032210-103405 21453060
-
(2011)
Annu Rev Phys Chem
, vol.62
, pp. 301-326
-
-
Chan, H.S.1
Zhang, Z.2
Wallin, S.3
Liu, Z.4
-
54
-
-
0026643094
-
The nature of folded states of globular proteins
-
Honeycutt JD, Thirumalai D, The nature of folded states of globular proteins. Biopolymers. 1992;32: 695–709. doi: 10.1002/bip.360320610 1643270
-
(1992)
Biopolymers
, vol.32
, pp. 695-709
-
-
Honeycutt, J.D.1
Thirumalai, D.2
-
55
-
-
0029010695
-
Kinetics of protein folding: nucleation mechanism, time scales, and pathways
-
Guo Z, Thirumalai D, Kinetics of protein folding: nucleation mechanism, time scales, and pathways. Biopolymers. 1995;36: 83–102.
-
(1995)
Biopolymers
, vol.36
, pp. 83-102
-
-
Guo, Z.1
Thirumalai, D.2
-
56
-
-
58149189877
-
GtRNAdb: a database of transfer RNA genes detected in genomic sequence
-
Chan PP, Lowe TM, GtRNAdb: a database of transfer RNA genes detected in genomic sequence. Nucleic Acids Res. 2009;37: D93–97. doi: 10.1093/nar/gkn787 18984615
-
(2009)
Nucleic Acids Res
, vol.37
, pp. D93-97
-
-
Chan, P.P.1
Lowe, T.M.2
-
57
-
-
67650558679
-
Efficient, High-Quality Force-Directed Graph Drawing
-
Hu Y, Efficient, High-Quality Force-Directed Graph Drawing. Math J. 2005;10: 37–71.
-
(2005)
Math J
, vol.10
, pp. 37-71
-
-
Hu, Y.1
|